1
|
Perfetti R, Bailey E, Wang S, Mills R, Mohanlal R, Shendelman S. Safety, Pharmacokinetics, and Pharmacodynamics of the New Aldose Reductase Inhibitor Govorestat (AT-007) After a Single and Multiple Doses in Participants in a Phase 1/2 Study. J Clin Pharmacol 2024; 64:1397-1406. [PMID: 38988185 DOI: 10.1002/jcph.2495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
In classic galactosemia (CG) patients, aldose reductase (AR) converts galactose to galactitol. In a phase 1/2, placebo-controlled study (NCT04117711), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of govorestat were evaluated after single and multiple ascending doses (0.5-40 mg/kg) in healthy adults (n = 81) and CG patients (n = 14). Levels of govorestat in plasma and cerebrospinal fluid (CSF) and blood levels of galactitol, galactose, and galactose-1-phosphate (Gal-1p) were measured for population PK and PK/PD analyses. Govorestat was well tolerated. Adverse event frequency was comparable between placebo and govorestat. Govorestat PK displayed a 2-compartment model with sequential zero- and first-order absorption, and no effect of demographic factors. Multiple-dose PK of govorestat was linear in the 0.5-40 mg/kg range, and CSF levels increased dose dependently. Elimination half-life was ∼10 h. PK/PD modeling supported once-daily dosing. Change from baseline in galactitol was -15% ± 9% with placebo and -19% ± 10%, -46% ± 4%, and -51% ± 5% with govorestat 5, 20, and 40 mg/kg, respectively, thus was similar for 20 and 40 mg/kg. Govorestat did not affect galactose or Gal-1p levels. In conclusion, govorestat displayed a favorable safety, PK, and PD profile in humans, and reduced galactitol levels in the same magnitude (∼50%) as in a rat model of CG that demonstrated an efficacy benefit on neurological, behavioral, and ocular outcomes.
Collapse
Affiliation(s)
| | | | | | - Richard Mills
- Quantitative Pharmacology and Pharmacometrics, ICON plc, Dublin, Ireland
| | | | | |
Collapse
|
2
|
Maier EM, Mütze U, Janzen N, Steuerwald U, Nennstiel U, Odenwald B, Schuhmann E, Lotz-Havla AS, Weiss KJ, Hammersen J, Weigel C, Thimm E, Grünert SC, Hennermann JB, Freisinger P, Krämer J, Das AM, Illsinger S, Gramer G, Fang-Hoffmann J, Garbade SF, Okun JG, Hoffmann GF, Kölker S, Röschinger W. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J Inherit Metab Dis 2023; 46:1043-1062. [PMID: 37603033 DOI: 10.1002/jimd.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Janzen
- Screening-Labor Hanover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | | | - Uta Nennstiel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Johanna Hammersen
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Corina Weigel
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Anibh M Das
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Sabine Illsinger
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Gwendolyn Gramer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Junmin Fang-Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Wulf Röschinger
- Laboratory Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
3
|
Ozler O, Egeli BH, Zeybek S, Eris E, Teke Kisa P. A Novel Homozygous GALK1 Variant Combined With Cataract and Prolonged Jaundice. Clin Pediatr (Phila) 2023; 62:537-540. [PMID: 36411586 DOI: 10.1177/00099228221136120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Oguz Ozler
- Division of Pediatric Endocrinology & Diabetes, Department of Pediatrics, Washington University in St. Louis School of Medicine, USA
| | - Bugra Han Egeli
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Selcan Zeybek
- Department of Medical Genetics, Tinaztepe University Faculty of Medicine, Izmir, Turkey
| | - Erdem Eris
- Department of Ophthalmology, University of Health Sciences Dr. Behcet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Izmir, Turkey
| | - Pelin Teke Kisa
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, University of Health Sciences Dr. Behcet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
4
|
The Importance of Neonatal Screening for Galactosemia. Nutrients 2022; 15:nu15010010. [PMID: 36615667 PMCID: PMC9823668 DOI: 10.3390/nu15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Galactosemia is an inborn metabolic disorder caused by a deficient activity in one of the enzymes involved in the metabolism of galactose. The first description of galactosemia in newborns dates from 1908, ever since complex research has been performed on cell and animal models to gain more insights into the molecular and clinical bases of this challenging disease. In galactosemia, the newborn appears to be born in proper health, having a window of opportunity before developing major morbidities that may even be fatal following ingestion of milk that contains galactose. Galactosemia cannot be cured, but its negative consequences on health can be avoided by establishing precocious diagnosis and treatment. All the foods that contain galactose should be eliminated from the diet when there is a suspicion of galactosemia. The neonatal screening for galactosemia can urge early diagnosis and intervention, preventing complications. All galactosemia types may be detected during the screening of newborns for this disorder. The major target is, however, galactose-1-phosphate uridyltransferase (GALT) deficiency galactosemia, which is diagnosed by applying a combination of total galactose and GALT enzyme analysis as well as, in certain programs, mutation screening. Most critically, infants who exhibit symptoms suggestive of galactosemia should undergo in-depth testing for this condition even when the newborn screening shows normal results. The decision to enroll global screening for galactosemia among the specific population still faces many challenges. In this context, the present narrative review provides an updated overview of the incidence, clinical manifestations, diagnosis, therapy, and prognosis of galactosemia, questioning under the dome of these aspects related to the disease the value of its neonatal monitoring.
