1
|
Burns MPA, Reges CR, Barnhill SW, Koehler KN, Lewis BC, Colombo AT, Felter NJ, Schaeffer PJ. Chronic cold exposure causes left ventricular hypertrophy that appears to be physiological. J Exp Biol 2024; 227:jeb247476. [PMID: 39206582 DOI: 10.1242/jeb.247476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Exposure to winter cold causes an increase in energy demands to meet the challenge of thermoregulation. In small rodents, this increase in cardiac output leads to a profound cardiac hypertrophy, 2-3 times that typically seen with exercise training. The nature of this hypertrophy and its relevance to winter mortality remains unclear. Our goal was to characterize cold-induced cardiac hypertrophy and to assess its similarity to either exercise-induced (physiological) hypertrophy or the pathological hypertrophy of hypertension. We hypothesized that cold-induced hypertrophy will most closely resemble exercise-induced hypertrophy, but be another unique pathway for physiological cardiac growth. We found that cold-induced hypertrophy was largely reversed after a return to warm temperatures. Further, metabolic rates were elevated while gene expression and mitochondrial enzyme activities indicative of pathology were absent. A gene expression panel comparing hearts of exercised and cold-exposed mice further suggests that these activities are similar, although not identical. In conclusion, we found that chronic cold led to a phenotype that most closely resembled physiological hypertrophy, with enhanced metabolic rate, without induction of fetal genes, but with decreased expression of genes associated with fatty acid oxidation, suggesting that heart failure is not a cause of winter mortality in small rodents and identifying a novel approach for the study of cardiac growth.
Collapse
Affiliation(s)
| | | | | | - Kenna N Koehler
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Brandon C Lewis
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Nick J Felter
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
2
|
Verma S, Kumari V, Yangzom DK, Anamika F, Aggarwal K, Singh B, Jain R. Beyond the Gut: Exploring Cardiovascular Implications of Celiac Disease. Cardiol Rev 2024:00045415-990000000-00328. [PMID: 39254530 DOI: 10.1097/crd.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Celiac disease (CD) is an autoimmune disorder that presents with gastrointestinal symptoms including diarrhea, weight loss, and abdominal bloating due to the inflammation in the small intestine. It has been associated with various extraintestinal manifestations, including mucocutaneous findings such as dermatitis herpetiformis, anemia, dental enamel defects, osteoporosis, and arthritis. Studies have revealed an increasing association between CD and cardiovascular diseases (CVDs), including atherosclerosis, cardiomyopathy, and arrhythmia. Chronic inflammation, nutritional deficiencies from malabsorption, endothelial dysfunction, thrombophilic autoantibodies, thrombocytosis, and protein C and S deficiency have been proposed as the probable mechanisms for the association between the 2 conditions. This article aims to provide a review of the pathophysiological mechanism of celiac disease causing various CVDs and to compare and contrast the existing studies suggesting both favorable and unfavorable CVD outcomes in patients with CD.
Collapse
Affiliation(s)
- Sakshi Verma
- From the Department of medicine, Government Medical College, Amritsar
| | - Verkha Kumari
- Department of medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - De-Kee Yangzom
- Department of imaging, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Fnu Anamika
- Department of medicine, University College of Medical Sciences, New Delhi, India
| | - Kanishk Aggarwal
- Department of medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Bhupinder Singh
- Department of medicine, Icahn School of medicine at Mount Sinai, NYC Health + Hospital, Queens, NY
| | - Rohit Jain
- Department of medicine, Penn State Hershey Medical Center, PA
| |
Collapse
|
3
|
Hegarty R, Thompson RJ. Genetic aetiologies of acute liver failure. J Inherit Metab Dis 2024; 47:582-597. [PMID: 38499319 DOI: 10.1002/jimd.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Acute liver failure (ALF) is a rare, rapidly evolving, clinical syndrome with devastating consequences where definitive treatment is by emergency liver transplantation. Establishing a diagnosis can be challenging and, historically, the cause of ALF was unidentified in up to half of children. However, recent technological and clinical advances in genomic medicine have led to an increasing proportion being diagnosed with monogenic aetiologies of ALF. The conditions encountered include a diverse group of inherited metabolic disorders each with prognostic and treatment implications. Often these disorders are clinically indistinguishable and may even mimic disorders of immune regulation or red cell disorders. Rapid genomic sequencing for children with ALF is, therefore, a key component in the diagnostic work up today. This review focuses on the monogenic aetiologies of ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
4
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
5
|
Ghosh S, Mohanty R, Santra A, Saha A, Agrawal A, Shrivastava S, Roy C, Mazumder I, Das D, Mahmood SH. Unlocking the genetic tapestry of autoimmune diseases: Unveiling common genes across multiple conditions. Int J Rheum Dis 2024; 27:e15185. [PMID: 38742742 DOI: 10.1111/1756-185x.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study aimed to unravel the complexities of autoimmune diseases by conducting a comprehensive analysis of gene expression data across 10 conditions, including systemic lupus erythematosus (SLE), psoriasis, Sjögren's syndrome, sclerosis, immune-associated diseases, osteoarthritis, cystic fibrosis, inflammatory bowel disease (IBD), type 1 diabetes, and Guillain-Barré syndrome. METHODS Gene expression profiles were rigorously examined to identify both upregulated and downregulated genes specific to each autoimmune disease. The study employed visual representation techniques such as heatmaps, volcano plots, and contour-MA plots to provide an intuitive understanding of the complex gene expression patterns in these conditions. RESULTS Distinct gene expression profiles for each autoimmune condition were uncovered, with psoriasis and osteoarthritis standing out due to a multitude of both upregulated and downregulated genes, indicating intricate molecular interplays in these disorders. Notably, common upregulated and downregulated genes were identified across various autoimmune conditions, with genes like SELENBP1, MMP9, BNC1, and COL1A1 emerging as pivotal players. CONCLUSION This research contributes valuable insights into the molecular signatures of autoimmune diseases, highlighting the unique gene expression patterns characterizing each condition. The identification of common genes shared among different autoimmune conditions, and their potential role in mitigating the risk of rare diseases in patients with more prevalent conditions, underscores the growing significance of genetics in healthcare and the promising future of personalized medicine.
Collapse
Affiliation(s)
- Soujanya Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rupali Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Arunava Santra
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Anisha Saha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Anubha Agrawal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Chandrashish Roy
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Debarup Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
6
|
Tanaka A, Cai T, Platten M, Tollinche LE, DeJoy SJ. Anesthetic Management and Neuromonitoring in a Patient with Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency Undergoing Scoliosis Surgery: A Case Report and Review of Literature. Case Rep Anesthesiol 2024; 2024:1050279. [PMID: 38229914 PMCID: PMC10789510 DOI: 10.1155/2024/1050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 01/18/2024] Open
Abstract
Patients with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) are prone to hypoglycemia and clinical decompensation when metabolic demands of the body are not met. We present a pediatric patient with VLCADD who underwent a posterior spinal fusion for scoliosis requiring intraoperative neurophysiology monitoring. Challenges included minimization of perioperative metabolic stressors and careful selection of anesthetic agents since propofol-based total intravenous anesthesia (TIVA) was contraindicated due to its high fatty acid content. This case is unique due to the sequential use of inhaled anesthetics after TIVA to allow for a rapid wakeup and immediate postoperative physical exam. Additionally, intraoperative neuromonitoring in the setting of VLCADD has not been reported in the literature. With communication among anesthesia, surgery, and neuromonitoring teams before and during the operation, the patient successfully underwent a major surgery without complications. This trial is registered with NCT03808077.
