1
|
Sabeghi D, InanlooRahatloo K, Mirzadeh HS, Khani M, Shamshiri H, Taghavi T, Alavi A, Boostani R, Tonekaboni SH, Akhondian J, Ebrahimi M, Salehi N, Nafissi S, Elahi E. Atypical presentations in an RTD patient and report of novel SLC52A3 and SLC52A2 mutations. Acta Neurol Belg 2024; 124:1363-1370. [PMID: 38965176 DOI: 10.1007/s13760-024-02598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Riboflavin Transporter Deficiency (RTD) is a rare neurological disorder characterized by pontobulbar palsy, hearing loss, and motor cranial nerve involvement. SLC52A3 and SLC52A2 mutations are causes of RTD. SLC52A2 mutations are usually found in childhood onset cases. Fifteen Iranian RTD diagnosed patients without SLC52A2 mutations have been previously described. We aimed to identify causative mutations in two childhood cases. METHODS We recruited patients with diagnosis of BVVL. Comprehensive clinical evaluations were performed on the patients. SLC52A3 and SLC52A2 genes were PCR-amplified and Sanger sequenced. Candidate disease causing variations were screened for segregation with disease status in the respective families and control individuals. RESULTS A novel homozygous SLC52A3 mutation (p.Met1Val) and a heterozygous SLC52A2 mutation (p.Ala288Val) were both observed in one proband with typical RTD presentations. The aggregate of presentations in the early stages of disease in the second patient that included weakness in the lower extremities, absence of bulbar or hearing defects, prominent sensory polyneuropathy as evidenced in electrodiagnostic studies, and absence of sensory symptoms including sensory ataxia did not prompt immediate RTD diagnosis. Dysarthria and decreased hearing manifested later in the disease course. A novel homozygous SLC52A2 (p.Val314Met) mutation was identified. CONCLUSION A literature search found recent reports of other atypical RTD presentations. These include MRI findings, speech understanding difficulties accompanied by normal hearing, anemia, and left ventricular non-compaction. Knowledge of unusual presentations lessens the chance of misdiagnosis or delayed RTD diagnosis which, in light of favorable effects of riboflavin supplementation, is of immense importance.
Collapse
Affiliation(s)
- Donya Sabeghi
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
| | | | - Hanieh S Mirzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shahid Fahmideh Children Hospital, Iran University of Medical Science, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Shamshiri
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Tarannomsadat Taghavi
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
| | - Afagh Alavi
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Javad Akhondian
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoomah Ebrahimi
- Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Shahriar Nafissi
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Cheng J, Yao J, Zhao S, Fu L, Zhang L, Jiang J. A riboflavin transporter deficiency presenting as pure red cell aplasia: a pediatric case report. Front Pediatr 2024; 12:1391245. [PMID: 38694724 PMCID: PMC11061399 DOI: 10.3389/fped.2024.1391245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Riboflavin transporter deficiency (RTD) is a rare genetic disorder that affects riboflavin transport, leading to impaired red blood cell production and resulting in pure red cell aplasia. Recognizing and understanding its clinical manifestations, diagnosis, and management is important. Case presentation A 2-year-old patient presented with pure red cell aplasia as the primary symptom of RTD. After confirming the diagnosis, rapid reversal of anemia was achieved after high-dose riboflavin treatment. Conclusion RTD often has an insidious onset, and neurological symptoms appear gradually as the disease progresses, making it prone to misdiagnosis. Genetic testing and bone marrow biopsy can confirm the diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Jiang
- Department of Hematology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Imannezhad S, Ghayoor Karimiani E, Sezavar M, Khademi GR, Naseri M, Ashrafzadeh F. Brown-Vialetto-Van Laere syndrome. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:141-146. [PMID: 38617395 PMCID: PMC11015728 DOI: 10.22037/ijcn.v18i2.37314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/12/2023] [Indexed: 04/16/2024]
Abstract
Brown-Vialetto-Van Laere syndrome (BVVLS) is a rare neurodegenerative disorder of childhood. According to the previous reports, it has various primary signs and symptoms. Because of the simple treatment with riboflavin supplementation, it is important to have suspicious to this disease and begin treatment even before genetic test confirm. We report a five-year-old girl with BVVLS that manifest with hearing problems, first. There was obvious improvement in her disease clinical signs with riboflavin supplementation treatment.
Collapse
Affiliation(s)
- Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Sezavar
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholam Reza Khademi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Naseri
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Khani M, Shamshiri H, Nafissi S, Salehi N, Moazzeni H, Taheri H, Elahi E. Identification of a mutation in TNRC18 in a patient with clinical features of Fazio-Londe disease. Clin Case Rep 2024; 12:e8394. [PMID: 38188848 PMCID: PMC10766555 DOI: 10.1002/ccr3.8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fazio-Londe disease and Brown-Vialetto-Van Laere syndrome are rare related neurological disorders. Although SLC52A3 and SLC52A2 that encode riboflavin transporters are their only known causative genes, many patients without mutations in these genes have been reported. Clinical and genetic data of a patient with features suggestive of Fazio-Londe disease are presented. Neurological examination revealed significant involvement of cranial nerves and weakness in the lower extremities. Pontobulbar presentations were prominent. EDX study suggested motor neuronopathy. Hearing was normal. She was diagnosed with FL disease. Response to riboflavin supplementation was not favorable. The patient's pedigree suggested recessive inheritance. SLC52A3 and SLC52A2 were screened and mutations were not observed. Results of exome sequencing and segregation analysis suggested that a mutation in TNRC18 is a candidate cause of disease in the patient. The three dimensional structure of the TNRC18 protein was predicted and it was noted that its two conserved domains (BAH and Tudor) interact and that the valine residue affected by the mutation is positioned close to both domains. A mutation in TNRC18 is cautiously reported as the possible cause of FL disease in the patient. The finding warrants further inquiries on TNRC18 about which little is presently known.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of ScienceUniversity of TehranTehranIran
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
| | - Hosein Shamshiri
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
- Department of NeurologyTehran University of Medical SciencesTehranIran
| | - Shahriar Nafissi
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
- Department of NeurologyTehran University of Medical SciencesTehranIran
| | - Najmeh Salehi
- School of Biological ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
| | | | - Hanieh Taheri
- School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Elahe Elahi
- School of Biology, College of ScienceUniversity of TehranTehranIran
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Abstract
BACKGROUND To describe the clinical presentation with a focus on ocular manifestations and response to riboflavin supplementation of 3 patients with riboflavin transporter deficiency (RTD) caused by mutations in SLC52A2 ( SLC52A2- RTD). METHODS This is a retrospective review of records of 3 children (aged 18, n = 2 and age = 8, n = 1) with SLC52A2- RTD. Patients underwent comprehensive ophthalmic evaluations including color vision testing, pattern visual-evoked potentials (pVEPs, 1 patient) and spectral domain optical coherence tomography (SD-OCT) imaging. Patients received riboflavin supplements from the time of the molecular diagnosis of RTD. RESULTS Two unrelated 18-year-old patients with SLC52A2- RTD had a symptomatic onset with sensorineural hearing loss and auditory neuropathy/dys-synchrony since age 3 and 11, respectively. On examination 7 years after symptomatic onset, they showed subnormal visual acuities (20/30 and 20/60, both eyes, respectively), preserved color vision, and a thin but measurable retinal ganglion cell layer (GCL) and nerve fiber (RNFL). The inner and outer nuclear layers were normal. The asymptomatic SLC52A2- positive brother of one of these patients started riboflavin supplementation right after the molecular diagnosis and had normal vision and SD-OCTs 7 years later. Onset of riboflavin supplementation in one of the 2 symptomatic cases resulted in acute improvement of the pattern visual-evoked potential and vision. CONCLUSIONS Retinal ganglion cells and their axons are uniquely susceptible to RTD compared with other highly energy-dependent retinal neurons, such as photoreceptors, raising the possibility for alternative mechanisms of disease or protection. Riboflavin supplementation results in acute functional improvement of vision and long-term preservation of GCL and RNFL if initiated early.
Collapse
|
6
|
Xu H, Liu F, Li Z, Li X, Liu Y, Li N, Zhang X, Gao Z, Zhang X, Liu Y, Zou J, Meng L, Liu S, Zhu H, Tang X, Wu H, Su K, Chen B, Yu D, Ye H, Chen H, Yi H, Yin S, Guan J, Shi Y. Genome-Wide Association Study of Obstructive Sleep Apnea and Objective Sleep-related Traits Identifies Novel Risk Loci in Han Chinese Individuals. Am J Respir Crit Care Med 2022; 206:1534-1545. [PMID: 35819321 DOI: 10.1164/rccm.202109-2044oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Previous genetic studies of obstructive sleep apnea (OSA) have limitations in terms of precise case definition, integrated quantitative traits, and interpretation of genetic functions; thus, the heritability of OSA remains poorly explained. Objectives: To identify novel genetic variants associated with OSA and objective sleep-related traits and to explore their functional roles. Methods: A genome-wide association study was performed in 20,590 Han Chinese individuals (5,438 OSA and 15,152 control samples). Human samples and point mutation knockin mice were used for follow-up investigation of gene functions. Measurements and Main Results: Two characteristic study-wide significant loci (P < 2.63 × 10-9) for OSA were identified: the PACRG intronic variant rs6455893 on 6q26 (odds ratio [OR] = 1.62; 95% confidence interval [CI], 1.39-1.89; P = 6.98 × 10-10) and the missense variant rs3746804 (p.Pro267Leu) in the riboflavin transporter SLC52A3 on 20p13 (OR = 0.83; 95% CI, 0.79-0.88; P = 7.57 × 10-10). In addition, 18 genome-wide significant loci associated with quantitative OSA and objective sleep-related traits were identified, 5 of which exceeded the study-wide significance threshold. Rs3746804 was associated with elevated serum riboflavin concentrations, and the corresponding mutation in mice increased riboflavin concentrations, suggesting that this variant may facilitate riboflavin uptake and riboflavin-dependent physiological activity. Conclusions: We identified several novel genome-wide significant loci associated with OSA and objective sleep-related traits. Our findings provide insight into the genetic architecture of OSA and suggest that SLC52A3 might be a therapeutic target, whereas riboflavin might be a therapeutic agent.