Collapse
|
5
|
Fridovich-Keil JL, Berry GT. Pathophysiology of long-term complications in classic galactosemia: What we do and do not know. Mol Genet Metab 2022; 137:33-39. [PMID: 35882174 DOI: 10.1016/j.ymgme.2022.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Despite many decades of research involving both human subjects and model systems, the underlying pathophysiology of long-term complications in classic galactosemia (CG) remains poorly understood. In this review, intended for those already familiar with galactosemia, we focus on the big questions relating to outcomes, mechanism, and markers, drawing on relevant literature where available, attempting to navigate inconsistencies where they appear, and acknowledging gaps in knowledge where they persist.
Collapse
Affiliation(s)
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Wada Y, Arai-Ichinoi N, Kikuchi A, Kure S. β-Galactosidase therapy can mitigate blood galactose elevation after an oral lactose load in galactose mutarotase deficiency. J Inherit Metab Dis 2022; 45:334-339. [PMID: 34611916 DOI: 10.1002/jimd.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Galactose mutarotase (GALM) deficiency (MIM# 618881), also known as type IV galactosemia, is caused by biallelic pathogenic variants of GALM. Cataracts are observed in patients with GALM deficiency as well as in other conditions associated with high levels of blood galactose and can be prevented by consuming a galactose-restricted diet or formula. Galactose restriction is the only known treatment for GALM deficiency and other types of galactosemia. We incidentally found that β-galactosidase might reduce blood galactose levels caused by lactose loading in GALM deficiency. Consequently, we investigated the effectiveness of β-galactosidase in decreasing the level of blood galactose in three patients with GALM deficiency. We performed two lactose loading tests per case: one with and one without β-galactosidase. The add-on administration of β-galactosidase significantly mitigated blood galactose elevations after lactose loading. Although urine galactitol was mildly elevated in all patients with GALM deficiency, β-galactosidase did not prevent increased levels of urine galactitol during the loading tests. No adverse events, including cataracts, were observed during or after the tests. Therefore, β-galactosidase could be a potential novel treatment agent for blood galactose elevation caused by lactose in patients with GALM deficiency. The effectiveness of β-galactosidase could possibly result in loosening of the galactose dietary restrictions or treatment for patients with GALM deficiency.
Collapse
Affiliation(s)
- Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | | | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
The Discovery of GALM Deficiency (Type IV Galactosemia) and Newborn Screening System for Galactosemia in Japan. Int J Neonatal Screen 2021; 7:ijns7040068. [PMID: 34842598 PMCID: PMC8628924 DOI: 10.3390/ijns7040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
The Leloir pathway, which consists of highly conserved enzymes, metabolizes galactose. Deficits in three enzymes in this pathway, namely galactose-1-phosphate uridylyltransferase (GALT), galactokinase (GALK1), and UDP-galactose-4'-epimerase (GALE), are associated with genetic galactosemia. We recently identified patients with galactosemia and biallelic variants in GALM, encoding galactose epimerase (GALM), an enzyme that is directly upstream of GALK1. GALM deficiency was subsequently designated as type IV galactosemia. Currently, all the published patients with biallelic GALM variants were found through newborn screening in Japan. Here, we review GALM deficiency and describe how we discovered this relatively mild but not rare disease through the newborn screening system in Japan.
Collapse
|
8
|
Cordeiro C, Garcia P, Coelho D, Oliva M. Galactokinase deficiency: a treatable cause of bilateral cataracts. BMJ Case Rep 2021; 14:14/6/e242227. [PMID: 34088690 DOI: 10.1136/bcr-2021-242227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Congenital cataract can be caused by several systemic diseases and differential diagnosis should be done between infections, genetic or metabolic diseases. We present a case of a 12-month-old girl with bilateral nuclear cataracts that was referred for investigation. Since she did not present a family history of congenital cataracts or metabolic diseases, and her physical examination was normal, a systemic evaluation was performed. Biochemical studies disclosed abnormal galactose metabolism signs. The diagnosis of galactokinase (GALK1) deficiency was considered and the study of the GALK1 gene allowed identifying a pathogenic genetic variant and a predictably pathogenic missense mutation, previously not described. Dietary measures were imposed with a good evolution.
Collapse
Affiliation(s)
- Catarina Cordeiro
- Departamento Pediátrico - Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Paula Garcia
- Departamento Pediátrico - Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Dalila Coelho
- Departamento Pediátrico - Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Mónica Oliva
- Departamento Pediátrico - Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Ficicioglu C, Demirbas D, Derks B, Pai GS, Timson DJ, Rubio-Gozalbo ME, Berry GT. [ 13C]-galactose breath test in a patient with galactokinase deficiency and spastic diparesis. JIMD Rep 2021; 59:104-109. [PMID: 33977035 PMCID: PMC8100398 DOI: 10.1002/jmd2.12205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
Galactokinase deficiency is an inborn error of carbohydrate metabolism due to a block in the formation of galactose-1-phosphate from galactose. Although the association of galactokinase deficiency with formation of cataracts is well established, the extent of the clinical phenotype is still under investigation. We describe a 6-year-old female who was diagnosed with galactokinase deficiency due to cataract formation when she was 10 months of age and initially started on galactose-restricted diet at that time for 5 months. She developed gait abnormality at 4 years of age. Breath tests via measurement of 13C isotope in exhaled carbon dioxide following 13C-labeled galactose administration at carbon-1 and carbon-2 positions revealed oxidation rates within the normal range. The results in this patient strikingly contrast with the results of another patient with GALK1 deficiency that underwent breath testing with [1-14C]-galactose and [2-14C]-galactose. Extension of in vivo breath tests to other galactokinase patients is needed to better understand the pathophysiology of this disease.