Collapse
Affiliation(s)
- Anna Tanaka
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tim Cai
- Department of Anesthesiology, MetroHealth Medical Center of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Michael Platten
- Department of Anesthesiology, MetroHealth Medical Center of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Luis E. Tollinche
- Department of Anesthesiology, MetroHealth Medical Center of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samuel J. DeJoy
- Department of Anesthesiology, MetroHealth Medical Center of Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
7
|
Crawford S, Sablon E, Ali N, Rosen AR, Hall PL, Neira Fresneda J. Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency: Family Impact and Perspectives. Int J Neonatal Screen 2023; 9:53. [PMID: 37873844 PMCID: PMC10594473 DOI: 10.3390/ijns9040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCADD) is a fatty acid oxidation disorder characterized by the decreased ability of the enzyme very-long-chain acyl-CoA dehydrogenase to break down fatty acids with 14 to 20-long carbon chains. The resulting clinical manifestations are variable in severity and include hypoketotic hypoglycemia, rhabdomyolysis, and cardiomyopathy. Treatment can consist of limiting the dietary intake of long-chain fatty acids, the prevention of fasting, and the supplementation of medium-chain fats. This study, conducted in the context of a 5-year long-term follow-up on VLCADD, evaluates how the diagnosis of this fatty acid disorder impacts the family, specifically as it relates to the medical diet and barriers to care. Caregivers (n = 10) of individuals with VLCADD responded to a survey about how VLCADD potentially impacts their family. The review included the clinical outcomes of the patients (n = 11), covering instances of rhabdomyolysis, cardiomyopathy, and hospitalizations related to VLCADD. Families affected by VLCADD experience barriers to care, including difficulties with finances, ability to work, and access to nutrition.
Collapse
Affiliation(s)
- Sarah Crawford
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth Sablon
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Nadia Ali
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Ami R. Rosen
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
8
|
Sebaa R, AlMogren M, Alseraty W, Abdel Rahman AM. Untargeted Metabolomics Identifies Biomarkers for MCADD Neonates in Dried Blood Spots. Int J Mol Sci 2023; 24:ijms24119657. [PMID: 37298607 DOI: 10.3390/ijms24119657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited mitochondrial metabolic disease of fatty acid β-oxidation, especially in newborns. MCADD is clinically diagnosed using Newborn Bloodspot Screening (NBS) and genetic testing. Still, these methods have limitations, such as false negatives or positives in NBS and the variants of uncertain significance in genetic testing. Thus, complementary diagnostic approaches for MCADD are needed. Recently, untargeted metabolomics has been proposed as a diagnostic approach for inherited metabolic diseases (IMDs) due to its ability to detect a wide range of metabolic alterations. We performed an untargeted metabolic profiling of dried blood spots (DBS) from MCADD newborns (n = 14) and healthy controls (n = 14) to discover potential metabolic biomarkers/pathways associated with MCADD. Extracted metabolites from DBS samples were analyzed using UPLC-QToF-MS for untargeted metabolomics analyses. Multivariate and univariate analyses were used to analyze the metabolomics data, and pathway and biomarker analyses were also performed on the significantly identified endogenous metabolites. The MCADD newborns had 1034 significantly dysregulated metabolites compared to healthy newborns (moderated t-test, no correction, p-value ≤ 0.05, FC 1.5). A total of 23 endogenous metabolites were up-regulated, while 84 endogenous metabolites were down-regulated. Pathway analyses showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most affected pathways. Potential metabolic biomarkers for MCADD were PGP (a21:0/PG/F1alpha) and glutathione, with an area under the curve (AUC) of 0.949 and 0.898, respectively. PGP (a21:0/PG/F1alpha) was the first oxidized lipid in the top 15 biomarker list affected by MCADD. Additionally, glutathione was chosen to indicate oxidative stress events that could happen during fatty acid oxidation defects. Our findings suggest that MCADD newborns may have oxidative stress events as signs of the disease. However, further validations of these biomarkers are needed in future studies to ensure their accuracy and reliability as complementary markers with established MCADD markers for clinical diagnosis.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Al-Dawadmi 17472, Saudi Arabia
| | - Maha AlMogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Wafaa Alseraty
- Department of Nursing, College of Applied Medical Sciences, University of Shaqra, Al-Dawadmi 17472, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
9
|
Guerra IMS, Ferreira HB, Melo T, Rocha H, Moreira S, Diogo L, Domingues MR, Moreira ASP. Mitochondrial Fatty Acid β-Oxidation Disorders: From Disease to Lipidomic Studies-A Critical Review. Int J Mol Sci 2022; 23:13933. [PMID: 36430419 PMCID: PMC9696092 DOI: 10.3390/ijms232213933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Inês M. S. Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena B. Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Sónia Moreira
- Internal Medicine, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Luísa Diogo
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana S. P. Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Impact of Sustained Exogenous Irisin Myokine Administration on Muscle and Myocyte Integrity in Sprague Dawley Rats. Metabolites 2022; 12:metabo12100939. [PMID: 36295841 PMCID: PMC9610605 DOI: 10.3390/metabo12100939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 01/10/2023] Open
Abstract
Irisin is an exercise-induced myokine implicated as a fundamental mediator of physical activity benefits. The aim of the present study was to investigate the role of the chronic administration model of irisin on the physiological and molecular status of skeletal muscle. A total of 20 female Sprague Dawley rats (250 ± 40 g) were implanted with an irisin-loaded osmotic pump (5 µg/kg/day) for 42 days; in addition, 3 females received a single subcutaneous injection of irisin (5 µg/kg). On a weekly basis for six weeks, animals were weighed and blood samples were collected. After 42 days, hind muscle biopsies were collected for histology and gene analysis. Serum irisin, clinical biochemistry, and histopathology were quantified and evaluated. Genes encoding for different physiological muscle activities, such as oxidative stress, fatty acid metabolism, muscle hypertrophy, mitochondrial fusion, and aging were assayed. The results showed a significant reduction in body weight percentage and creatine kinase level without affecting the morphological characteristics of skeletal muscle. Significant changes were noted in genes involved in muscle physiological activity, growth, and aging, as well as genes encoding for the antioxidant system, fatty acid oxidation processes, and mitochondrial fusion. In conclusion, exogenous irisin can induce the same physiological and molecular mechanisms that might be induced by exercise.
Collapse
|
11
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
12
|
Saleh DA, Attia AAEM. Shedding light on the phenotypic–genotypic correlation of rare treatable and potentially treatable pediatric movement disorders. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Advances in genetic science have led to the identification of many rare treatable pediatric movements disorders (MDs). We explored the phenotypic–genotypic spectrum of pediatric patients presenting with MDs. By this, we aimed at raising awareness about such rare disorders, especially in our region. Over the past 3 years, we reviewed the demographic data, clinical profile, molecular genetics and other diagnostic workups of pediatric patients presenting with MDs.
Results
Twelve patients were identified; however, only six patients were genetically confirmed. The phenomenology of MDs ranged from paroxysmal kinesigenic choreoathetosis (1 patient), exercise-induced dyskinesia (2 patients), ataxia (2 patients) and dystonia (2 patients). Whole-exome sequencing in addition to the functional studies for some patients revealed a specific genetic diagnosis being responsible for their MDs. The genetic diagnosis of our patients included infantile convulsions and paroxysmal choreoathetosis syndrome and episodic ataxia due to “pathogenic homozygous mutation of PRRT2 gene,” glucose transporter type 1 deficiency-exercise induced dyskinesia due to “De Novo pathogenic heterozygous missense mutation of exon 4 of SLC2A1 gene,” aromatic L amino acid decarboxylase deficiency due to “pathogenic homozygous mutation of the DDC gene,” myopathy with extrapyramidal signs due to “likely pathogenic homozygous mutations of the MICU1 gene,” mitochondrial trifunctional protein deficiency due to “homozygous variant of uncertain significance (VUS) of HADHB gene” and glutaric aciduria II with serine deficiency due to “homozygous VUS for both ETFDH and PHGDH genes.” After receiving the treatment as per recognized treatment protocols, two patients showed complete resolution of symptoms and the rest showed variable responses.