Collapse
Affiliation(s)
- Huajun Xu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, China; and.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, and
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yupu Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Lili Meng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Suru Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xulan Tang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hongmin Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kaiming Su
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Ye
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery, Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, China; and.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, and
| |
Collapse
|
7
|
Zhang L, Thyagarajan D. Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sci 2022; 12:brainsci12121605. [PMID: 36552065 PMCID: PMC9775375 DOI: 10.3390/brainsci12121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Riboflavin transporter deficiency (RTD), formerly known as Brown−Vialetto−Van Laere syndrome, is a rare condition that causes a progressive neurological syndrome in early life with features of auditory and optic neuropathy, weakness of bulbar muscles and the diaphragm and sensorimotor neuropathy. Pathologic mutations in the genes that code for riboflavin transporters have been identified as the genetic basis of RTD, and the majority of the genetically confirmed cases are caused by mutations of SLC52A3, a riboflavin transporter 2 coding gene or compound mutations in SLC52A2, encoding riboflavin transporter 3. Fatality in childhood is common if the condition is left untreated, but survival into adulthood has been reported in cases treated with high-dose oral riboflavin. (2) Case summary: We report two long-term survivors of RTD type 2 due to compound heterozygous 185T> G and 1258G>A mutations in gene SLC2A2. They are two brothers in a family in which two female siblings died in childhood from a similar neurological disorder. Brother one, the older RTD survivor, is aged 71, and brother two is aged 58. Both have significant visual impairment from optic nerve atrophy and sensory ataxia. Their muscle biopsies showed decreased muscle adenosine monophosphate (AMP) deaminase activity. No AMPD1 mutation was detected through whole-genome sequencing. (3) Conclusion: Co-existing riboflavin transporter deficiency (RTD) type 2 and muscle AMP deaminase deficiency has not been previously reported. Apart from the possibility that there is a milder phenotype associated with these mutations in SLC2A2, AMP deaminase deficiency might have contributed to a survival benefit by preserving muscle function through accumulating intracellular AMP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Eastern Health, VIC 3128, Australia
- Correspondence:
| | - Dominic Thyagarajan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neuroscience, The Alfred Health, Melbourne, VIC 3004, Australia
| |
Collapse
|
8
|
Zhao S, Che F, Yang L, Zheng Y, Wang D, Yang Y, Wang Y. First report of paternal uniparental disomy of chromosome 8 with SLC52A2 mutation in Brown-vialetto-van laere syndrome type 2 and an analysis of genotype-phenotype correlations. Front Genet 2022; 13:977914. [PMID: 36186484 PMCID: PMC9520306 DOI: 10.3389/fgene.2022.977914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study reports the clinical and genetic features of Brown-Vialetto-Van Laere syndrome (BVVL) type 2 in a case of uniparental disomy of chromosome 8 in mainland China and analyzes the genotype-phenotype correlation through a review of the literature of BVVL type 2 cases. Methods: The clinical characteristics, treatment, and follow-up data of the patient were summarized, and the etiology was identified by whole-exome sequencing and gene chip analysis. Correlations between the genotype and phenotype were analyzed by collecting clinical and genetic data of published cases and our patient. Results: We identified a homozygous mutation in SLC52A2 (NM_001253815.2 c.1255G>A) by trio-WES. Sanger sequencing confirmed that his father was heterozygous and his mother was wild type. Subsequently, paternal uniparental disomy of chromosome 8 [UPD (8)pat] was confirmed by chromosomal microarray analysis.The patient received long-term oral riboflavin treatment (7 mg/kg.d) and was followed up for 40 months by which time the child’s bulbar palsy, ataxia, and motor function had improved. A review of the literature and statistical analysis found that the symptoms of BVVL type 2 appear at the earliest shortly after birth and at the latest at 10 years of age. The median age of onset was 2.5 years, but the overall delay in diagnosis was a median of 5.6 years. The most common symptoms were hearing loss (83.9%), followed by muscle weakness (80.6%), visual impairment (64.5%), and ataxia (61.3%). To date, a total of 32 mutations in the SLC52A2 gene have been reported, with the most common being a missense mutation. Mutations occur throughout the length of the gene apart from at the N-terminus. In patients with missense mutations, homozygous pattern was more likely to present with ataxia as the first symptom (p < 0.05), while compound heterozygous pattern was more likely to develop respiratory insufficiency during the course of disease (p < 0.001). Moreover, patients with one missense mutation located in inside the transmembrane domain were more likely to have respiratory insufficiency than those with mutations both inside and outside the domain (p < 0.05). Riboflavin supplementation was an important factor in determining prognosis (p < 0.001). Conclusion: We report the first UPD(8)pat with SLC52A2 homozygous pathogenic mutation case in BVVL type 2, which expand the mutation spectrum of gene.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Le Yang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Yanyan Zheng
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Dong Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| | - Yan Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| |
Collapse
|
9
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
10
|
Tang Z, Gao S, He M, Chen Q, Fang J, Luo Y, Yan W, Shi X, Huang H, Tang J. Clinical Presentations and Genetic Characteristics of Late-Onset MADD Due to ETFDH Mutations in Five Patients: A Case Series. Front Neurol 2021; 12:747360. [PMID: 34819910 PMCID: PMC8606537 DOI: 10.3389/fneur.2021.747360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (LO-MADD) describes a curable autosomal recessive genetic disease caused by ETFDH mutations that result in defects in ETF-ubiquinone oxidoreductase. Almost all patients are responsive to riboflavin. This study describes the clinical presentations and genetic characteristics of five LO-MADD patients. Methods: From 2018 to 2021, we collected clinical and genetic data on five patients diagnosed with LO-MADD at our hospital and retrospectively analyzed their clinical characteristics, laboratory examination, electromyography, muscle biopsy, genetic analysis, and outcome data. Results: This study included three males and two females with mean onset age of 37.8 years. Fluctuating exercise intolerance was the most common presentation. Serum creatine kinase (CK) levels were significantly elevated in all patients, and plasma acylcarnitine profiles revealed an increase in long-chain acylcarnitine species in three cases. The urinary organic acid study revealed a high level of hydroxyglutaric acid in all patients. Electrophysiology demonstrated myogenic impairment. Muscle biopsies revealed lipid storage myopathy. Molecular analysis identified nine mutations (three novels and six reported) in ETFDH. Exercise intolerance and muscle weakness were dramatically improved in all patients treated with riboflavin (100 mg) daily following diagnosis. Conclusions: LO-MADD is caused by ETFDH variants and responds well to riboflavin. Three novel ETFDH pathogenic variants were identified, expanding their spectrum in the Chinese population and facilitating future interpretation and analysis of ETFDH mutations.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shan Gao
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qihua Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Huang
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Liu Z, Peng Q, Li J, Rao C, Lu X. BVVLS2 overlooked for 3 years in a pediatric patient caused by novel compound heterozygous mutations in SLC52A2 gene. Clin Chim Acta 2021; 523:402-406. [PMID: 34737166 DOI: 10.1016/j.cca.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere syndrome-2 (BVVLS2) is a rare autosomal recessive neurological disorder caused by mutations in the SLC52A2 gene, which is characterized by early childhood onset of sensorineural hearing loss, bulbar palsy, peripheral neuropathy, and respiratory insufficiency. We aimed to investigate the genetic cause of a 4-year-old boy who suffered from BVVLS2 whose initial presentation was severe normocytic anemia and had been overlooked for three years in a local hospital. He was misdiagnosed with pure red cell aplasia (PRCA) and treated with hormones and chemotherapy drugs, but there was no obvious effect. METHODS The targeted capture of 927 genes associated with neuromuscular disorders and next-generation sequencing were performed. Sanger sequencing was employed to verify the variant mutations. RESULTS The proband was found to be heterozygous for c.350T > C (p.L117P) in exon 3 and c.1135_1137delTGG (p.W379del) in exon 5 of SLC52A2 gene. His anemia and neurological symptoms improved significantly after treatment with low dose oral riboflavin. CONCLUSIONS This study expands the mutational spectrum of SLC52A2 and phenotypic spectrum of BVVLS2, which provides a foundation for further investigations elucidating the SLC52A2 related mechanisms of BVVLS2. A low-dosage of riboflavin supplementation was used to obtain good curative effect, which provides further future references for the clinical treatments of BVVLS.