Collapse
Affiliation(s)
- Can Ficicioglu
- Department of Pediatrics, Section of Biochemical Genetics The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA
| | - Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
| | - Britt Derks
- Department of Pediatrics Maastricht University Medical Centre Maastricht The Netherlands
- Department of Clinical Genetics Maastricht University Medical Centre Maastricht The Netherlands
| | - G Shashidhar Pai
- Medical University of South Carolina Children's Health, Division of Genetics Charleston South Carolina USA
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Maria Estela Rubio-Gozalbo
- Department of Pediatrics Maastricht University Medical Centre Maastricht The Netherlands
- Department of Clinical Genetics Maastricht University Medical Centre Maastricht The Netherlands
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research Boston Children's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
10
|
Delnoy B, Coelho AI, Rubio-Gozalbo ME. Current and Future Treatments for Classic Galactosemia. J Pers Med 2021; 11:jpm11020075. [PMID: 33525536 PMCID: PMC7911353 DOI: 10.3390/jpm11020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Type I (classic) galactosemia, galactose 1-phosphate uridylyltransferase (GALT)-deficiency is a hereditary disorder of galactose metabolism. The current therapeutic standard of care, a galactose-restricted diet, is effective in treating neonatal complications but is inadequate in preventing burdensome complications. The development of several animal models of classic galactosemia that (partly) mimic the biochemical and clinical phenotypes and the resolution of the crystal structure of GALT have provided important insights; however, precise pathophysiology remains to be elucidated. Novel therapeutic approaches currently being explored focus on several of the pathogenic factors that have been described, aiming to (i) restore GALT activity, (ii) influence the cascade of events and (iii) address the clinical picture. This review attempts to provide an overview on the latest advancements in therapy approaches.
Collapse
Affiliation(s)
- Britt Delnoy
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Ana I. Coelho
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
| | - Maria Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3872920
| |
Collapse
|
11
|
Galactose-Induced Skin Aging: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7145656. [PMID: 32655772 PMCID: PMC7317321 DOI: 10.1155/2020/7145656] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.
Collapse
|
12
|
Haskovic M, Coelho AI, Bierau J, Vanoevelen JM, Steinbusch LKM, Zimmermann LJI, Villamor‐Martinez E, Berry GT, Rubio‐Gozalbo ME. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J Inherit Metab Dis 2020; 43:392-408. [PMID: 31808946 PMCID: PMC7317974 DOI: 10.1002/jimd.12202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.
Collapse
Affiliation(s)
- Minela Haskovic
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Ana I. Coelho
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Jörgen Bierau
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jo M. Vanoevelen
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Laura K. M. Steinbusch
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Luc J. I. Zimmermann
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Eduardo Villamor‐Martinez
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Gerard T. Berry
- The Manton Center for Orphan Disease Research, Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - M. Estela Rubio‐Gozalbo
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
13
|
Iwasawa S, Kikuchi A, Wada Y, Arai-Ichinoi N, Sakamoto O, Tamiya G, Kure S. The prevalence of GALM mutations that cause galactosemia: A database of functionally evaluated variants. Mol Genet Metab 2019; 126:362-367. [PMID: 30910422 DOI: 10.1016/j.ymgme.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/15/2022]
Abstract
Galactosemia is a metabolic disorder that affects the appropriate metabolism of β-D-galactose. Deficiencies in three of the enzymes of the Leloir pathway, namely, GALT, GALK1, or GALE, are characterized as type I, II, and III galactosemia, respectively. Recently, we reported a novel type of galactosemia (type IV galactosemia) due to biallelic GALM mutations. Genetic diagnosis is indispensable for diagnosing GALM deficiency because no biochemical diagnosis method has been established. Given that apparently pathogenic variants in GALM are found in public variant databases, we presumed the presence of pathogenic variants that have not been reported. In this study, we explore 67 GALM variants that are prevalent in the ExAC database, including 57 missense variants, 7 stop-gain variants, 2 frameshift variants, and 1 splice-site variant. We performed an in vitro expression assay and an enzyme activity assay. Among the 66 variants except for 1 splice-site variant, 29 produced no or faint protein expression and were judged as pathogenic variants. Furthermore, the remaining 37 variants were evaluated by enzyme activity assay. Two showed mildly reduced enzyme activity and were classified as benign. Based on our study, the estimated incidence of GALM deficiency is 1:228,411 in all populations, 1:10,388 in the African population, and 1:80,747 in the Japanese population. Our GALM mutation database is useful for the genetic diagnosis of GALM deficiency.