Conclusion
Identifying the genetic etiology of our patients guided us to provide either disease-specific treatment or redirected our management plan. Hence, highlighting the value of molecular genetic analysis to avoid the diagnostic odyssey and identify treatable MDs.
Collapse
|
13
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2021; 42:2593-2610. [PMID: 34665389 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
14
|
Brandão SR, Ferreira R, Rocha H. Exploring the contribution of mitochondrial dynamics to multiple acyl-CoA dehydrogenase deficiency-related phenotype. Arch Physiol Biochem 2021; 127:210-216. [PMID: 31215835 DOI: 10.1080/13813455.2019.1628065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAOD) are among the diseases detected by newborn screening in most developed countries. Alterations of mitochondrial functionality are characteristic of these metabolic disorders. However, many questions remain to be clarified, namely how the interplay between the signaling pathways harbored in mitochondria contributes to the disease-related phenotype. Herein, we overview the role of mitochondria on the regulation of cell homeostasis through the production of ROS, mitophagy, apoptosis, and mitochondrial biogenesis. Emphasis is given to the signaling pathways involving MnSOD, sirtuins and PGC-1α, which seem to contribute to FAOD phenotype, namely to multiple acyl-CoA dehydrogenase deficiency (MADD). The association between phenotype and genotype is not straightforward, suggesting that specific molecular mechanisms may contribute to MADD pathogenesis, making MADD an interesting model to better understand this interplay. However, more work needs to be done envisioning the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sofia R Brandão
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Ricardo Jorge, Porto, Portugal
| |
Collapse
|
15
|
Yoo HW. Inborn Errors of Mitochondrial Fatty Acid Oxidation: Overview from a Clinical Perspective. J Lipid Atheroscler 2021; 10:1-7. [PMID: 33537249 PMCID: PMC7838517 DOI: 10.12997/jla.2021.10.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation (mFAO), which is the major pathway for the degradation of fatty acids and is critical for maintaining energy homeostasis in the human body, consists of carnitine transport, the carnitine shuttle, and fatty acid β-oxidation. Inherited metabolic defects of mFAO result in more than 15 distinct mFAO disorders (mFAODs) with varying clinical manifestations. The common elements of the clinical presentation of mFAODs are hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis, indicating the importance of FAO during fasting or stressful situations. The management of all mFAODs includes avoidance of fasting, aggressive treatment during illness, and supplementation of carnitine or appropriate nutritional support, if necessary. Through the introduction of newborn screening using tandem mass spectrometry, early identification of mFAODs became feasible, leading to an early initiation of treatment with improved outcomes. However, many unmet needs remain with regard to the long-term management of patients with mFAODs.
Collapse
Affiliation(s)
- Han-Wook Yoo
- Department of Pediatrics and Medical Genetics & Genomics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Amaral AU, Wajner M. Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids. Front Genet 2020; 11:598976. [PMID: 33329744 PMCID: PMC7729159 DOI: 10.3389/fgene.2020.598976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Deficiencies of medium-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein, isolated long-chain 3-hydroxyacyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase activities are considered the most frequent fatty acid oxidation defects (FAOD). They are biochemically characterized by the accumulation of medium-chain, long-chain hydroxyl, and long-chain fatty acids and derivatives, respectively, in tissues and biological fluids of the affected patients. Clinical manifestations commonly include hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. Although the pathogenesis of these diseases is still poorly understood, energy deprivation secondary to blockage of fatty acid degradation seems to play an important role. However, recent evidence indicates that the predominant fatty acids accumulating in these disorders disrupt mitochondrial functions and are involved in their pathophysiology, possibly explaining the lactic acidosis, mitochondrial morphological alterations, and altered mitochondrial biochemical parameters found in tissues and cultured fibroblasts from some affected patients and also in animal models of these diseases. In this review, we will update the present knowledge on disturbances of mitochondrial bioenergetics, calcium homeostasis, uncoupling of oxidative phosphorylation, and mitochondrial permeability transition induction provoked by the major fatty acids accumulating in prevalent FAOD. It is emphasized that further in vivo studies carried out in tissues from affected patients and from animal genetic models of these disorders are necessary to confirm the present evidence mostly achieved from in vitro experiments.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
17
|
Xie YH, Xiao Y, Huang Q, Hu XF, Gong ZC, Du J. Role of the CTRP6/AMPK pathway in kidney fibrosis through the promotion of fatty acid oxidation. Eur J Pharmacol 2020; 892:173755. [PMID: 33245899 DOI: 10.1016/j.ejphar.2020.173755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
CTRP6, a newly identified adiponectin analogue, has been shown to be involved in inflammation, diabetes and cardiovascular diseases. Recently, increasing evidence has shown that CTRP6 plays a critical role in fibrotic diseases, such as myocardial fibrosis and skin fibrosis. FAO, an important energy source for kidney proximal tubular cells, also participates in the process of fibrosis. Therefore, our study aimed to investigate the effect of CTRP6 on mediating FAO in kidney fibrosis and the underlying associated mechanism. Firstly, the activity of CTRP6 and the key enzymes of FAO (CPT1A, ACOX1) were tested in vivo and vitro. Next, the regulatory effect of CTRP6/AMPK on FAO was accessed in animal models and in cell lines. Additionally, we explored the effect of exogenous recombinant CTRP6 on renal tubular epithelial cell differentiation. Decreased CTRP6 and p-AMPK were detected in UUO-induced kidney fibrosis and in TGF-β1-treated HK-2 cells. We also observed that defective FAO occurred during kidney fibrosis. Moreover, the human CTRP6 peptide could inhibit the ECM deposition and promote the phosphorylation of AMPK by promoting FAO. However, the inhibitory effects of CTRP6 on TGF-β1-induced ECM deposition and the protective effects of CTRP6 on FAO could be abolished by compound C, a selective inhibitor of AMPK. Compound C also reversed the CTRP6-mediated upregulation of p-AMPK. The mediation of FAO by CTRP6 plays a key role in kidney fibrosis by regulating TGF-β1-induced renal tubular epithelial cell differentiation by promoting FAO, which is mediated via AMPK activation.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yi Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Fang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
18
|
Ribas GS, Vargas CR. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cell Mol Neurobiol 2020; 42:521-532. [PMID: 32876899 DOI: 10.1007/s10571-020-00955-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAODs) are a group of about 20 diseases which are caused by specific mutations in genes that codify proteins or enzymes involved in the fatty acid transport and mitochondrial β-oxidation. As a consequence of these inherited metabolic defects, fatty acids can not be used as an appropriate energetic source during special conditions, such as prolonged fasting, exercise or other catabolic states. Therefore, patients usually present hepatopathy, cardiomyopathy, severe skeletal myopathy and neuropathy, besides biochemical features like hypoketotic hypoglycemia, metabolic acidosis, hypotony and hyperammonemia. This set of symptoms seems to be related not only with the energy deficiency, but also with toxic effects provoked by fatty acids and carnitine derivatives accumulated in the tissues of the patients. The understanding of the mechanisms by which these metabolites provoke tissue injury in FAODs is crucial for the developmental of novel therapeutic strategies that promote increased life expectancy, as well as improved life quality for patients. In this sense, the objective of this review is to present evidence from the scientific literature on the role of oxidative damage and mitochondrial dysfunction in the pathogenesis of the most prevalent FAODs: medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. It is expected that the findings presented in this review, obtained from both animal model and patients studies, may contribute to a better comprehension of the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
19
|
González-Medina S, Hyde C, Lovera I, Piercy RJ. Detection of hypoglycin A and MCPA-carnitine in equine serum and muscle tissue: Optimisation and validation of a LC-MS-based method without derivatisation. Equine Vet J 2020; 53:558-568. [PMID: 32525217 DOI: 10.1111/evj.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Measurement of hypoglycin A (HGA) and its toxic metabolite, methylenecyclopropylacetic acid (MCPA), in equine serum confirms a diagnosis of atypical myopathy (AM), a pasture-associated toxic rhabdomyolysis with high mortality linked to the ingestion of Acer trees plant material. Supportive diagnostic tests include plasma acyl-carnitine profiling and urine organic acid testing, but these are not specific for AM. Previously reported HGA and MCPA analytical techniques used liquid chromatography-mass spectrometry (LC-MS) with a derivatising step, but the latter prolongs testing and increases costs. OBJECTIVES To develop a rapid LCMS method for detection of serum and tissue HGA and MCPA that enables expedited diagnosis for horses with AM. STUDY DESIGN Analytical test validation. METHODS Validation parameters to industry standards using as criteria precision, accuracy, linearity, reproducibility and stability in analyte-spiked samples were calculated on 9-calibration points and 3 different validation concentrations in both serum and muscle tissue. RESULTS The test was successfully validated for the detection of HGA and MCPA-carnitine in equine serum and muscle. Test linearity was excellent (r2 = .999), accuracy was very good for both analytes (93%-108%), precision did not exceed 10% coefficient of variation and reproducibility met the requirements of the Horwitz equation. Stability was unaffected by storage at a range of temperatures. MAIN LIMITATIONS The spectrum of the tested analytes was limited to only two relevant analytes in favour of a quick and easy analysis. Linearity of the muscle method was not evaluated as calibration curves were not produced in this matrix. CONCLUSION We report an optimised, simplified and validated method for detection of HGA and MCPA-carnitine in equine serum and muscle suitable for rapid diagnosis of suspected AM cases. The serum-based test should also enable risk assessment of toxin exposure in cograzing horses and assessment of horses with undiagnosed myopathies, while the tissue detection test should help to confirm cases post-mortem and to determine toxin distribution, metabolism and clearance across different tissues.