Collapse
Affiliation(s)
- Ziqiang Liu
- Child Healthcare Department, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Qi Peng
- Laboratory Department, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China; Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong, China
| | - Jianwei Li
- Department of Neurology, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Chunbao Rao
- Laboratory Department, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China; Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong, China
| | - Xiaomei Lu
- Laboratory Department, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China; Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong, China.
| |
Collapse
|
12
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
13
|
Console L, Tolomeo M, Cosco J, Massey K, Barile M, Indiveri C. Impact of natural mutations on the riboflavin transporter 2 and their relevance to human riboflavin transporter deficiency 2. IUBMB Life 2021; 74:618-628. [PMID: 34428344 DOI: 10.1002/iub.2541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Riboflavin transporter deficiency 2 (RTD2) is a rare neurological disorder caused by mutations in the Solute carrier family 52 member 2 (Slc52a2) gene encoding human riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed and mediates tissue distribution of riboflavin, a water-soluble vitamin that, after conversion into FMN and FAD, plays pivotal roles in carbohydrate, protein, and lipid metabolism. The 3D structure of RFVT2 has been constructed by homology modeling using three different templates that are equilibrative nucleoside transporter 1 (ENT1), Fucose: proton symporter, and glucose transporter type 5 (GLUT5). The structure has been validated by several approaches. All known point mutations of RFVT2, associated with RTD2, have been localized in the protein 3D model. Six of these mutations have been introduced in the recombinant protein for functional characterization. The mutants W31S, S52F, S128L, L312P, C325G, and M423V have been expressed in E. coli, purified, and reconstituted into proteoliposomes for transport assay. All the mutants showed impairment of function. The Km for riboflavin of the mutants increased from about 3 to 9 times with respect to that of WT, whereas Vmax was only marginally affected. This agrees with the improved outcome of most RTD2 patients after administration of high doses of riboflavin.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Jessica Cosco
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | | | - Maria Barile
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
14
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
15
|
Liu XY, Chen XJ, Zhao M, Wang ZQ, Chen HZ, Li HF, Wang CJ, Wu SF, Peng C, Yin Y, Fu HX, Lin MT, Yu L, Xiong ZQ, Wu ZY, Wang N. CHIP control degradation of mutant ETF:QO through ubiquitylation in late-onset multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2021; 44:450-468. [PMID: 33438237 DOI: 10.1002/jimd.12361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 11/12/2022]
Abstract
Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common form of lipid storage myopathy. The disease is mainly caused by mutations in electron-transfer flavoprotein dehydrogenase gene (ETFDH), which leads to decreased levels of ETF:QO in skeletal muscle. However, the specific underlying mechanisms triggering such degradation remain unknown. We constructed expression plasmids containing wild type ETF:QO and mutants ETF:QO-A84T, R175H, A215T, Y333C, and cultured patient-derived fibroblasts containing the following mutations in ETFDH: c.250G>A (p.A84T), c.998A>G (p.Y333C), c.770A>G (p.Y257C), c.1254_1257delAACT (p. L418TfsX10), c.524G>A (p.R175H), c.380T>A (p.L127P), and c.892C>T (p.P298S). We used in vitro expression systems and patient-derived fibroblasts to detect stability of ETF:QO mutants then evaluated their interaction with Hsp70 interacting protein CHIP with active/inactive ubiquitin E3 ligase carboxyl terminus using western blot and immunofluorescence staining. This interaction was confirmed in vitro and in vivo by co-immunoprecipitation and immunofluorescence staining. We confirmed the existence two ubiquitination sites in mutant ETF:QO using mass spectrometry (MS) analysis. We found that mutant ETF:QO proteins were unstable and easily degraded in patient fibroblasts and in vitro expression systems by ubiquitin-proteasome pathway, and identified the specific ubiquitin E3 ligase as CHIP, which forms complex to control mutant ETF:QO degradation through poly-ubiquitination. CHIP-dependent degradation of mutant ETF:QO proteins was confirmed by MS and site-directed mutagenesis of ubiquitination sites. Hsp70 is directly involved in this process as molecular chaperone of CHIP. CHIP plays an important role in ubiquitin-proteasome pathway dependent degradation of mutant ETF:QO by working as a chaperone-assisted E3 ligase, which reveals CHIP's potential role in pathological mechanisms of late-onset MADD.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xue-Jiao Chen
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Miao Zhao
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi-Qiang Wang
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Hai-Zhu Chen
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen-Ji Wang
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Shi-Fei Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Hong-Xia Fu
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Min-Ting Lin
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ning Wang
- Department of Neurology, Fujian Institute of Neurology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
17
|
Jin C, Matsui Y, Yonezawa A, Imai S, Ogihara T, Itohara K, Nakagawa S, Nakagawa T, Matsubara K. Complete Deletion of Slc52a2 Causes Embryonic Lethality in Mice. Biol Pharm Bull 2021; 44:283-286. [PMID: 33518683 DOI: 10.1248/bpb.b20-00751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Riboflavin (vitamin B2) plays an important role in cellular growth and function. Riboflavin transporter 2 (RFVT2) is widely expressed in several tissues, especially in the brain and salivary glands, and plays an important role in the tissue disruption of riboflavin. During the last 10 years, mutations in SLC52A2 have been documented in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. However, no suitable animal model of this disease has been reported. Here, we aimed to clarify the physiological role of RFVT2 using Slc52a2-mutant mice. The appearance, body weight, and plasma riboflavin concentration of Slc52a2 heterozygous mutant (Slc52a2+/-) mice were similar to those of wild-type (WT) mice. However, intercrossing between Slc52a2+/- mice failed to generate Slc52a2 homozygous mutant (Slc52a2-/-) mice. This suggested that Slc52a2 gene deficiency results in early embryonic lethality. Our findings suggested that RFVT2 is essential for growth and development, and its deletion may influence embryonic survival.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yoshihiro Matsui
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Takashi Ogihara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
18
|
Console L, Tolomeo M, Indiveri C. Functional Study of the Human Riboflavin Transporter 2 Using Proteoliposomes System. Methods Mol Biol 2021; 2280:45-54. [PMID: 33751428 DOI: 10.1007/978-1-0716-1286-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboflavin is essential for cell viability. The biologically active forms of riboflavin, FMN and FAD, participate in many biochemical redox reactions including the metabolism of carbohydrates, amino acids, and lipids. Differently from bacteria, fungi, and plants which synthesize riboflavin, higher organisms have lost the ability to synthesize the vitamin and must absorb it from food and intestinal microflora production. The riboflavin flux through cell membranes occurs via specific transporters belonging to the SLC52 family. Three members of this family have been identified so far which show poor homology with the riboflavin transporters of Saccharomyces cerevisiae or bacteria. Alterations of RFVTs are causative of severe diseases. Indeed, under pathological stress, humans are susceptible of developing riboflavin deficiency. Such a deficiency in pregnancy induces fetus abnormalities, and has been indicated as a risk factor for anemia, cancer, cardiovascular diseases, and neurodegeneration. Moreover, inherited diseases are also of interest; the most well-described is the Brown-Vialetto-van Laere syndrome, a rare neurological disorder characterized by infancy onset sensorineural deafness and pontobulbar palsy. Numerous polymorphisms of Slc52a2 and Slc52a3 genes associated with this syndrome have been discovered. In spite of their important metabolic role and their relevance to human health, the riboflavin transporters are still poorly characterized. Bacterial overexpression, purification, and protein reconstitution in liposomes represent an up-to-date methodology for obtaining functional data information. The methodology for reconstituting the RFVT2 into proteoliposomes and performing transport assay is described. These methods will be suitable for investigating the functional defects of the variants of RFVTs associated with human pathologies.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.