Collapse
Affiliation(s)
- Shinya Iwasawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Natsuko Arai-Ichinoi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Osamu Sakamoto
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.
| |
Collapse
|
14
|
Hu X, Zhang YQ, Lee OW, Liu L, Tang M, Lai K, Boxer MB, Hall MD, Shen M. Discovery of novel inhibitors of human galactokinase by virtual screening. J Comput Aided Mol Des 2019; 33:405-417. [PMID: 30806949 DOI: 10.1007/s10822-019-00190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Classic Galactosemia is a potentially lethal autosomal recessive metabolic disorder caused by deficient galactose-1-phosphate uridyltransferase (GALT) that results in the buildup of galactose-1-phosphate (gal-1-p) in cells. Galactokinase (GALK1) is the enzyme responsible for converting galactose into gal-1-p. A pharmacological inhibitor of GALK1 is hypothesized to be therapeutic strategy for treating galactosemia by reducing production of gal-1-p. In this study, we report the discovery of novel series of GALK1 inhibitors by structure-based virtual screening (VS). Followed by an extensive structural modeling and binding mode analysis of the active compounds identified from quantitative high-throughput screen (qHTS), we developed an efficient pharmacophore-based VS approach and applied for a large-scale in silico database screening. Out of 230,000 compounds virtually screened, 350 compounds were cherry-picked based on multi-factor prioritization procedure, and 75 representing a diversity of chemotypes exhibited inhibitory activity in GALK1 biochemical assay. Furthermore, a phenylsulfonamide series with excellent in vitro ADME properties was selected for downstream characterization and demonstrated its ability to lower gal-1-p in primary patient fibroblasts. The compounds described herein should provide a starting point for further development of drug candidates for the GALK1 modulation in the Classic Galactosemia.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ya-Qin Zhang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Olivia W Lee
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Li Liu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Matthew B Boxer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Nexus Discovery Advisors, 7820B Wormans Mill Road, Suite 208, Frederick, MD, 21701, USA
| | - Matthew D Hall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
15
|
Abstract
Carbohydrate kinases activate a wide variety of monosaccharides by adding a phosphate group, usually from ATP. This modification is fundamental to saccharide utilization, and it is likely a very ancient reaction. Modern organisms contain carbohydrate kinases from at least five main protein families. These range from the highly specialized inositol kinases, to the ribokinases and galactokinases, which belong to families that phosphorylate a wide range of substrates. The carbohydrate kinases utilize a common strategy to drive the reaction between the sugar hydroxyl and the donor phosphate. Each sugar is held in position by a network of hydrogen bonds to the non-reactive hydroxyls (and other functional groups). The reactive hydroxyl is deprotonated, usually by an aspartic acid side chain acting as a catalytic base. The deprotonated hydroxyl then attacks the donor phosphate. The resulting pentacoordinate transition state is stabilized by an adjacent divalent cation, and sometimes by a positively charged protein side chain or the presence of an anion hole. Many carbohydrate kinases are allosterically regulated using a wide variety of strategies, due to their roles at critical control points in carbohydrate metabolism. The evolution of a similar mechanism in several folds highlights the elegance and simplicity of the catalytic scheme.
Collapse
|
16
|
McAuley M, Huang M, Timson DJ. Modulation of the mobility of a key region in human galactokinase: Impacts on catalysis and stability. Bioorg Chem 2018; 81:649-657. [DOI: 10.1016/j.bioorg.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/28/2022]
|
17
|
Abstract
Cholestasis refers to impairment in formation or excretion of bile. This can be due to defects in intrahepatic production of bile, defects in the transmembrane transport of bile, or mechanical obstruction to bile flow. Clinical features of cholestasis reflect the retention of components of bile (bilirubin, bile acids, cholesterol) in the body. In the neonatal period, hyperbilirubinemia can be categorized as either unconjugated (and often benign) hyperbilirubinemia, or conjugated hyperbilirubinemia due to cholestasis. It is for this reason that the first laboratory evaluation in a patient with jaundice, dark urine, and/or acholic stool is a fractionated bilirubin. This article serves as a practical primer for pediatric and neonatology trainees and covers common causes of neonatal cholestasis, as well as the diagnostic work-up and treatment. Causes that are discussed include biliary atresia, idiopathic neonatal hepatitis, gestational alloimmune liver disease, metabolic and genetic diseases, total parenteral nutrition cholestasis, and congenital infection. [Pediatr Ann. 2018;47(11):e433-e439.].
Collapse
|
18
|
Wada Y, Kikuchi A, Arai-Ichinoi N, Sakamoto O, Takezawa Y, Iwasawa S, Niihori T, Nyuzuki H, Nakajima Y, Ogawa E, Ishige M, Hirai H, Sasai H, Fujiki R, Shirota M, Funayama R, Yamamoto M, Ito T, Ohara O, Nakayama K, Aoki Y, Koshiba S, Fukao T, Kure S. Biallelic GALM pathogenic variants cause a novel type of galactosemia. Genet Med 2018; 21:1286-1294. [PMID: 30451973 DOI: 10.1038/s41436-018-0340-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Galactosemia is caused by metabolic disturbances at various stages of galactose metabolism, including deficiencies in enzymes involved in the Leloir pathway (GALT, GALK1, and GALE). Nevertheless, the etiology of galactosemia has not been identified in a subset of patients. This study aimed to explore the causes of unexplained galactosemia. METHODS Trio-based exome sequencing and/or Sanger sequencing was performed in eight patients with unexplained congenital galactosemia. In vitro enzymatic assays and immunoblot assays were performed to confirm the pathogenicity of the variants. RESULTS The highest blood galactose levels observed in each patient were 17.3-41.9 mg/dl. Bilateral cataracts were observed in two patients. In all eight patients, we identified biallelic variants (p.Arg82*, p.Ile99Leufs*46, p.Gly142Arg, p.Arg267Gly, and p.Trp311*) in the GALM encoding galactose mutarotase, which catalyzes epimerization between β- and α-D-galactose in the first step of the Leloir pathway. GALM enzyme activities were undetectable in lymphoblastoid cell lines established from two patients. Immunoblot analysis showed the absence of the GALM protein in the patients' peripheral blood mononuclear cells. In vitro GALM expression and protein stability assays revealed altered stabilities of the variant GALM proteins. CONCLUSION Biallelic GALM pathogenic variants cause galactosemia, suggesting the existence of type IV galactosemia.