Collapse
Affiliation(s)
- Sonia González-Medina
- Comparative Neuromuscular Diseases Laboratory, The Royal Veterinary College, London, UK
| | - Carolyne Hyde
- Bio-Analysis Centre, Royal College Street, London, UK
| | - Imogen Lovera
- Bio-Analysis Centre, Royal College Street, London, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, The Royal Veterinary College, London, UK
| |
Collapse
|
20
|
Yıldız Y, Sivri HS. Inborn errors of metabolism in the differential diagnosis of fatty liver disease. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:3-16. [PMID: 32009609 DOI: 10.5152/tjg.2019.19367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease across all age groups. Obesity, diabetes, and metabolic syndrome, are the primary causes that are closely linked with the development of NAFLD. However, in young children, rare inborn errors of metabolism are predominant secondary causes of NAFLD. Furthermore, inborn errors of metabolism causing hepatosteatosis are often misdiagnosed as NAFLD in adolescents and adults. Many inborn errors of metabolism are treatable disorders and therefore require special consideration. This review aims to summarize the basic characteristics and diagnostic clues of inborn errors of metabolism associated with fatty liver disease. A suggested clinical and laboratory diagnostic approach is also discussed.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Pediatric Metabolic Diseases Unit, Dr. Sami Ulus Training and Research Hospital for Maternity and Children's Health and Diseases, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Metabolic Diseases, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
21
|
Abstract
Next generation DNA sequencing (NGS) has the potential to improve the diagnostic and prognostic utility of newborn screening programmes. This study assesses the feasibility of automating NGS on dried blood spot (DBS) DNA in a United Kingdom National Health Service (UK NHS) laboratory. An NGS panel targeting the entire coding sequence of five genes relevant to disorders currently screened for in newborns in the UK was validated on DBS DNA. An automated process for DNA extraction, NGS and bioinformatics analysis was developed. The process was tested on DBS to determine feasibility, turnaround time and cost. The analytical sensitivity of the assay was 100% and analytical specificity was 99.96%, with a mean 99.5% concordance of variant calls between DBS and venous blood samples in regions with ≥30× coverage (96.8% across all regions; all variant calls were single nucleotide variants (SNVs), with indel performance not assessed). The pipeline enabled processing of up to 1000 samples a week with a turnaround time of four days from receipt of sample to reporting. This study concluded that it is feasible to automate targeted NGS on routine DBS samples in a UK NHS laboratory setting, but it may not currently be cost effective as a first line test.
Collapse
|
22
|
Cecatto C, Amaral AU, Wajner A, Wajner SM, Castilho RF, Wajner M. Disturbance of mitochondrial functions associated with permeability transition pore opening induced by cis-5-tetradecenoic and myristic acids in liver of adolescent rats. Mitochondrion 2019; 50:1-13. [PMID: 31655165 DOI: 10.1016/j.mito.2019.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Patients affected by very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency commonly present liver dysfunction whose pathogenesis is poorly known. We demonstrate here that major metabolites accumulating in this disorder, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), markedly impair mitochondrial respiration, decreasing ATP production in liver mitochondrial preparations from adolescent rats. Other parameters of mitochondrial homeostasis such as membrane potential (ΔΨm) and Ca2+retention capacity were strongly compromised by these fatty acids, involving induction of mitochondrial permeability transition. The present data indicate that disruption of mitochondrial bioenergetics and Ca2+homeostasis may contribute to the liver dysfunction of VLCAD deficient patients.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Bastin J, Djouadi F. [Dysfunctions of mitochondrial fatty acid β-oxidation in rare and common diseases]. Med Sci (Paris) 2019; 35:779-786. [PMID: 31625900 DOI: 10.1051/medsci/2019156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dysfunctions of mitochondrial fatty acid ß-oxidation (ß-FAO) in various tissues represent a hallmark of many common disorders, and are acknowledged to play an essential role in the pathogenesis of diabetes, obesity, and cardiac diseases. Moreover, inborn defects in ß-FAO form a large family of rare diseases with variable phenotypes, ranging from fatal multi-organ failure in the newborn to isolated adult onset myopathy. These pathologies highlight the critical role of ß-FAO in many tissues with high-energy demand (heart, muscle, liver, kidney). Furthermore, and unexpectedly, very recent data unveiled the possible involvement of ß-FAO in instructing complex non energy-related functions, such as chromatin modification, control of neural stem cell activity, or survival and fate of cancer cells. Pharmacological targeting of ß-FAO by small molecules might therefore open new avenues for the treatment of various rare or common diseases.
Collapse
Affiliation(s)
- Jean Bastin
- Centre de Recherche des Cordeliers, Inserm U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, Inserm U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 15 rue de l'École de Médecine, 75006 Paris, France
| |
Collapse
|
24
|
Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20081878. [PMID: 30995737 PMCID: PMC6515064 DOI: 10.3390/ijms20081878] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by defective social communication and interaction and restricted, repetitive behavior with a complex, multifactorial etiology. Despite an increasing worldwide prevalence of ASD, there is currently no pharmacological cure to treat core symptoms of ASD. Clinical evidence and molecular data support the role of impaired mitochondrial fatty acid oxidation (FAO) in ASD. The recognition of defects in energy metabolism in ASD may be important for better understanding ASD and developing therapeutic intervention. The nuclear peroxisome proliferator-activated receptors (PPAR) α, δ, and γ are ligand-activated receptors with distinct physiological functions in regulating lipid and glucose metabolism, as well as inflammatory response. PPAR activation allows a coordinated up-regulation of numerous FAO enzymes, resulting in significant PPAR-driven increases in mitochondrial FAO flux. Resveratrol (RSV) is a polyphenolic compound which exhibits metabolic, antioxidant, and anti-inflammatory properties, pointing to possible applications in ASD therapeutics. In this study, we review the evidence for the existing links between ASD and impaired mitochondrial FAO and review the potential implications for regulation of mitochondrial FAO in ASD by PPAR activators, including RSV.