| |
Collapse
|
19
|
Khani M, Shamshiri H, Taheri H, Hardy J, Bras JT, Carmona S, Moazzeni H, Alavi A, Heshmati A, Taghizadeh P, Nilipour Y, Ghazanfari T, Shahabi M, Okhovat AA, Rohani M, Valle G, Boostani R, Abdi S, Eshghi S, Nafissi S, Elahi E. BVVL/ FL: features caused by SLC52A3 mutations; WDFY4 and TNFSF13B may be novel causative genes. Neurobiol Aging 2020; 99:102.e1-102.e10. [PMID: 33189404 DOI: 10.1016/j.neurobiolaging.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 11/17/2022]
Abstract
Brown-Vialetto-Van Laere (BVVL) and Fazio-Londe are disorders with amyotrophic lateral sclerosis-like features, usually with recessive inheritance. We aimed to identify causative mutations in 10 probands. Neurological examinations, genetic analysis, audiometry, magnetic resonance imaging, biochemical and immunological testings, and/or muscle histopathology were performed. Mutations in known causative gene SLC52A3 were found in 7 probands. More importantly, only 1 mutated allele was observed in several patients, and variable expressivity and incomplete penetrance were clearly noted. Environmental insults may contribute to variable presentations. Putative causative mutations in other genes were identified in 3 probands. Two of the genes, WDFY4 and TNFSF13B, have immune-related functions. Inflammatory responses were implicated in the patient with the WDFY4 mutation. Malfunction of the immune system and mitochondrial anomalies were shown in the patient with the TNFSF13B mutation. Prevalence of heterozygous SLC52A3 BVVL causative mutations and notable variability in expressivity of homozygous and heterozygous genotypes are being reported for the first time. Identification of WDFY4 and TNFSF13B as candidate causative genes supports conjectures on involvement of the immune system in BVVL and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosein Shamshiri
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Taheri
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Jose Tomas Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Susana Carmona
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Heshmati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Peyman Taghizadeh
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Mofid and Shohaday-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Majid Shahabi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Asghar Okhovat
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Giorgio Valle
- Department of Biology and CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Siamak Abdi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Eshghi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Wanders RJA, Visser G, Ferdinandusse S, Vaz FM, Houtkooper RH. Mitochondrial Fatty Acid Oxidation Disorders: Laboratory Diagnosis, Pathogenesis, and the Complicated Route to Treatment. J Lipid Atheroscler 2020; 9:313-333. [PMID: 33024728 PMCID: PMC7521971 DOI: 10.12997/jla.2020.9.3.313] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial fatty acid (FA) oxidation deficiencies represent a genetically heterogeneous group of diseases in humans caused by defects in mitochondrial FA beta-oxidation (mFAO). A general characteristic of all mFAO disorders is hypoketotic hypoglycemia resulting from the enhanced reliance on glucose oxidation and the inability to synthesize ketone bodies from FAs. Patients with a defect in the oxidation of long-chain FAs are at risk to develop cardiac and skeletal muscle abnormalities including cardiomyopathy and arrhythmias, which may progress into early death, as well as rhabdomyolysis and exercise intolerance. The diagnosis of mFAO-deficient patients has greatly been helped by revolutionary developments in the field of tandem mass spectrometry (MS) for the analysis of acylcarnitines in blood and/or urine of candidate patients. Indeed, acylcarnitines have turned out to be excellent biomarkers; not only do they provide information whether a certain patient is affected by a mFAO deficiency, but the acylcarnitine profile itself usually immediately points to which enzyme is likely deficient. Another important aspect of acylcarnitine analysis by tandem MS is that this technique allows high-throughput analysis, which explains why screening for mFAO deficiencies has now been introduced in many newborn screening programs worldwide. In this review, we will describe the current state of knowledge about mFAO deficiencies, with particular emphasis on recent developments in the area of pathophysiology and treatment.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gepke Visser
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Pillai NR, Amin H, Gijavanekar C, Liu N, Issaq N, Broniowska KA, Bertuch AA, Sutton VR, Elsea SH, Scaglia F. Hematologic presentation and the role of untargeted metabolomics analysis in monitoring treatment for riboflavin transporter deficiency. Am J Med Genet A 2020; 182:2781-2787. [PMID: 32909658 DOI: 10.1002/ajmg.a.61851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
Riboflavin transporter deficiency (RTD) (MIM #614707) is a neurogenetic disorder with its most common manifestations including sensorineural hearing loss, peripheral neuropathy, respiratory insufficiency, and bulbar palsy. Here, we present a 2-year-old boy whose initial presentation was severe macrocytic anemia necessitating multiple blood transfusions and intermittent neutropenia; he subsequently developed ataxia and dysarthria. Trio-exome sequencing detected compound heterozygous variants in SLC52A2 that were classified as pathogenic and a variant of uncertain significance. Bone marrow evaluation demonstrated megaloblastic changes. Notably, his anemia and neutropenia resolved after treatment with oral riboflavin, thus expanding the clinical phenotype of this disorder. We reiterate the importance of starting riboflavin supplementation in a young child who presents with macrocytic anemia and neurological features while awaiting biochemical and genetic work up. We detected multiple biochemical abnormalities with the help of untargeted metabolomics analysis associated with abnormal flavin adenine nucleotide function which normalized after treatment, emphasizing the reversible pathomechanisms involved in this disorder. The utility of untargeted metabolomics analysis to monitor the effects of riboflavin supplementation in RTD has not been previously reported.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Hitha Amin
- Texas Children's Hospital, Houston, Texas, USA.,Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Niveen Issaq
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
22
|
Sinha T, Naash MI, Al-Ubaidi MR. Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Front Cell Dev Biol 2020; 8:861. [PMID: 32984341 PMCID: PMC7481326 DOI: 10.3389/fcell.2020.00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
23
|
Mitochondrial and Peroxisomal Alterations Contribute to Energy Dysmetabolism in Riboflavin Transporter Deficiency. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6821247. [PMID: 32855765 PMCID: PMC7443020 DOI: 10.1155/2020/6821247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by progressive pontobulbar palsy, sensory and motor neuron degeneration, sensorineural hearing loss, and optic atrophy. As riboflavin (RF) is the precursor of FAD and FMN, we hypothesize that both mitochondrial and peroxisomal energy metabolism pathways involving flavoproteins could be directly affected in RTD, thus impacting cellular redox status. In the present work, we used induced pluripotent stem cells (iPSCs) from RTD patients to investigate morphofunctional features, focusing on mitochondrial and peroxisomal compartments. Using this model, we document the following RTD-associated alterations: (i) abnormal colony-forming ability and loss of cell-cell contacts, revealed by light, electron, and confocal microscopy, using tight junction marker ZO-1; (ii) mitochondrial ultrastructural abnormalities, involving shape, number, and intracellular distribution of the organelles, as assessed by focused ion beam/scanning electron microscopy (FIB/SEM); (iii) redox imbalance, with high levels of superoxide anion, as assessed by MitoSOX assay accompanied by abnormal mitochondrial polarization state, evaluated by JC-1 staining; (iv) altered immunofluorescence expression of antioxidant systems, namely, glutathione, superoxide dismutase 1 and 2, and catalase, as assessed by quantitatively evaluated confocal microscopy; and (v) peroxisomal downregulation, as demonstrated by levels and distribution of fatty acyl β-oxidation enzymes. RF supplementation results in amelioration of cell phenotype and rescue of redox status, which was associated to improved ultrastructural features of mitochondria, thus strongly supporting patient treatment with RF, to restore mitochondrial- and peroxisomal-related aspects of energy dysmetabolism and oxidative stress in RTD syndrome.
Collapse
|
24
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
25
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
26
|
Amir F, Atzinger C, Massey K, Greinwald J, Hunter LL, Ulm E, Kettler M. The Clinical Journey of Patients with Riboflavin Transporter Deficiency Type 2. J Child Neurol 2020; 35:283-290. [PMID: 31868069 DOI: 10.1177/0883073819893159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To identify symptoms and health care interactions with patients with riboflavin transporter deficiency (RTD) type 2 prior to diagnosis. METHODS Parents of children with riboflavin transporter deficiency type 2 (n = 10) were interviewed to collect data on the patient's clinical journey. RESULTS The average diagnostic delay was 27.6 months. Neurologists were the most commonly visited clinician (90%). Common symptoms during the first year of the patient's clinical journey included abnormal gait and/or ataxia (70%), nystagmus (50%), and upper body muscle weakness (40%). Prior to diagnosis, optic atrophy, sleep apnea, breath-holding spells, and dysphagia were commonly observed. Hearing loss was only reported in 40% of subjects prior to diagnosis. Riboflavin responsive megaloblastic anemia is reported for the first time. Mitochondrial disease was the most common suspected diagnosis (30%). CONCLUSION Despite clinical variability, common early symptoms of riboflavin transporter deficiency type 2 exist that can better allow clinicians to more rapidly identify riboflavin transporter deficiency type 2.
Collapse
Affiliation(s)
- Fatima Amir
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carrie Atzinger
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - John Greinwald
- Division of Pediatric Otolaryngology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa L Hunter
- Cincinnati Children's Hospital Medical Center, Center for Professional Excel Rsch & EBP, Cincinnati, OH, USA
| | - Elizabeth Ulm
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Margaret Kettler
- Division of Audiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
27
|
Yıldız Y, Talim B, Haliloglu G, Topaloglu H, Akçören Z, Dursun A, Sivri HS, Coşkun T, Tokatlı A. Determinants of Riboflavin Responsiveness in Multiple Acyl-CoA Dehydrogenase Deficiency. Pediatr Neurol 2019; 99:69-75. [PMID: 31331668 DOI: 10.1016/j.pediatrneurol.2019.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase (MADD) deficiency, which is a rare metabolic disorder involving electron transport flavoproteins, has a wide array of clinical phenotypes. In this article, we describe 25 patients with MADD deficiency and present the clinical and laboratory characteristics and diagnostic challenges associated with riboflavin-responsive MADD deficiency. METHODS Hospital records of patients with biallelic mutations in ETFA, ETFB, or ETFDH genes diagnosed in a single center were analyzed retrospectively. Demographic, clinical, and laboratory characteristics of patients with riboflavin-responsive and riboflavin-unresponsive MADD deficiency were compared using Mann-Whitney U and Fisher's exact tests. RESULTS Respiratory distress and depressed consciousness were significantly more common in patients with riboflavin-unresponsive MADD deficiency (P = 0.015 and P < 0.001), who presented at a younger age (P < 0.001). Patients with riboflavin-responsive MADD deficiency had favorable outcomes but also had life-threatening complications, longer diagnostic delay (median of two years versus 30 days; P < 0.001), and multiple differential diagnoses, resulting in unnecessary investigations and maltreatment. Biopsies showed lipid storage, and complete autopsy was performed in one newborn with riboflavin-unresponsive MADD deficiency, revealing multiple abnormalities. Metabolic profiles were not distinguishable between riboflavin-responsive and riboflavin-unresponsive MADD deficiency (P > 0.05). Four novel variants were detected in ETFDH, one of which (c.1790C>T) may confer riboflavin responsiveness. Siblings with the common myopathic ETFDH c.1130T>C mutation presented with a new phenotype dominated by chronic fatigue without apparent myopathy. CONCLUSIONS Symptoms and outcomes significantly differed between riboflavin-responsive and unresponsive MADD deficiency, but metabolic profiles did not. Functional studies are needed to better characterize the novel ETFDH variants. As treatment is available for riboflavin-responsive MADD deficiency, physicians should maintain a high index of suspicion for MADD deficiency in all age groups.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey.