Collapse
Affiliation(s)
- Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.
| | | | - Osamu Sakamoto
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yusuke Takezawa
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shinya Iwasawa
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Hiromi Nyuzuki
- Department of Pediatrics, Niigata University School of Medicine, Niigata, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Erika Ogawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Mika Ishige
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Hirai
- Department of Pediatrics, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Hideo Sasai
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Sciences, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Reis LM, Semina EV. Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet 2018; 138:847-863. [PMID: 30187164 DOI: 10.1007/s00439-018-1932-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Pediatric cataract represents an important cause of pediatric visual impairment. While both genetic and environmental causes for pediatric cataract are known, a large proportion remains idiopathic. The purpose of this review is to discuss genes involved in isolated pediatric cataract, with a focus on variable inheritance patterns within genes. Mutations in over 52 genes are known to cause isolated pediatric cataract, with a major contribution from genes encoding for crystallins, transcription factors, membrane proteins, and cytoskeletal proteins. Interestingly, both dominant and recessive inheritance patterns have been reported for mutations in 13 different cataract genes. For some genes, dominant and recessive alleles represent distinct types of mutations, but for many, especially missense variants, there are no clear patterns to distinguish between dominant and recessive alleles. Further research into the functional effects of these mutations, as well as additional data on the frequency of the identified variants, is needed to clarify variant pathogenicity. Exome sequencing continues to be successful in identifying novel genes associated with congenital cataract but is hindered by the extreme genetic heterogeneity of this condition. The large number of idiopathic cases suggests that more genes and potentially novel mechanisms of gene disruption remain to be identified.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Stroek K, Bouva MJ, Schielen PCJI, Vaz FM, Heijboer AC, de Jonge R, Boelen A, Bosch AM. Recommendations for newborn screening for galactokinase deficiency: A systematic review and evaluation of Dutch newborn screening data. Mol Genet Metab 2018; 124:50-56. [PMID: 29580649 DOI: 10.1016/j.ymgme.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Galactokinase (GALK) deficiency causes cataract leading to severe developmental consequences unless treated early. Because of the easy prevention and rapid reversibility of cataract with treatment, the Dutch Health Council advised to include GALK deficiency in the Dutch newborn screening program. The aim of this study is to establish the optimal screening method and cut-off value (COV) for GALK deficiency screening by performing a systematic review of the literature of screening strategies and total galactose (TGAL) values and by evaluating TGAL values in the first week of life in a cohort of screened newborns in the Netherlands. METHODS Systematic literature search strategies in OVID MEDLINE and OVID EMBASE were developed and study selection, data collection and analyses were performed by two independent investigators. A range of TGAL values measured by the Quantase Neonatal Total Galactose screening assay in a cohort of Dutch newborns in 2007 was evaluated. RESULTS Eight publications were included in the systematic review. All four studies describing screening strategies used TGAL as the primary screening marker combined with galactose-1-phosphate uridyltransferase (GALT) measurement that is used for classical galactosemia screening. TGAL COVs of 2200 μmol/L, 1665 μmol/L and 1110 μmol/L blood resulted in positive predictive values (PPV) of 100%, 82% and 10% respectively. TGAL values measured in the newborn period were reported for 39 GALK deficiency patients with individual values ranging from 3963 to 8159 μmol/L blood and 2 group values with mean 8892 μmol/L blood (SD ± 5243) and 4856 μmol/L blood (SD ± 461). Dutch newborn screening data of 72,786 newborns from 2007 provided a median TGAL value of 110 μmol/L blood with a range of 30-2431 μmol/L blood. CONCLUSION Based on TGAL values measured in GALK deficiency patients reported in the literature and TGAL measurements in the Dutch cohort by newborn screening we suggest to perform the GALK screening with TGAL as a primary marker with a COV of 2500 μmol/L blood, combined with GALT enzyme activity measurement as used in the classical galactosemia screening, to ensure detection of GALK deficiency patients and minimize false positive referrals.