Collapse
|
25
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
26
|
Cohen MC, Scheimberg I. Forensic Aspects of Perinatal Deaths. Acad Forensic Pathol 2018; 8:452-491. [PMID: 31240056 DOI: 10.1177/1925362118797725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
From a forensic pathologist's perspective, there are several aspects of the perinatal postmortem that are particularly important. If a fetus is found abandoned, the pathologist needs to ascertain the fetal age, the appropriateness of growth, if the baby was born alive or dead, and the possible causes of death. In cases of litigation for perinatal deaths occurring in hospitals, access to the obstetric and neonatal notes (if the baby is born alive and dies a few hours or days later) is fundamental to reach a correct interpretation and conclusion. The most important points to consider in cases of intrapartum death are the roles of asphyxia and trauma in the causation of the baby's death. Timing of the fetal death in relation to delivery may also be an important point in these cases. Finally, intrapartum lesions should always be considered in the differential diagnosis of possible child abuse in babies aged two months or less.
Collapse
|
27
|
Cecatto C, Wajner A, Vargas CR, Wajner SM, Amaral AU, Wajner M. High vulnerability of the heart and liver to 3-hydroxypalmitic acid-induced disruption of mitochondrial functions in intact cell systems. J Cell Biochem 2018; 119:7678-7686. [PMID: 29923625 DOI: 10.1002/jcb.27115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Patients affected by long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency predominantly present severe liver and cardiac dysfunction, as well as neurological symptoms during metabolic crises, whose pathogenesis is still poorly known. In this study, we demonstrate for the first time that pathological concentrations of 3-hydroxypalmitic acid (3HPA), the long-chain hydroxyl fatty acid (LCHFA) that most accumulates in LCHAD deficiency, significantly decreased adenosine triphosphate-linked and uncoupled mitochondrial respiration in intact cell systems consisting of heart fibers, cardiomyocytes, and hepatocytes, but less intense in diced forebrain. 3HPA also significantly reduced mitochondrial Ca2+ retention capacity and membrane potential in Ca2+ -loaded mitochondria more markedly in the heart and the liver, with mild or no effects in the brain, supporting a higher susceptibility of the heart and the liver to the toxic effects of this fatty acid. It is postulated that disruption of mitochondrial energy and Ca2+ homeostasis caused by the accumulation of LCHFA may contribute toward the severe cardiac and hepatic clinical manifestations observed in the affected patients.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Schimit MDOV, da Silva LHR, Wajner SM, Zanatta Â, Castilho RF, Wajner M. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca 2+ homeostasis in the heart. FEBS J 2018; 285:1437-1455. [PMID: 29476646 DOI: 10.1111/febs.14419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/19/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
We studied the effects of the major long-chain fatty acids accumulating in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, namely cis-5-tetradecenoic acid (Cis-5) and myristic acid (Myr), on important mitochondrial functions in isolated mitochondria from cardiac fibers and cardiomyocytes of juvenile rats. Cis-5 and Myr at pathological concentrations markedly reduced mitochondrial membrane potential (ΔΨm ), matrix NAD(P)H pool, Ca2+ retention capacity, ADP- (state 3) and carbonyl cyanide 3-chlorophenyl hydrazine-stimulated (uncoupled) respiration, and ATP generation. By contrast, these fatty acids increased resting (state 4) respiration (uncoupling effect) with the involvement of the adenine nucleotide translocator because carboxyatractyloside significantly attenuated the increased state 4 respiration provoked by Cis-5 and Myr. Furthermore, the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP, as well as the Ca2+ uptake blocker ruthenium red, fully prevented the Cis-5- and Myr-induced decrease in ΔΨm in Ca2+ -loaded mitochondria, suggesting, respectively, the induction of MPT pore opening and the contribution of Ca2+ toward these effects. The findings of the present study indicate that the major long-chain fatty acids that accumulate in VLCAD deficiency disrupt mitochondrial bioenergetics and Ca2+ homeostasis, acting as uncouplers and metabolic inhibitors of oxidative phosphorylation, as well as inducers of MPT pore opening, in the heart at pathological relevant concentrations. It is therefore presumed that a disturbance of bioenergetics and Ca2+ homeostasis may contribute to the cardiac manifestations observed in VLCAD deficiency.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana de Oliveira Vargas Schimit
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Henrique Rodrigues da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ângela Zanatta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
29
|
Maines E, Piccoli G, Pascarella A, Colucci F, Burlina AB. Inherited hyperammonemias: a Contemporary view on pathogenesis and diagnosis. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Evelina Maines
- Pediatric Unit, Provincial Centre for Rare Diseases, Department of Women’s and Children’s Health, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giovanni Piccoli
- CIBIO - Centre for integrative biology, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Antonia Pascarella
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Francesca Colucci
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| |
Collapse
|
30
|
González-Medina S, Ireland JL, Piercy RJ, Newton JR, Votion DM. Equine atypical myopathy in the UK: Epidemiological characteristics of cases reported from 2011 to 2015 and factors associated with survival. Equine Vet J 2017; 49:746-752. [PMID: 28445006 DOI: 10.1111/evj.12694] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Equine atypical myopathy (AM) is a toxic rhabdomyolysis associated with ingestion of hypoglycin A, derived typically in Europe, from Acer pseudoplatanus tree. Despite the wide distribution of this tree species in the UK, the number of cases reported annually varies, and there has been an apparent increase in prevalence in recent years. Although AM was first recognised in the UK, epidemiological studies have never been conducted focused solely on this country. OBJECTIVES To describe the spatiotemporal distribution, presentation, treatment and outcome of AM cases reported in the UK. STUDY DESIGN Retrospective case series. METHODS British AM cases reported to the atypical myopathy alert website, between 2011 and 2015 were included (n = 224). Data were obtained via standardised epidemiological questionnaires from owners and veterinarians. Factors associated with survival were assessed using logistic regression. RESULTS Most cases reported were from England (87.9%). Survival was 38.6% (n = 73/189). Clinical factors associated with reduced odds of survival included, hypothermia (odds ratio [OR] 0.18; 95% confidence interval [CI] 0.06-0.57; P = 0.01), bladder distension (OR 0.11; CI 0.02-0.59; P = 0.01), tachycardia (OR 0.97; CI 0.94-0.99; P = 0.04) and serum creatine kinase activity >100,000 IU/L (OR 0.17; CI 0.04-0.68; P = 0.01) in the univariable analysis as well as recumbency. The latter was the only sign retained in multivariable analysis (OR = 0.19; CI 0.06-0.62; P = 0.006). Administration of vitamins during the disease was associated with survival (OR 3.75; CI 1.21-11.57; P = 0.02). MAIN LIMITATIONS Reporting cases to the Atypical Myopathy Alert Group is voluntary; therefore, under-reporting will result in underestimation of AM cases; furthermore, direct owner-reporting could have introduced misdiagnosis bias. CONCLUSION Some areas of the UK reported AM cases more commonly. Clinical signs such as recumbency, rectal temperature, distended bladder and serum creatine kinase activity might be useful prognostic indicators though should be considered in the context of the clinical picture. Treatment with vitamins increases odds of survival.