| | - Beril Talim
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Goknur Haliloglu
- Division of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Haluk Topaloglu
- Division of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Zuhal Akçören
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Turgay Coşkun
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ayşegül Tokatlı
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| |
Collapse
|
28
|
Reconstitution in Proteoliposomes of the Recombinant Human Riboflavin Transporter 2 (SLC52A2) Overexpressed in E. coli. Int J Mol Sci 2019; 20:ijms20184416. [PMID: 31500345 PMCID: PMC6769532 DOI: 10.3390/ijms20184416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 11/30/2022] Open
Abstract
Background: the SLC52A2 gene encodes for the riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed. It mediates the transport of Riboflavin across cell membranes. Riboflavin plays a crucial role in cells since its biologically active forms, FMN and FAD, are essential for the metabolism of carbohydrates, amino acids, and lipids. Mutation of the Riboflavin transporters is a risk factor for anemia, cancer, cardiovascular disease, neurodegeneration. Inborn mutations of SLC52A2 are associated with Brown-Vialetto-van Laere syndrome, a rare neurological disorder characterized by infancy onset. In spite of the important metabolic and physio/pathological role of this transporter few data are available on its function and regulation. Methods: the human recombinant RFVT2 has been overexpressed in E. coli, purified and reconstituted into proteoliposomes in order to characterize its activity following the [3H]Riboflavin transport. Results: the recombinant hRFVT2 showed a Km of 0.26 ± 0.07 µM and was inhibited by lumiflavin, FMN and Mg2+. The Riboflavin uptake was also regulated by Ca2+. The native protein extracted from fibroblast and reconstituted in proteoliposomes also showed inhibition by FMN and lumiflavin. Conclusions: proteoliposomes represent a suitable model to assay the RFVT2 function. It will be useful for screening the mutation of RFVT2.
Collapse
|
29
|
van Rijt WJ, Ferdinandusse S, Giannopoulos P, Ruiter JPN, de Boer L, Bosch AM, Huidekoper HH, Rubio-Gozalbo ME, Visser G, Williams M, Wanders RJA, Derks TGJ. Prediction of disease severity in multiple acyl-CoA dehydrogenase deficiency: A retrospective and laboratory cohort study. J Inherit Metab Dis 2019; 42:878-889. [PMID: 31268564 DOI: 10.1002/jimd.12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an ultra-rare inborn error of mitochondrial fatty acid oxidation (FAO) and amino acid metabolism. Individual phenotypes and treatment response can vary markedly. We aimed to identify markers that predict MADD phenotypes. We performed a retrospective nationwide cohort study; then developed an MADD-disease severity scoring system (MADD-DS3) based on signs and symptoms with weighed expert opinions; and finally correlated phenotypes and MADD-DS3 scores to FAO flux (oleate and myristate oxidation rates) and acylcarnitine profiles after palmitate loading in fibroblasts. Eighteen patients, diagnosed between 1989 and 2014, were identified. The MADD-DS3 entails enumeration of eight domain scores, which are calculated by averaging the relevant symptom scores. Lifetime MADD-DS3 scores of patients in our cohort ranged from 0 to 29. FAO flux and [U-13 C]C2-, C5-, and [U-13 C]C16-acylcarnitines were identified as key variables that discriminated neonatal from later onset patients (all P < .05) and strongly correlated to MADD-DS3 scores (oleate: r = -.86; myristate: r = -.91; [U-13 C]C2-acylcarnitine: r = -.96; C5-acylcarnitine: r = .97; [U-13 C]C16-acylcarnitine: r = .98, all P < .01). Functional studies in fibroblasts were found to differentiate between neonatal and later onset MADD-patients and were correlated to MADD-DS3 scores. Our data may improve early prediction of disease severity in order to start (preventive) and follow-up treatment appropriately. This is especially relevant in view of the inclusion of MADD in population newborn screening programs.
Collapse
Affiliation(s)
- Willemijn J van Rijt
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Panagiotis Giannopoulos
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jos P N Ruiter
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Lonneke de Boer
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Bamaga AK, Maamari RN, Culican SM, Shinawi M, Golumbek PT. Child Neurology: Brown-Vialetto-Van Laere syndrome: Dramatic visual recovery after delayed riboflavin therapy. Neurology 2019; 91:938-941. [PMID: 30420458 DOI: 10.1212/wnl.0000000000006498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ahmed K Bamaga
- From the Departments of Neurology (A.K.B., P.T.G.) and Ophthalmology and Visual Sciences (R.N.M., S.M.C.) and Division of Genetics and Genomic Medicine, Department of Pediatrics (M.S.), Washington University School of Medicine, St Louis, MO; and Department of Pediatrics (A.K.B.), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Robi N Maamari
- From the Departments of Neurology (A.K.B., P.T.G.) and Ophthalmology and Visual Sciences (R.N.M., S.M.C.) and Division of Genetics and Genomic Medicine, Department of Pediatrics (M.S.), Washington University School of Medicine, St Louis, MO; and Department of Pediatrics (A.K.B.), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Susan M Culican
- From the Departments of Neurology (A.K.B., P.T.G.) and Ophthalmology and Visual Sciences (R.N.M., S.M.C.) and Division of Genetics and Genomic Medicine, Department of Pediatrics (M.S.), Washington University School of Medicine, St Louis, MO; and Department of Pediatrics (A.K.B.), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwan Shinawi
- From the Departments of Neurology (A.K.B., P.T.G.) and Ophthalmology and Visual Sciences (R.N.M., S.M.C.) and Division of Genetics and Genomic Medicine, Department of Pediatrics (M.S.), Washington University School of Medicine, St Louis, MO; and Department of Pediatrics (A.K.B.), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Paul T Golumbek
- From the Departments of Neurology (A.K.B., P.T.G.) and Ophthalmology and Visual Sciences (R.N.M., S.M.C.) and Division of Genetics and Genomic Medicine, Department of Pediatrics (M.S.), Washington University School of Medicine, St Louis, MO; and Department of Pediatrics (A.K.B.), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis 2019; 42:598-607. [PMID: 30793323 DOI: 10.1002/jimd.12053] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation. In this review, we first outline the importance of riboflavin and its efficient transmembrane transport in human physiology. Reports on 109 patients with a genetically confirmed diagnosis of RTD are then summarized in order to highlight commonly presenting clinical features and possible differences between patients with pathogenic SLC52A2 (RTD2) or SLC52A3 (RTD3) mutations. Finally, we focus attention on recent work with different models of RTD that have revealed possible pathomechanisms contributing to neurodegeneration in patients.
Collapse
Affiliation(s)
- Benjamin O'Callaghan
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Annet M Bosch
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Amsterdam, The Netherlands
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
32
|
Sinha T, Makia M, Du J, Naash MI, Al-Ubaidi MR. Flavin homeostasis in the mouse retina during aging and degeneration. J Nutr Biochem 2018; 62:123-133. [PMID: 30290331 PMCID: PMC7162609 DOI: 10.1016/j.jnutbio.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 09/01/2018] [Indexed: 12/14/2022]
Abstract
Involvement of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) in cellular homeostasis has been well established for tissues other than the retina. Here, we present an optimized method to effectively extract and quantify FAD and FMN from a single neural retina and its corresponding retinal pigment epithelium (RPE). Optimizations led to detection efficiency of 0.1 pmol for FAD and FMN while 0.01 pmol for riboflavin. Interestingly, levels of FAD and FMN in the RPE were found to be 1.7- and 12.5-fold higher than their levels in the retina, respectively. Both FAD and FMN levels in the RPE and retina gradually decline with age and preceded the age-dependent drop in the functional competence of the retina as measured by electroretinography. Further, quantifications of retinal levels of FAD and FMN in different mouse models of retinal degeneration revealed differential metabolic requirements of these two factors in relation to the rate and degree of photoreceptor degeneration. We also found twofold reductions in retinal levels of FAD and FMN in two mouse models of diabetic retinopathy. Altogether, our results suggest that retinal levels of FAD and FMN can be used as potential markers to determine state of health of the retina in general and more specifically the photoreceptors.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Mustafa Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Jianhai Du
- Department of Ophthalmology and Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204.
| |
Collapse
|
33
|
Pennisi EM, Garibaldi M, Antonini G. Lipid Myopathies. J Clin Med 2018; 7:E472. [PMID: 30477112 PMCID: PMC6306737 DOI: 10.3390/jcm7120472] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Disorders of lipid metabolism affect several tissues, including skeletal and cardiac muscle tissues. Lipid myopathies (LM) are rare multi-systemic diseases, which most often are due to genetic defects. Clinically, LM can have acute or chronic clinical presentation. Disease onset can occur in all ages, from early stages of life to late-adult onset, showing with a wide spectrum of clinical symptoms. Muscular involvement can be fluctuant or stable and can manifest as fatigue, exercise intolerance and muscular weakness. Muscular atrophy is rarely present. Acute muscular exacerbations, resulting in rhabdomyolysis crisis are triggered by several factors. Several classifications of lipid myopathies have been proposed, based on clinical involvement, biochemical defect or histopathological findings. Herein, we propose a full revision of all the main clinical entities of lipid metabolism disorders with a muscle involvement, also including some those disorders of fatty acid oxidation (FAO) with muscular symptoms not included among previous lipid myopathies classifications.