Collapse
Affiliation(s)
- Kevin Stroek
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Marelle J Bouva
- Reference Laboratory for Neonatal Screening, Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Peter C J I Schielen
- Reference Laboratory for Neonatal Screening, Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, Amsterdam, The Netherlands.
| | - Robert de Jonge
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | - Anita Boelen
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
McAuley M, Mesa-Torres N, McFall A, Morris S, Huang M, Pey AL, Timson DJ. Improving the Activity and Stability of Human Galactokinase for Therapeutic and Biotechnological Applications. Chembiochem 2018; 19:1088-1095. [DOI: 10.1002/cbic.201800025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Margaret McAuley
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
| | - Noel Mesa-Torres
- Department of Physical Chemistry; University of Granada; Av. Fuentenueva s/n 18071 Granada Spain
| | - Aisling McFall
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
| | - Sarah Morris
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
| | - Meilan Huang
- School of Chemistry and Chemical Engineering; Queen's University; Belfast; David Keir Building Stranmillis Road Belfast BT9 5AG UK
| | - Angel L. Pey
- Department of Physical Chemistry; University of Granada; Av. Fuentenueva s/n 18071 Granada Spain
| | - David J. Timson
- School of Biological Sciences; Queen's University; Belfast; Medical Biology Centre; Lisburn Road Belfast BT9 7BL UK
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Huxley Building Lewes Road Brighton BN2 4GJ UK
| |
Collapse
|
22
|
Laboratory diagnosis of galactosemia: a technical standard and guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2017; 20:3-11. [PMID: 29261178 DOI: 10.1038/gim.2017.172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Disclaimer: These ACMG Standards and Guidelines are developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these Standards and Guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Galactosemias are inherited disorders of galactose metabolism due to deficiency in one of the three enzymes involved in the Leloir pathway: galactose-1-phosphate uridyltransferase, galactokinase, and uridine diphosphate (UDP)-galactose-4'-epimerase. Galactose-1-phosphate uridyltransferase deficiency, or classic galactosemia, is the most frequent and the most severe of the three enzyme deficiencies; it is characterized by failure to thrive, liver failure, susceptibility to sepsis, and death, if untreated. Newborn screening for classic galactosemia has been implemented in all of the United States, while screening for galactokinase deficiency and UDP-galactose-4'-epimerase deficiency is not universal. Early identification and treatment of galactosemia leads to improved outcome. This document reviews the laboratory methods and best practices for the diagnosis of galactosemia.
Collapse
|
23
|
d'Acierno A, Scafuri B, Facchiano A, Marabotti A. The evolution of a Web resource: The Galactosemia Proteins Database 2.0. Hum Mutat 2017; 39:52-60. [DOI: 10.1002/humu.23346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Antonio d'Acierno
- CNR-ISA; National Research Council; Institute of Food Science; Avellino Italy
| | - Bernardina Scafuri
- CNR-ISA; National Research Council; Institute of Food Science; Avellino Italy
| | - Angelo Facchiano
- CNR-ISA; National Research Council; Institute of Food Science; Avellino Italy
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”; University of Salerno; Fisciano SA Italy
- Interuniversity Center “ELFID-European Laboratory for Food Induced Diseases”; University of Salerno; Fisciano Italy
| |
Collapse
|
24
|
Bzduch V, Tomcikova D, Gerinec A, Behulova D. Cataract and early nystagmus due to galactokinase deficiency. J Inherit Metab Dis 2017; 40:749-750. [PMID: 28429145 DOI: 10.1007/s10545-017-0040-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Vladimir Bzduch
- Department of Pediatrics, Comenius University Children's Hospital, Limbova 1, 833 40, Bratislava, Slovakia.
| | - Dana Tomcikova
- Department of Pediatric Ophtalmology, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Anton Gerinec
- Department of Pediatric Ophtalmology, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Darina Behulova
- Department of Laboratory Medicine, Comenius University Children's Hospital, Bratislava, Slovakia
| |
Collapse
|
25
|
Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017; 40:325-342. [PMID: 28281081 PMCID: PMC5391384 DOI: 10.1007/s10545-017-0029-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Abstract
Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.
Collapse
Affiliation(s)
- Ana I Coelho
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Rivera
- Metabolism & Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
27
|
Daenzer JMI, Jumbo-Lucioni PP, Hopson ML, Garza KR, Ryan EL, Fridovich-Keil JL. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation. Dis Model Mech 2016; 9:1375-1382. [PMID: 27562100 PMCID: PMC5117221 DOI: 10.1242/dmm.022988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the long-term complications experienced by a majority of patients. One of the substrates of GALT, galactose-1-phosphate (Gal-1P), accumulates to high levels in affected infants, especially following milk exposure, and has been proposed as the key mediator of acute and long-term pathophysiology in CG. However, studies of treated patients demonstrate no association between red blood cell Gal-1P level and long-term outcome severity. Here, we used genetic, epigenetic and environmental manipulations of a Drosophila melanogaster model of CG to test the role of Gal-1P as a candidate mediator of outcome in GALT deficiency. Specifically, we both deleted and knocked down the gene encoding galactokinase (GALK) in control and GALT-null Drosophila, and assessed the acute and long-term outcomes of the resulting animals in the presence and absence of dietary galactose. GALK is the first enzyme in the Leloir pathway of galactose metabolism and is responsible for generating Gal-1P in humans and Drosophila. Our data confirmed that, as expected, loss of GALK lowered or eliminated Gal-1P accumulation in GALT-null animals. However, we saw no concomitant rescue of larval survival or adult climbing or fecundity phenotypes. Instead, we saw that loss of GALK itself was not benign and in some cases phenocopied or exacerbated the outcome seen in GALT-null animals. These findings strongly contradict the long-standing hypothesis that Gal-1P alone underlies pathophysiology of acute and long-term outcomes in GALT-null Drosophila and suggests that other metabolite(s) of galactose, and/or other pathogenic factors, might be involved. Summary: In a GALT-deficient Drosophila model of classic galactosemia, Gal-1P accumulation is not required for compromised larval survival following galactose exposure or adult movement and fecundity phenotypes.