Collapse
Affiliation(s)
- S González-Medina
- Comparative Neuromuscular Diseases Laboratory, The Royal Veterinary College, London, UK.,Epidemiology and Disease Surveillance, Animal Health Trust, Newmarket, Suffolk, UK
| | - J L Ireland
- Epidemiology and Disease Surveillance, Animal Health Trust, Newmarket, Suffolk, UK
| | - R J Piercy
- Comparative Neuromuscular Diseases Laboratory, The Royal Veterinary College, London, UK
| | - J R Newton
- Epidemiology and Disease Surveillance, Animal Health Trust, Newmarket, Suffolk, UK
| | - D M Votion
- Equine Medicine Department, Pole Equine, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
31
|
Study of Carnitine/Acylcarnitine and Amino Acid Profile in Children and Adults With Acute Liver Failure. J Pediatr Gastroenterol Nutr 2017; 64:869-875. [PMID: 28045774 DOI: 10.1097/mpg.0000000000001510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Fatty acid oxidation defects (FAODs) may underlie or modify the course of acute liver failure (ALF). Overall significance of carnitine/acylcarnitine and amino acid profile in ALF is similarly undetermined. Thus, this study was undertaken to study the abnormalities in carnitine/acylcarnitine and amino acid profile in ALF. METHODS A prospective study was performed including all patients with ALF, and detailed evaluation including metabolic testing was done. RESULTS A total of 55 patients (33 pediatric and 22 adult patients) were included in the study. Three patients (a 1-year 6-month-old child, a 13-year-old adolescent, and a 21-year-old adult, ie, 5.5% of all) were identified for the study with underlying metabolic etiology, that is, carnitine palmitoyl transferase-1 deficiency, based on the abnormal carnitine/acylcarnitine profile. Almost three-fourths of patients (78%) had evidence of serum hyperaminoacidemia. Thirty-one patients (56%) had evidence of abnormal carnitine/acylcarnitine profile with predominant abnormality being low free carnitine (C0). Higher levels of serum tyrosine (P = 0.002) and lower levels of serum C0 (P = 0.032) in children and higher levels of serum phenyalanine (P = 0.047) in adults predicted poor outcome (death/liver transplant) on univariate analysis. CONCLUSIONS FAODs are not uncommon in ALF with a suggested prevalence of approximately 5.5%. FAODs can cause ALF or modify the natural course of ALF caused by other etiologies. Serum hyperaminoacidemia and low serum free carnitine may predict poor outcome in patients with acute liver failure.
Collapse
|
32
|
Lefort B, Gouache E, Acquaviva C, Tardieu M, Benoist JF, Dumas JF, Servais S, Chevalier S, Vianey-Saban C, Labarthe F. Pharmacological inhibition of carnitine palmitoyltransferase 1 restores mitochondrial oxidative phosphorylation in human trifunctional protein deficient fibroblasts. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1292-1299. [PMID: 28392417 DOI: 10.1016/j.bbadis.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/20/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mitochondrial Trifunctional Protein deficiency (TFPD) is a severe genetic disease characterized by altered energy metabolism and accumulation of long-chain (LC) acylcarnitines in blood and tissues. This accumulation could impair the mitochondrial oxidative phosphorylation (OxPhos), contributing to the non-optimal outcome despite conventional diet therapy with medium-chain triglycerides (MCT). METHOD Acylcarnitine and OxPhos parameters were measured in TFPD-fibroblasts obtained from 8 children and cultured in medium mimicking fasting (LCFA) or conventional treatment (MCT), with or without Etomoxir (ETX) an inhibitor of carnitine palmitoyltransferase 1 (CPT1) activity, and were compared to results obtained with fibroblasts from 5 healthy-control children. The effects of various acylcarnitines were also tested on control fibroblasts. RESULTS In the LCFA-condition, TFPD-fibroblasts demonstrated a large accumulation of LC-acylcarnitines associated with decreased O2-consumption (63±3% of control, P<0.001) and ATP production (67±5%, P<0.001) without modification of coupling efficiency. A dose-dependent decrease in O2-consumption was reproduced in control fibroblasts by addition of increasing dose of LC-acylcarnitines, while it was almost preserved with MC-acylcarnitines. The MCT-condition reduced LC-acylcarnitine accumulation and partially improved O2-consumption (80±3%, P<0.01) in TFPD-fibroblasts. The addition of ETX in both LCFA- and MCT-conditions normalized acylcarnitine profiles and restored O2-consumption and ATP production at the same levels than control. CONCLUSION Accumulation of LC-acylcarnitines plays a major role in the pathophysiology of TFPD, reducing OxPhos capacities. These deleterious effects could be partially prevented by MCT-therapy and totally corrected by ETX. Inhibition of CPT1 may be view as a new therapeutic target for patients with a severe form of TFPD.
Collapse
Affiliation(s)
- Bruno Lefort
- CHU de Tours, Médecine Pédiatrique, Tours, France, and INSERM U1069, Université François Rabelais, Tours, France.
| | - Elodie Gouache
- CHU de Tours, Médecine Pédiatrique, Tours, France, and INSERM U1069, Université François Rabelais, Tours, France
| | | | - Marine Tardieu
- CHU de Tours, Médecine Pédiatrique, Tours, France, and INSERM U1069, Université François Rabelais, Tours, France
| | | | | | | | | | | | - François Labarthe
- CHU de Tours, Médecine Pédiatrique, Tours, France, and Inserm U1069, Université François Rabelais de Tours, PRES Centre-Val de Loire Universités, Tours, France
| |
Collapse
|
33
|
Liang WC, Lin YF, Liu TY, Chang SC, Chen BH, Nishino I, Jong YJ. Neurite growth could be impaired by ETFDH
mutation but restored by mitochondrial cofactors. Muscle Nerve 2017; 56:479-485. [DOI: 10.1002/mus.25501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Yen-Fong Lin
- Department of Pediatrics, School of Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Ting-Yuan Liu
- Graduate Institute of Clinical Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Shin-Cheng Chang
- Department of Pediatrics, School of Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Bai-Hsiun Chen
- Department of Pediatrics; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Laboratory Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Ichizo Nishino
- Department of Neuromuscular Research; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Clinical Development, Translational Medical Center; National Center of Neurology and Psychiatry; Tokyo Japan
| | - Yuh-Jyh Jong
- Department of Pediatrics; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Laboratory Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology; National Chiao Tung University; Hsinchu Taiwan
| |
Collapse
|
34
|
Amaral AU, Cecatto C, da Silva JC, Wajner A, Wajner M. Mechanistic Bases of Neurotoxicity Provoked by Fatty Acids Accumulating in MCAD and LCHAD Deficiencies. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817701472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Alexandre U. Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína C. da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Jiang Q, Wang C, Xue C, Xue L, Wang M, Li C, Deng Z, Wang Q. Changes in the levels of l-carnitine, acetyl-l-carnitine and propionyl-l-carnitine are involved in perfluorooctanoic acid induced developmental cardiotoxicity in chicken embryo. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:116-124. [PMID: 27771504 DOI: 10.1016/j.etap.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA), a persistent organic pollutant, is associated with developmental toxicity. This study investigated the mechanism of PFOA-induced developmental cardiotoxicity in chicken embryo, focusing on the interactions between developmental exposure to PFOA and the levels of l-carnitine (LC), acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC) in the heart. To evaluate the developmental cardiotoxicity, fertile chicken eggs were exposed to 0.1, 0.5, 1, 2 or 5mg/kg PFOA via air cell injection. Furthermore, exposure to 2mg/kg PFOA, with or without 100mg/kg LC were applied to investigate the effects of LC supplement. The results of functional and morphological assessments confirmed PFOA induced developmental cardiotoxicity in chicken embryo, which could be alleviated by co-exposure to LC. LC-MS/MS results also revealed remarkable decrease in LC, ALC and PLC levels in embryonic day six (ED6) chicken embryo hearts as well as LC level in embryonic day fifteen (ED15) chicken embryo hearts following developmental exposure to 2mg/kg PFOA. Meanwhile, co-exposure to 100mg/kg LC significantly elevated the levels of LC, ALC and PLC in chicken embryo hearts. Significantly elevated expression level of carnitine acetyltransferase (CRAT) in PFOA-exposed ED6 chicken embryo hearts was observed via western blotting, while LC co-exposure counteracted such changes. In conclusion, changes in the levels of LC, ALC and PLC in early embryonic stages are associated with PFOA induced developmental cardiotoxicity in chicken embryos.