Collapse
Affiliation(s)
- Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, 00135 Rome, Italy.
| | - Matteo Garibaldi
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| | - Giovanni Antonini
- Unit of Neuromuscular Diseases, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant' Andrea Hospital, 00189 Rome, Italy.
| |
Collapse
|
34
|
Xu J, Li D, Lv J, Xu X, Wen B, Lin P, Liu F, Ji K, Shan J, Li H, Li W, Zhao Y, Zhao D, Pok JY, Yan C. ETFDH Mutations and Flavin Adenine Dinucleotide Homeostasis Disturbance Are Essential for Developing Riboflavin-Responsive Multiple Acyl-Coenzyme A Dehydrogenation Deficiency. Ann Neurol 2018; 84:659-673. [PMID: 30232818 DOI: 10.1002/ana.25338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/26/2018] [Accepted: 09/09/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Riboflavin-responsive multiple acyl-coenzyme A dehydrogenation deficiency (RR-MADD) is an inherited fatty acid metabolism disorder mainly caused by genetic defects in electron transfer flavoprotein-ubiquinone oxidoreductase (ETF:QO). The variant ETF:QO protein folding deficiency, which can be corrected by therapeutic dosage of riboflavin supplement, has been identified in HEK-293 cells and is believed to be the molecular mechanism of this disease. To verify this hypothesis in vivo, we generated Etfdh (h)A84T knockin (KI) mice. METHODS Tissues from these mice as well as muscle biopsies and fibroblasts from 7 RR-MADD patients were used to examine the flavin adenine dinucleotide (FAD) concentration and ETF:QO protein amount. RESULTS All of the homozygous KI mice (Etfdh (h)A84T/(h)A84T , KI/KI) were initially normal. After being given a high-fat and vitamin B2 -deficient (HF-B2 D) diet for 5 weeks, they developed weight loss, movement ability defects, lipid storage in muscle and liver, and elevated serum acyl-carnitine levels, which are clinically and biochemically similar to RR-MADD patients. Both ETF:QO protein and FAD concentrations were significantly decreased in tissues of HF-B2 D-KI/KI mice and in cultured fibroblasts from RR-MADD patients. After riboflavin treatment, ETF:QO protein increased in proportion to elevated FAD concentrations, but not related to mRNA levels. These results were further confirmed in cultured fibroblasts from RR-MADD patients. INTERPRETATION For the first time, we successfully developed a RR-MADD mice model and confirmed that FAD homeostasis disturbances played a crucial role on the pathomechanism of RR-MADD in this mouse model and culture cells from patients. Supplementation of riboflavin may stabilize variant ETF:QO protein by rebuilding FAD homeostasis. Ann Neurol 2018;84:667-681.
Collapse
Affiliation(s)
- Jingwen Xu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Duoling Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingwei Lv
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Xuebi Xu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Bing Wen
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China.,Department of Neurobiology, Yale University School of Medicine, New Haven, CT
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingli Shan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Honghao Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Joo Y Pok
- Department of Neurology, Yale University, New Haven, CT
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China.,Laboratory of Mitochondrial Medicine, Qilu Hospital (Qingdao), Qingdao, China
| |
Collapse
|
35
|
Anderson P, Schaefer S, Henderson L, Bruce IA. Cochlear implantation in children with auditory neuropathy: Lessons from Brown–Vialetto–Van Laere syndrome. Cochlear Implants Int 2018; 20:31-38. [DOI: 10.1080/14670100.2018.1534035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Phoebe Anderson
- Manchester Medical School, University of Manchester, Manchester, UK
| | - Simone Schaefer
- Paediatric ENT Department, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Lise Henderson
- Richard Ramsden Centre for Auditory Implants, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Iain A. Bruce
- Paediatric ENT Department, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Ryder B, Tolomeo M, Nochi Z, Colella M, Barile M, Olsen RK, Inbar-Feigenberg M. A Novel Truncating FLAD1 Variant, Causing Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) in an 8-Year-Old Boy. JIMD Rep 2018; 45:37-44. [PMID: 30311138 DOI: 10.1007/8904_2018_139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is a clinically heterogeneous disorder affecting fatty acid and amino acid metabolism. Presentations range from a severe neonatal form with hypoglycemia, metabolic acidosis, and hepatomegaly with or without congenital anomalies to later-onset lipid storage myopathy. Genetic testing for MADD traditionally comprises analysis of ETFA, ETFB, and ETFDH. Patients may respond to pharmacological doses of riboflavin, particularly those with late-onset MADD due to variants in ETFDH. Increasingly other genes involved in riboflavin transport and flavoprotein biosynthesis are recognized as causing a MADD phenotype. Flavin adenine dinucleotide synthase (FADS) deficiency caused by biallelic variants in FLAD1 has been identified in nine previous cases of MADD. FLAD1 missense mutations have been associated with a riboflavin-responsive phenotype; however the effect of riboflavin with biallelic loss of function FLAD1 mutations required further investigation. Herein we describe a novel, truncating variant in FLAD1 causing MADD in an 8-year-old boy. Fibroblast studies showed a dramatic reduction in FADS protein with corresponding reduction in the FAD synthesis rate and FAD cellular content, beyond that previously documented in FLAD1-related MADD. There was apparent biochemical and clinical response to riboflavin treatment, beyond that previously reported in cases of biallelic loss of function variants in FLAD1. Early riboflavin treatment may have attenuated an otherwise severe phenotype.
Collapse
Affiliation(s)
- B Ryder
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. .,National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand.
| | - M Tolomeo
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Z Nochi
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - M Colella
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - M Barile
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - R K Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - M Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Yıldız Y, Olsen RKJ, Sivri HS, Akçören Z, Nygaard HH, Tokatlı A. Post-mortem detection of FLAD1 mutations in 2 Turkish siblings with hypotonia in early infancy. Neuromuscul Disord 2018; 28:787-790. [PMID: 30061063 DOI: 10.1016/j.nmd.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Inherited defects of vitamin B2 (riboflavin) metabolism may cause different phenotypes with common biochemical markers of multiple acyl-CoA dehydrogenase deficiency (MADD). Most recently, mutations in FLAD1, which encodes flavin adenine dinucleotide (FAD) synthase, has been implicated in MADD with combined respiratory chain deficiency in nine patients. Here, we describe two siblings with FAD synthase deficiency, who were diagnosed post-mortem upon suspicion of this newly-described disease. Hypotonia was evident at two months of age in both infants, followed by feeding difficulties, respiratory distress and death in six months despite partial response to riboflavin. The older sibling had documented lipid storage myopathy and biochemical markers of MADD. Our observations support the previous reports of unexpected riboflavin-responsiveness in frameshift mutations in the second exon of FLAD1 and suggest dysmorphic auricular helix and hypospadias as possible additional clinical features. More reports and studies are needed to better describe and treat FAD synthase deficiency.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Division of Pediatric Metabolic Diseases, Department of Pediatrics, Hacettepe University, Turkey.
| | | | - Hatice Serap Sivri
- Division of Pediatric Metabolic Diseases, Department of Pediatrics, Hacettepe University, Turkey
| | - Zuhal Akçören
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Turkey
| | - Helle Highland Nygaard
- Molekylær Medicinsk Forskningsenhed (MMF), Institut for Klinisk Medicin Aarhus Universitet, Denmark
| | - Ayşegül Tokatlı
- Division of Pediatric Metabolic Diseases, Department of Pediatrics, Hacettepe University, Turkey
| |
Collapse
|
38
|
Set KK, Weber AR, Serajee FJ, Huq AM. Clinical Reasoning: Siblings with progressive weakness, hypotonia, nystagmus, and hearing loss. Neurology 2018; 90:e625-e631. [DOI: 10.1212/wnl.0000000000004973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Bacterial Production, Characterization and Protein Modeling of a Novel Monofuctional Isoform of FAD Synthase in Humans: An Emergency Protein? Molecules 2018; 23:molecules23010116. [PMID: 29316637 PMCID: PMC6017331 DOI: 10.3390/molecules23010116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3′-phosphoadenosine 5′-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L−1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (kcat about 2.8 min−1), as well as FAD pyrophosphorolysis in a strictly Mg2+-dependent manner. The synthesis of FAD is inhibited by HgCl2. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.