Collapse
Affiliation(s)
- Jennifer M I Daenzer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Marquise L Hopson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kerry R Garza
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily L Ryan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
28
|
Abstract
The galactosemias are a family of autosomal recessive genetic disorders resulting from impaired function of the Leloir pathway of galactose metabolism. Type I, or classic galactosemia, results from profound deficiency of galactose-1-phosphate uridylyltransferase, the second enzyme in the Leloir pathway. Type II galactosemia results from profound deficiency of galactokinase, the first enzyme in the Leloir pathway. Type III galactosemia results from partial deficiency of UDP galactose 4'-epimerase, the third enzyme in the Leloir pathway. Although at least classic galactosemia has been recognized clinically for more than 100 years, and detectable by newborn screening for more than 50 years, all three galactosemias remain poorly understood. Early detection and dietary restriction of galactose prevent neonatal lethality, but many affected infants grow to experience a broad range of developmental and other disabilities. To date, there is no intervention known that prevents or reverses these long-term complications. Drosophila melanogaster provides a genetically and biochemically facile model for these conditions, enabling studies that address mechanism and open the door for novel approaches to intervention.
Collapse
Affiliation(s)
- J M I Daenzer
- Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
29
|
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models. Hum Mol Genet 2016; 25:3699-3714. [PMID: 27466186 DOI: 10.1093/hmg/ddw217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Department of Biological Sciences .,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
30
|
Garcia DF, Camelo JS, Molfetta GA, Turcato M, Souza CFM, Porta G, Steiner CE, Silva WA. Clinical profile and molecular characterization of Galactosemia in Brazil: identification of seven novel mutations. BMC MEDICAL GENETICS 2016; 17:39. [PMID: 27176039 PMCID: PMC4866286 DOI: 10.1186/s12881-016-0300-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 04/30/2016] [Indexed: 11/17/2022]
Abstract
Background Classical Galactosemia (CG) is an inborn error of galactose metabolism caused by the deficiency of the galactose-1-phosphate uridyltransferase enzyme. It is transmitted as an autosomal recessive disease and is typically characterized by neonatal galactose intolerance, with complications ranging from neonatal jaundice and liver failure to late complications, such as motor and reproductive dysfunctions. Galactosemia is also heterogeneous from a molecular standpoint, with hundreds of different mutations described in the GALT gene, some of them specific to certain populations, reflecting consequence of founder effect. Methods This study reviews the main clinical findings and depicts the spectrum of mutations identified in 19 patients with CG, six with Duarte Galactosemia and one with type 2 Galactosemia in Brazil. Some individuals were diagnosed through expanded newborn screening test, which is not available routinely to all newborns. Results The main classical Galactosemia mutations reported to date were identified in this study, as well as the Duarte variant and seven novel mutations - c.2 T > C (p.M1T), c.97C > A (p.R33S), c.217C > T (p.P73S), c.328 + 1G > A (IVS3 + 1G > A), c.377 + 4A > C (IVS4 + 4A > C), c.287_289delACA (p.N97del) and c.506A > C (p.Q169P). This was expected, given the high miscegenation of the Brazilian population. Conclusions This study expands the mutation spectrum in GALT gene and reinforces the importance of early diagnosis and introduction of dietary treatment, what is possible with the introduction of Galactosemia in neonatal screening programs. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0300-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel F Garcia
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - José S Camelo
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Greice A Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil.,Center for Medical Genomics at Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marlene Turcato
- Department of Neurology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina F M Souza
- Department of Genetics, Clinical Hospital of the Porto Alegre, Porto Alegre, RS, Brazil
| | - Gilda Porta
- Department of Pediatrics, Children's Institute, Medical School of the University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E Steiner
- Department of Medical Genetics, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Wilson A Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. .,National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil. .,Center for Medical Genomics at Clinical Hospital of the Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
31
|
Pyhtila BM, Shaw KA, Neumann SE, Fridovich-Keil JL. Newborn screening for galactosemia in the United States: looking back, looking around, and looking ahead. JIMD Rep 2014; 15:79-93. [PMID: 24718839 DOI: 10.1007/8904_2014_302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 12/17/2022] Open
Abstract
It has been 50 years since the first newborn screening (NBS) test for galactosemia was conducted in Oregon, and almost 10 years since the last US state added galactosemia to their NBS panel. During that time an estimated >2,500 babies with classic galactosemia have been identified by NBS. Most of these infants were spared the trauma of acute disease by early diagnosis and intervention, and many are alive today because of NBS. Newborn screening for galactosemia is a success story, but not yet a story with a completely happy ending. NBS, follow-up testing, and intervention for galactosemia continue to present challenges that highlight gaps in our knowledge. Here we compare galactosemia screening and follow-up data from 39 NBS programs gathered from the states directly or from public sources. On some matters the programs agreed: for example, those providing relevant data all identify classic galactosemia in close to 1/50,000 newborns and recommend immediate and lifelong dietary restriction of galactose for those infants. On other matters the programs disagree. For example, Duarte galactosemia (DG) detection rates vary dramatically among states, largely reflecting differences in screening approach. For infants diagnosed with DG, >80% of the programs surveyed recommend complete or partial dietary galactose restriction for the first year of life, or give mixed recommendations; <20% recommend no intervention. This disparity presents an ongoing dilemma for families and healthcare providers that could and should be resolved.