Collapse
Affiliation(s)
- Qixiao Jiang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China.
| | - Chunbo Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China.
| | - Chan Xue
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Lingfang Xue
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Meiting Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Changhao Li
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Ziwen Deng
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| | - Qian Wang
- Qingdao University Medical College, 308 Ningxia Road, Qingdao, Shandong 266021, China
| |
Collapse
|
36
|
cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1363-1372. [PMID: 27240720 DOI: 10.1016/j.bbabio.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency.
Collapse
|
37
|
Kirmse B, Yao TJ, Hofherr S, Kacanek D, Williams PL, Hobbs CV, Hazra R, Borkowsky W, Van Dyke RB, Summar M. Acylcarnitine Profiles in HIV-Exposed, Uninfected Neonates in the United States. AIDS Res Hum Retroviruses 2016; 32:339-48. [PMID: 26548585 DOI: 10.1089/aid.2015.0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We sought to determine the prevalence of abnormal acylcarnitine profiles (ACP) in HIV-exposed uninfected (HEU) newborns and to explore the association of abnormal ACP with clinical laboratory outcomes and antiretroviral drug exposures. Clinically, ACP are used to assess for fatty acid oxidation (FAO) dysfunction and normal FAO is necessary for optimal fetal/neonatal growth and development. We analyzed serum ACP in 522 HEU neonates enrolled in the Surveillance Monitoring for ART Toxicities (SMARTT) study of the Pediatric HIV/AIDS Cohort Study (PHACS) and evaluated the associations of abnormal ACP with in utero exposure to combination antiretroviral therapy (cART) in logistic regression models, adjusting for maternal demographic, disease, and behavioral characteristics. We evaluated the associations of abnormal ACP with laboratory parameters and measures of neurodevelopment and growth. Of 522 neonates, 89 (17%) had abnormal ACP. In adjusted analyses, in utero exposure to a protease inhibitor (PI) was associated with higher odds of having an abnormal ACP [adjusted odds ratio (aOR) = 2.35, 95% CI: 0.96, 5.76, p = 0.06] with marginal significance while exposure to a nonnucleoside reverse transcriptase inhibitor (NNRTI) was associated with lower odds (aOR = 0.23, 95% CI: 0.07, 0.80, p = 0.02). Mean ALT levels were slightly higher in those with abnormal ACP, but no differences in lactate, glucose, or CPK were observed. ACP status was not associated with neurodevelopment at 1 year or growth at 2 and 3 years of age. Abnormal ACP in HEU neonates are associated with exposure to PI-containing as opposed to NNRTI-containing antiretroviral (ARV) regimens but are not associated with serious postnatal clinical problems. Further studies are needed to determine the long-term health implications of abnormal acylcarnitine metabolism at birth in HEU children.
Collapse
Affiliation(s)
- Brian Kirmse
- Children's National Health System, Division of Genetics & Metabolism, Washington, DC
| | - Tzy-Jyun Yao
- Harvard T.H. Chan School of Public Health, Center for Biostatistics in AIDS Research, Boston, Massachusetts
| | - Sean Hofherr
- Children's National Health System, Division of Genetics & Metabolism, Washington, DC
| | - Deborah Kacanek
- Harvard T.H. Chan School of Public Health, Center for Biostatistics in AIDS Research, Boston, Massachusetts
| | - Paige L. Williams
- Harvard T.H. Chan School of Public Health, Center for Biostatistics in AIDS Research, Boston, Massachusetts
| | - Charlotte V. Hobbs
- New York University/Langone School of Medicine, Division of Pediatric Infectious Disease and Immunology, New York, New York
| | - Rohan Hazra
- National Institutes of Health (NICHD), Maternal and Pediatric Infectious Disease Branch, Bethesda, Maryland
| | - William Borkowsky
- New York University/Langone School of Medicine, Division of Pediatric Infectious Disease and Immunology, New York, New York
| | | | - Marshall Summar
- Children's National Health System, Division of Genetics & Metabolism, Washington, DC
| | | |
Collapse
|
38
|
Djouadi F, Habarou F, Le Bachelier C, Ferdinandusse S, Schlemmer D, Benoist JF, Boutron A, Andresen BS, Visser G, de Lonlay P, Olpin S, Fukao T, Yamaguchi S, Strauss AW, Wanders RJA, Bastin J. Mitochondrial trifunctional protein deficiency in human cultured fibroblasts: effects of bezafibrate. J Inherit Metab Dis 2016; 39:47-58. [PMID: 26109258 DOI: 10.1007/s10545-015-9871-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
Mitochondrial trifunctional protein (MTP) deficiency caused by HADHA or HADHB gene mutations exhibits substantial molecular, biochemical, and clinical heterogeneity and ranks among the more severe fatty acid oxidation (FAO) disorders, without pharmacological treatment. Since bezafibrate has been shown to potentially correct other FAO disorders in patient cells, we analyzed its effects in 26 MTP-deficient patient fibroblasts representing 16 genotypes. Overall, the patient cell lines exhibited variable, complex, biochemical profiles and pharmacological responses. HADHA-deficient fibroblasts showed markedly reduced alpha subunit protein levels together with decreased beta-subunit abundance, exhibited a -86 to -96% defect in LCHAD activity, and produced large amounts of C14 and C16 hydroxyacylcarnitines. In control fibroblasts, exposure to bezafibrate (400 μM for 48 h) increased the abundance of HADHA and HADHB mRNAs, immune-detectable alpha and beta subunit proteins, activities of LCHAD and LCKAT, and stimulated FAO capacities, clearly indicating that MTP is pharmacologically up-regulated by bezafibrate in human fibroblasts. In MTP-deficient patient fibroblasts, which were found markedly FAO-deficient, bezafibrate improved FAO capacities in six of 26 (23%) cases, including three cell lines heterozygous for the common c1528G > C mutation. Altogether, our results strongly suggest that, due to variable effects of HADHA and HADHB mutations on MTP abundance and residual activity, improvement of MTP deficiency in response to bezafibrate was achieved in a subset of responsive genotypes.
Collapse
Affiliation(s)
- Fatima Djouadi
- INSERM UMR-1124, Université Paris Descartes, Centre Universitaire des Saints Pères, 45 rue des Saints Pères, 75006, Paris, France
| | - Florence Habarou
- INSERM UMR-1124, Université Paris Descartes, Centre Universitaire des Saints Pères, 45 rue des Saints Pères, 75006, Paris, France
| | - Carole Le Bachelier
- INSERM UMR-1124, Université Paris Descartes, Centre Universitaire des Saints Pères, 45 rue des Saints Pères, 75006, Paris, France
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dimitri Schlemmer
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Biochimie-Hormonologie, Hôpital Robert Debré, 48 bd Sérurier, 75019, Paris, France
| | - Jean François Benoist
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Biochimie-Hormonologie, Hôpital Robert Debré, 48 bd Sérurier, 75019, Paris, France
| | - Audrey Boutron
- Service de Biochimie, Hôpital Bicêtre, 78 rue du Général Leclerc, 94270, Le Kremlin Bicêtre, France
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Gepke Visser
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Pascale de Lonlay
- INSERM U781, Institut Imagine des Maladies Génétiques, Université Paris Descartes et Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, 149 rue de Sèvres, 75015, Paris, France
| | - Simon Olpin
- Department of Clinical Chemistry, Sheffield Children's Hospital, Western Bank, Sheffield, South Yorkshire, S10 2TH, UK
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-Cho, Izumo, 693-8501, Japan
| | - Arnold W Strauss
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jean Bastin
- INSERM UMR-1124, Université Paris Descartes, Centre Universitaire des Saints Pères, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
39
|
Teng H, Sui X, Zhou C, Shen C, Yang Y, Zhang P, Guo X, Huo R. Fatty acid degradation plays an essential role in proliferation of mouse female primordial germ cells via the p53-dependent cell cycle regulation. Cell Cycle 2015; 15:425-31. [PMID: 26716399 DOI: 10.1080/15384101.2015.1127473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primordial germ cells (PGCs) are embryonic founders of germ cells that ultimately differentiate into oocytes and spermatogonia. Embryonic proliferation of PGCs starting from E11.5 ensures the presence of germ cells in adulthood, especially in female mammals whose total number of oocytes declines after this initial proliferation period. To better understand mechanisms underlying PGC proliferation in female mice, we constructed a proteome profile of female mouse gonads at E11.5. Subsequent KEGG pathway analysis of the 3,662 proteins profiled showed significant enrichment of pathways involved in fatty acid degradation. Further, the number of PGCs found in in vitro cultured fetal gonads significantly decreased with application of etomoxir, an inhibitor of the key rate-limiting enzyme of fatty acid degradation carnitine acyltransferase I (CPT1). Decrease in PGCs was further determined to be the result of reduced proliferation rather than apoptosis. The inhibition of fatty acid degradation by etomoxir has the potential to activate the Ca(2+)/CamKII/5'-adenosine monophosphate-activated protein kinase (AMPK) pathway; while as an upstream activator, activated AMPK can function as activator of p53 to induce cell cycle arrest. Thus, we detected the expressional level of AMPK, phosphorylated AMPK (P-AMPK), phosphorylated p53 (P-p53) and cyclin-dependent kinase inhibitor 1 (p21) by Western blots, the results showed increased expression of them after treatment with etomoxir, suggested the activation of p53 pathway was the reason for reduced proliferation of PGCs. Finally, the involvement of p53-dependent G1 cell cycle arrest in defective proliferation of PGCs was verified by rescue experiments. Our results demonstrate that fatty acid degradation plays an important role in proliferation of female PGCs via the p53-dependent cell cycle regulation.