Collapse
|
40
|
Babanejad M, Adeli OA, Nikzat N, Beheshtian M, Azarafra H, Sadeghnia F, Mohseni M, Najmabadi H, Kahrizi K. SLC52A2 mutations cause SCABD2 phenotype: A second report. Int J Pediatr Otorhinolaryngol 2018; 104:195-199. [PMID: 29287867 DOI: 10.1016/j.ijporl.2017.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Autosomal recessive cerebellar ataxias (ARCAs) are a large group of neurodegenerative disorders that manifest mainly in children and young adults. Most ARCAs are heterogeneous with respect to age at onset, severity of disease progression, and frequency of extracerebellar and systemic signs. METHODS The phenotype of a consanguineous Iranian family was characterized using clinical testing and pedigree analysis. Whole-exome sequencing was used to identify the disease-causing gene in this family. RESULTS AND CONCLUSION Using whole exome sequencing (WES), a novel missense mutation in SLC52A2 gene is reported in a consanguineous Iranian family with progressive severe hearing loss, optic atrophy and ataxia. This is the second report of the genotype-phenotype correlation between this syndrome named spinocerebellar ataxia with blindness and deafness type 2 (SCABD2) and SLC52A2 gene.
Collapse
Affiliation(s)
- Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Omid Ali Adeli
- Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Nooshin Nikzat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hakimeh Azarafra
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farnaz Sadeghnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Udhayabanu T, Karthi S, Mahesh A, Varalakshmi P, Manole A, Houlden H, Ashokkumar B. Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis. Mol Cell Biochem 2017; 440:147-156. [PMID: 28836047 DOI: 10.1007/s11010-017-3163-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023]
Abstract
Deficiency or defective transport of riboflavin (RF) is known to cause neurological disorders, cataract, cardiovascular anomalies, and various cancers by altering the biochemical pathways. Mechanisms and regulation of RF uptake process is well characterized in the cells of intestine, liver, kidney, and brain origin, while very little is known in the heart. Hence, we aimed to understand the expression and regulation of RF transporters (rRFVT-1 and rRFVT-2) in cardiomyocytes during RF deficiency and also investigated the role of RF in ischemic cardiomyopathy and mitochondrial dysfunction in vivo. Riboflavin uptake assay revealed that RF transport in H9C2 is (1) significantly higher at pH 7.5, (2) independent of Na+ and (3) saturable with a Km of 3.746 µM. For in vivo studies, male Wistar rats (110-130 g) were provided riboflavin deficient food containing 0.3 ± 0.05 mg/kg riboflavin for 7 weeks, which resulted in over expression of both RFVTs in mRNA and protein level. RF deprivation resulted in the accumulation of cardiac biomarkers, histopathological abnormalities, and reduced mitochondrial membrane potential which evidenced the key role of RF in the development of cardiovascular pathogenesis. Besides, adaptive regulation of RF transporters upon RF deficiency signifies that RFVTs can be considered as an effective delivery system for drugs against cardiac diseases.
Collapse
Affiliation(s)
- Tamilarasan Udhayabanu
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Sellamuthu Karthi
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Ayyavu Mahesh
- Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Andreea Manole
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
42
|
Luna JM, Barajas JM, Teng KY, Sun HL, Moore MJ, Rice CM, Darnell RB, Ghoshal K. Argonaute CLIP Defines a Deregulated miR-122-Bound Transcriptome that Correlates with Patient Survival in Human Liver Cancer. Mol Cell 2017; 67:400-410.e7. [PMID: 28735896 PMCID: PMC5603316 DOI: 10.1016/j.molcel.2017.06.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
MicroRNA-122, an abundant and conserved liver-specific miRNA, regulates hepatic metabolism and functions as a tumor suppressor, yet systematic and direct biochemical elucidation of the miR-122 target network remains incomplete. To this end, we performed Argonaute crosslinking immunoprecipitation (Argonaute [Ago]-CLIP) sequencing in miR-122 knockout and control mouse livers, as well as in matched human hepatocellular carcinoma (HCC) and benign liver tissue to identify miRNA target sites transcriptome-wide in two species. We observed a majority of miR-122 binding on 3' UTRs and coding exons followed by extensive binding to other genic and non-genic sites. Motif analysis of miR-122-dependent binding revealed a G-bulged motif in addition to canonical motifs. A large number of miR-122 targets were found to be species specific. Upregulation of several common mouse and human targets, most notably BCL9, predicted survival in HCC patients. These results broadly define the molecular consequences of miR-122 downregulation in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Joseph M Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Juan M Barajas
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kun-Yu Teng
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hui-Lung Sun
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Michael J Moore
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Kalpana Ghoshal
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Van Loveren H, Vinceti M, Willatts P, Lamberg-Allardt C, Przyrembel H, Tetens I, Dumas C, Fabiani L, Forss AC, Ioannidou S, Neuhäuser-Berthold M. Dietary Reference Values for riboflavin. EFSA J 2017; 15:e04919. [PMID: 32625611 PMCID: PMC7010026 DOI: 10.2903/j.efsa.2017.4919] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for riboflavin. The Panel considers that the inflection point in the urinary riboflavin excretion curve in relation to riboflavin intake reflects body saturation and can be used as a biomarker of adequate riboflavin status. The Panel also considers that erythrocyte glutathione reductase activation coefficient is a useful biomarker, but has limitations. For adults, the Panel considers that average requirements (ARs) and population reference intakes (PRIs) can be determined from the weighted mean of riboflavin intake associated with the inflection point in the urinary riboflavin excretion curve reported in four intervention studies. PRIs are derived for adults and children assuming a coefficient of variation of 10%, in the absence of information on the variability in the requirement and to account for the potential effect of physical activity and the methylenetetrahydrofolate reductase 677TT genotype. For adults, the AR and PRI are set at 1.3 and 1.6 mg/day. For infants aged 7-11 months, an adequate intake of 0.4 mg/day is set by upward extrapolation from the riboflavin intake of exclusively breastfed infants aged 0-6 months. For children, ARs are derived by downward extrapolation from the adult AR, applying allometric scaling and growth factors and considering differences in reference body weight. For children of both sexes aged 1-17 years, ARs range between 0.5 and 1.4 mg/day, and PRIs between 0.6 and 1.6 mg/day. For pregnant or lactating women, additional requirements are considered, to account for fetal uptake and riboflavin accretion in the placenta during pregnancy or the losses through breast milk, and PRIs of 1.9 and 2.0 mg/day, respectively, are derived.
Collapse
|
44
|
Khadilkar SV, Faldu HD, Udani V, Patil SB, Malvadkar S. Reversible posterior column dysfunction in Brown-Vialetto-Von Laere syndrome. Muscle Nerve 2017; 56:E28-E31. [PMID: 28543375 DOI: 10.1002/mus.25694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/14/2017] [Accepted: 05/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Satish V Khadilkar
- Department of Neurology, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| | - Hinaben Dayalal Faldu
- Department of Neurology, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| | - Vrajesh Udani
- Department of Paediatrics, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| | - Sarika B Patil
- Department of Neurology, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| | - Sharad Malvadkar
- Department of Radiology, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, India
| |
Collapse
|
45
|
Udhayabanu T, Subramanian VS, Teafatiller T, Gowda VK, Raghavan VS, Varalakshmi P, Said HM, Ashokkumar B. SLC52A2 [p.P141T] and SLC52A3 [p.N21S] causing Brown-Vialetto-Van Laere Syndrome in an Indian patient: First genetically proven case with mutations in two riboflavin transporters. Clin Chim Acta 2016; 462:210-214. [PMID: 27702554 PMCID: PMC5521005 DOI: 10.1016/j.cca.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere Syndrome (BVVLS), a rare neurological disorder characterized by bulbar palsies and sensorineural deafness, is mainly associated with defective riboflavin transporters encoded by the SLC52A2 and SLC52A3 genes. METHODS Here we present a 16-year-old BVVLS patient belonging to a five generation consanguineous family from Indian ethnicity with two homozygous missense mutations viz., c.421C>A [p.P141T] in SLC52A2 and c.62A>G [p.N21S] in SLC52A3. RESULTS Functional characterization based on 3H-riboflavin uptake assay and live-cell confocal imaging revealed that the effect of mutation c.421C>A [p.P141T] identified in SLC52A2 had a slight reduction in riboflavin uptake; on the other hand, the c.62A>G [p.N21S] identified in SLC52A3 showed a drastic reduction in riboflavin uptake, which appeared to be due to impaired trafficking and membrane targeting of the hRFVT-3 protein. CONCLUSIONS This is the first report presenting mutations in both riboflavin transporters hRFVT-2 and hRFVT-3 in the same BVVLS patient. Also, c.62A>G [p.N21S] in SLC52A3 appears to contribute more to the disease phenotype in this patient than c.421C>A [p.P141T] in SLC52A2.
Collapse
Affiliation(s)
| | - Veedamali S Subramanian
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, CA 92697, USA; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Trevor Teafatiller
- Department of Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Varun S Raghavan
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Hamid M Said
- Departments of Medicine, Physiology/Biophysics, University of California, Irvine, CA 92697, USA; Department of Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | |
Collapse
|
46
|
Menezes MP, O'Brien K, Hill M, Webster R, Antony J, Ouvrier R, Birman C, Gardner-Berry K. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFVT2 deficiency. Dev Med Child Neurol 2016; 58:848-54. [PMID: 26918385 DOI: 10.1111/dmcn.13084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
AIM Mutations in the genes encoding the riboflavin transporters RFVT2 and RFVT3 have been identified in Brown-Vialetto-Van Laere syndrome, a neurodegenerative disorder characterized by hearing loss and pontobulbar palsy. Treatment with riboflavin has been shown to benefit individuals with the phenotype of RFVT2 deficiency. Understanding the characteristics of hearing loss in riboflavin transporter deficiency would enable early diagnosis and therapy. METHOD We performed hearing assessments in seven children (from four families) with RFVT2 deficiency and reviewed results from previous assessments. Assessments were repeated after 12 months and 24 months of riboflavin therapy and after cochlear implantation in one individual. RESULTS Hearing loss in these individuals was due to auditory neuropathy spectrum disorder (ANSD). Hearing loss was identified between 3 years and 8 years of age and progressed rapidly. Hearing aids were not beneficial. Riboflavin therapy resulted in improvement of hearing thresholds during the first year of treatment in those with recent-onset hearing loss. Cochlear implantation resulted in a significant improvement in speech perception in one individual. INTERPRETATION Riboflavin transporter deficiency should be considered in all children presenting with an auditory neuropathy. Speech perception in children with ANSD due to RFVT2 deficiency may be significantly improved by cochlear implantation.