Collapse
Affiliation(s)
- Brook M Pyhtila
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
32
|
Bayarchimeg M, Ismail D, Lam A, Burk D, Kirk J, Hogler W, Flanagan SE, Ellard S, Hussain K. Galactokinase deficiency in a patient with congenital hyperinsulinism. JIMD Rep 2013; 5:7-11. [PMID: 23430910 DOI: 10.1007/8904_2011_110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/14/2011] [Accepted: 10/25/2011] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Galactokinase catalyses the first committed step in galactose metabolism, the conversion of galactose to galactose-1-phosphate. Galactokinase deficiency is an extremely rare form of galactosaemia, and the most frequent complication reported is cataracts. Congenital hyperinsulinism (CHI) is a cause of severe hypoglycaemia in the newborn period. Galactosaemia has not previously been reported in a neonate with concomitant CHI. AIMS To report the first case of a patient with CHI and galactokinase deficiency, and to describe the diagnostic pitfalls with bedside blood glucose testing in a neonate with combined galactokinase deficiency and CHI. PATIENTS/METHODS A 3-day-old baby girl from consanguineous parents presented with poor feeding, irritability and seizures. Capillary blood glucose testing using bedside test strips and glucometer showed a glucose level of 18 mmol/L, but the actual laboratory blood glucose level was only 1.8 mmol/L. After discontinuation of oral feeding (stopping provision of dietary galactose), the bedside capillary blood glucose correlated with laboratory glucose concentrations. RESULTS Biochemically the patient had CHI (blood glucose level 2.3 mmol/L with simultaneous serum insulin level of 30 mU/L) and galactokinase deficiency (elevated serum galactose level 0.62 μmol/L). Homozygous loss of function mutations in ABCC8 and GALK1 were found, which explained the patient's CHI and galactokinase deficiency, respectively. CONCLUSION This is the first reported case of CHI and galactokinase deficiency occurring in the same patient. Severe hypoglycaemia in neonates with CHI may go undetected with bedside blood glucose meters in patients with galactokinase deficiency.
Collapse
Affiliation(s)
- Mashbat Bayarchimeg
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Janzen N, Illsinger S, Meyer U, Shin YS, Sander J, Lücke T, Das AM. Early cataract formation due to galactokinase deficiency: impact of newborn screening. Arch Med Res 2011; 42:608-12. [PMID: 22154682 DOI: 10.1016/j.arcmed.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/04/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Galactokinase (GALK) deficiency is an autosomal recessive disorder causing cataract formation that can be prevented or mitigated by early diagnosis and galactose-restricted diet. The aim of this retrospective study was to explore whether GALK-deficiency meets the criteria for neonatal mass screening programs. METHODS From 2000 until 2010, the Screening Laboratory Hannover performed newborn screening in 1,950,927 infants from Germany for galactosemia by measuring galactose-1-phosphate-uridyl-transferase and total galactose concentration (free galactose plus galactose-1-phosphate), including automatic screening for GALK deficiency. RESULTS Eleven cases were found with elevated galactose levels accompanied by normal transferase activity. Nine of 11 cases were informative; the diagnosis was established by demonstrating deficient activity of the GALK enzyme in erythrocytes. To our knowledge, screening did not produce any false negative results. All patients were treated with a galactose-restricted diet from the neonatal period or infancy. Three of nine patients suffered from congenital cataracts or eventual development of cataracts, despite normal galactose concentrations in blood. CONCLUSIONS Newborn screening for GALK deficiency prevents or at least mitigates cataract formation. As screening for GALK deficiency is technically simple, it seems to be reasonable to include this disorder in routine screening programs by simultaneous determination of transferase activity and quantification of galactose plus galactose-1-phosphate in dried blood spots.
Collapse
Affiliation(s)
- Nils Janzen
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Odejinmi SI, Rascon RG, Tang M, Vankayalapati H, Lai K. Structure-activity analysis and cell-based optimization of human galactokinase inhibitors. ACS Med Chem Lett 2011; 2:667-672. [PMID: 22125663 DOI: 10.1021/ml200131j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Classic Galactosemia is a rare human disease associated with the accumulation of toxic level of galactose-1-phosphate (gal-1P) caused by the inherited deficiency of galactose-1-phosphate uridyltransferase (GALT) activity. To reduce the toxic level of gal-1P in the patients, we have identified, via high-throughput screening, over 200 small molecule GALK inhibitors. We selected a 4-oxo-3,4-dihydro-2H-1,3-thiazine-5-carbonitrile scaffold for further structure-activity relationships characterization, lead optimization with regards to potency and efficacy to reduce gal-1P accumulation in patient cells.
Collapse
Affiliation(s)
- Sina I. Odejinmi
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Rafael G. Rascon
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | - Hariprasad Vankayalapati
- Center for Investigational Therapeutics, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah 84112, United States
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| |
Collapse
|