Collapse
Affiliation(s)
- Manoj P Menezes
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Katherine O'Brien
- Department of Audiology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Mandy Hill
- Sydney Cochlear Implant Centre, Sydney, NSW, Australia
| | - Richard Webster
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Jayne Antony
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Robert Ouvrier
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Catherine Birman
- Department of ENT and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | |
Collapse
|
47
|
Jaeger B, Bosch AM. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherit Metab Dis 2016; 39:559-64. [PMID: 26973221 PMCID: PMC4920840 DOI: 10.1007/s10545-016-9924-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Riboflavin (vitamin B2) is absorbed in the small intestine by the human riboflavin transporters RFVT1 and RFVT3. A third riboflavin transporter (RFVT2) is expressed in the brain. In 2010 it was demonstrated that mutations in the riboflavin transporter genes SLC52A2 (coding for RFVT2) and SLC52A3 (coding for RFVT3) cause a neurodegenerative disorder formerly known as Brown-Vialetto-Van Laere (BVVL) syndrome, now renamed to riboflavin transporter deficiency. Five years after the diagnosis of the first patient we performed a review of the literature to study the presentation, treatment and outcome of patients with a molecularly confirmed diagnosis of a riboflavin transporter deficiency. METHOD A search was performed in Medline, Pubmed using the search terms 'Brown-Vialetto-Van Laere syndrome' and 'riboflavin transporter' and articles were screened for case reports of patients with a molecular diagnosis of a riboflavin transporter deficiency. RESULTS Reports on a total of 70 patients with a molecular diagnosis of a RFVT2 or RTVT3 deficiency were retrieved. The riboflavin transporter deficiencies present with weakness, cranial nerve deficits including hearing loss, sensory symptoms including sensory ataxia, feeding difficulties and respiratory difficulties which are caused by a sensorimotor axonal neuropathy and cranial neuropathy. Biochemical abnormalities may be absent and the diagnosis can only be made or rejected by molecular analysis of all genes. Treatment with oral supplementation of riboflavin is lifesaving. Therefore, if a riboflavin transporter deficiency is suspected, treatment must be started immediately without first awaiting the results of molecular diagnostics.
Collapse
Affiliation(s)
- Bregje Jaeger
- />Department of Pediatric Neurology, Emma Children’s Hospital, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Annet M. Bosch
- />Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
48
|
Li J, Guo J, Shang E, Zhu Z, Zhu KY, Li S, Zhao B, Jia L, Zhao J, Tang Z, Duan J. A metabolomics strategy to explore urinary biomarkers and metabolic pathways for assessment of interaction between Danhong injection and low-dose aspirin during their synergistic treatment. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:168-175. [DOI: 10.1016/j.jchromb.2015.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
|
49
|
Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J Inherit Metab Dis 2016; 39:545-57. [PMID: 27271694 DOI: 10.1007/s10545-016-9950-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Recent studies elucidated how riboflavin transporters and FAD forming enzymes work in humans and create a coordinated flavin network ensuring the maintenance of cellular flavoproteome. Alteration of this network may be causative of severe metabolic disorders such as multiple acyl-CoA dehydrogenase deficiency (MADD) or Brown-Vialetto-van Laere syndrome. A crucial step in the maintenance of FAD homeostasis is riboflavin uptake by plasma and mitochondrial membranes. Therefore, studies on recently identified human plasma membrane riboflavin transporters are presented, together with those in which still unidentified mitochondrial riboflavin transporter(s) have been described. A main goal of future research is to fill the gaps still existing as for some transcriptional, functional and structural details of human FAD synthases (FADS) encoded by FLAD1 gene, a novel "redox sensing" enzyme. In the frame of the hypothesis that FADS, acting as a "FAD chaperone", could play a crucial role in the biogenesis of mitochondrial flavo-proteome, several basic functional aspects of flavin cofactor delivery to cognate apo-flavoenzyme are also briefly dealt with. The establishment of model organisms performing altered FAD homeostasis will improve the molecular description of human pathologies. The molecular and functional studies of transporters and enzymes herereported, provide guidelines for improving therapies which may have beneficial effects on the altered metabolism.
Collapse
Affiliation(s)
- Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Teresa Anna Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Michele Galluccio
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| |
Collapse
|
50
|
Olsen RKJ, Koňaříková E, Giancaspero TA, Mosegaard S, Boczonadi V, Mataković L, Veauville-Merllié A, Terrile C, Schwarzmayr T, Haack TB, Auranen M, Leone P, Galluccio M, Imbard A, Gutierrez-Rios P, Palmfeldt J, Graf E, Vianey-Saban C, Oppenheim M, Schiff M, Pichard S, Rigal O, Pyle A, Chinnery PF, Konstantopoulou V, Möslinger D, Feichtinger RG, Talim B, Topaloglu H, Coskun T, Gucer S, Botta A, Pegoraro E, Malena A, Vergani L, Mazzà D, Zollino M, Ghezzi D, Acquaviva C, Tyni T, Boneh A, Meitinger T, Strom TM, Gregersen N, Mayr JA, Horvath R, Barile M, Prokisch H. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. Am J Hum Genet 2016; 98:1130-1145. [PMID: 27259049 PMCID: PMC4908180 DOI: 10.1016/j.ajhg.2016.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.
Collapse
MESH Headings
- Adult
- Blotting, Western
- Case-Control Studies
- Cells, Cultured
- Electron Transport
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Flavin-Adenine Dinucleotide/metabolism
- Frameshift Mutation/genetics
- Gene Expression Profiling
- Humans
- Infant
- Infant, Newborn
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mitochondrial Diseases/drug therapy
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/pathology
- Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy
- Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics
- Multiple Acyl Coenzyme A Dehydrogenase Deficiency/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutagenesis, Site-Directed
- Nucleotidyltransferases/genetics
- Protein Binding
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Riboflavin/pharmacology
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vitamin B Complex/pharmacology
- Young Adult
Collapse
Affiliation(s)
- Rikke K J Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark.
| | - Eliška Koňaříková
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Teresa A Giancaspero
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Veronika Boczonadi
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lavinija Mataković
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Alice Veauville-Merllié
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Centre Hospitalier Universitaire Lyon, 69500 Bron, France
| | - Caterina Terrile
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 340 Helsinki, Finland
| | - Piero Leone
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michele Galluccio
- Department DiBEST (Biology, Ecology, and Earth Sciences), University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Apolline Imbard
- Biochemistry Hormonology Laboratory, Robert-Debré Hospital, 75019 Paris, France; Pharmacy Faculty, Paris Sud University, 92019 Chatenay-Malabry, France
| | - Purificacion Gutierrez-Rios
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Centre Hospitalier Universitaire Lyon, 69500 Bron, France
| | - Marcus Oppenheim
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London WCIN 3BG, UK
| | - Manuel Schiff
- INSERM UMR 1141, Hôpital Robert Debré, 75019 Paris, France; Reference Center for Inherited Metabolic Diseases, Robert-Debré Hospital, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France; Faculté de Médecine Denis Diderot, Université Paris Diderot (Paris 7), 75013 Paris, France
| | - Samia Pichard
- Reference Center for Inherited Metabolic Diseases, Robert-Debré Hospital, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France
| | - Odile Rigal
- Biochemistry Hormonology Laboratory, Robert-Debré Hospital, 75019 Paris, France
| | - Angela Pyle
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Dorothea Möslinger
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - René G Feichtinger
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Beril Talim
- Pathology Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Haluk Topaloglu
- Neurology Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Turgay Coskun
- Metabolism Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Safak Gucer
- Pathology Unit, Department of Pediatrics, Hacettepe University Children's Hospital, 06100 Ankara, Turkey
| | - Annalisa Botta
- Medical Genetics Section, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Elena Pegoraro
- Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Adriana Malena
- Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Lodovica Vergani
- Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Daniela Mazzà
- Italy Institute of Medical Genetics, Catholic University of Roma, 00168 Rome, Italy
| | - Marcella Zollino
- Italy Institute of Medical Genetics, Catholic University of Roma, 00168 Rome, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Neurological Institute C. Besta, 20126 Milan, Italy
| | - Cecile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Centre Hospitalier Universitaire Lyon, 69500 Bron, France
| | - Tiina Tyni
- Department of Pediatric Neurology, Hospital for Children and Adolescence, Helsinki University Central Hospital, 280 Helsinki, Finland
| | - Avihu Boneh
- Murdoch Childrens Research Institute and University of Melbourne, Melbourne, VIC 3010, Australia
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark
| | - Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, 5020 Salzburg, Austria
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Maria Barile
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|