Collapse
Affiliation(s)
- Hui Teng
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Xuesong Sui
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Cheng Zhou
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Cong Shen
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Ye Yang
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Pang Zhang
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Xuejiang Guo
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| | - Ran Huo
- a State Key Laboratory of Reproductive Medicine , Department of Histology and Embryology, Nanjing Medical University , Nanjing , P.R. China
| |
Collapse
|
40
|
Biegen VR, McCue JP, Donovan TA, Shelton GD. Metabolic Encephalopathy and Lipid Storage Myopathy Associated with a Presumptive Mitochondrial Fatty Acid Oxidation Defect in a Dog. Front Vet Sci 2015; 2:64. [PMID: 26664991 PMCID: PMC4672276 DOI: 10.3389/fvets.2015.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
Abstract
A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurological examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful, and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurological signs have been described in humans with this group of diseases, descriptions of advanced imaging, and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis, and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.
Collapse
Affiliation(s)
| | | | | | - G Diane Shelton
- The Department of Pathology, School of Medicine, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
41
|
Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Biosci Rep 2015; 36:e00281. [PMID: 26589966 PMCID: PMC4718505 DOI: 10.1042/bsr20150240] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
Patients affected by FAOD commonly present with hepatopathy, cardiomyopathy, skeletal myopathy and encephalopathy. Human and animal evidences indicate that mitochondrial functions are disrupted by fatty acids and derivatives accumulating in these disorders, suggesting that lipotoxicity may contribute to their pathogenesis. Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in maintaining body energy homoeostasis mainly during catabolic states. Oxidation of fatty acids requires approximately 25 proteins. Inherited defects of FAO have been identified in the majority of these proteins and constitute an important group of inborn errors of metabolism. Affected patients usually present with severe hepatopathy, cardiomyopathy and skeletal myopathy, whereas some patients may suffer acute and/or progressive encephalopathy whose pathogenesis is poorly known. In recent years growing evidence has emerged indicating that energy deficiency/disruption of mitochondrial homoeostasis is involved in the pathophysiology of some fatty acid oxidation defects (FAOD), although the exact underlying mechanisms are not yet established. Characteristic fatty acids and carnitine derivatives are found at high concentrations in these patients and more markedly during episodes of metabolic decompensation that are associated with worsening of clinical symptoms. Therefore, it is conceivable that these compounds may be toxic. We will briefly summarize the current knowledge obtained from patients and genetic mouse models with these disorders indicating that disruption of mitochondrial energy, redox and calcium homoeostasis is involved in the pathophysiology of the tissue damage in the more common FAOD, including medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. We will also provide evidence that the fatty acids and derivatives that accumulate in these diseases disrupt mitochondrial homoeostasis. The elucidation of the toxic mechanisms of these compounds may offer new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group.
Collapse
|
42
|
Cecatto C, Hickmann FH, Rodrigues MDN, Amaral AU, Wajner M. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders. FEBS J 2015; 282:4714-26. [PMID: 26408230 DOI: 10.1111/febs.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda H Hickmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília D N Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre U Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
43
|
Zschocke J. Erbliche Stoffwechselkrankheiten – eine Übersicht. MED GENET-BERLIN 2015. [DOI: 10.1007/s11825-015-0062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zusammenfassung
Klinisches Bild, Diagnose und Therapie der erblichen Stoffwechselkrankheiten lassen sich am besten aus den spezifischen betroffenen Stoffwechselwegen ableiten, welche durch die einzelne, meist enzymatische Störung betroffen sind. Dabei lassen sich die Störungen des Intermediärstoffwechsels, welche den Stoffwechsel der Aminosäuren, Kohlenhydrate und Fettsäuren sowie den mitochondrialen Energiestoffwechsel betreffen, von anderen Stoffwechselstörungen abgrenzen. Die Intermediärstoffwechselstörungen zeigen meist eine Manifestation erst nach der Geburt, nicht selten akute Stoffwechselentgleisungen, und können oft durch metabolische Interventionen behandelt werden. Sie werden durch die üblichen klinisch-chemischen Basisuntersuchungen und einige selektive Screeninganalysen erfasst, die allgemein unter dem Begriff „Stoffwechseldiagnostik“ subsumiert werden. Die anderen Stoffwechselkrankheiten verursachen sehr unterschiedliche, oft für den betroffenen Stoffwechselweg typische klinische Symptome und können vielfach durch Screeningtests nachgewiesen werden, die spezifisch angefordert werden müssen. Die verschiedenen Krankheitsgruppen mit den wichtigsten einzelnen Störungen werden in dem vorliegenden Artikel zusammenfassend dargestellt.
Collapse
Affiliation(s)
- Johannes Zschocke
- Aff1 grid.5361.1 0000000088532677 Sektion für Humangenetik Medizinische Universität Innsbruck Peter-Mayr-Str. 1 6020 Innsbruck Österreich
| |
Collapse
|
44
|
Shumar SA, Fagone P, Alfonso-Pecchio A, Gray JT, Rehg JE, Jackowski S, Leonardi R. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice. PLoS One 2015; 10:e0130013. [PMID: 26052948 PMCID: PMC4460045 DOI: 10.1371/journal.pone.0130013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/15/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK) isoforms. PanK initiates the synthesis of coenzyme A (CoA), an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease. OBJECTIVE, METHODS, RESULTS AND CONCLUSIONS Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn) promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt) exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.
Collapse
Affiliation(s)
- Stephanie A. Shumar
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paolo Fagone
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Adolfo Alfonso-Pecchio
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John T. Gray
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
45
|
Adolescent presentations of inborn errors of metabolism. J Adolesc Health 2015; 56:477-82. [PMID: 25907648 DOI: 10.1016/j.jadohealth.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/30/2022]
Abstract
Several studies have shown that a large percentage of inborn errors of metabolism is present in adolescent patients. Individually, each diagnosis in this category of diseases is rare; therefore, there is often a significant delay in determining the etiology of a patient's complaints. These disorders can have a wide variety of multisystemic presentations, several of which overlap with more common disorders of adolescence. This review highlights the red-flag findings on history and physical examination indicating a possible inborn error of metabolism. In addition, a systematic approach for evaluating and categorizing these disorders is introduced and demonstrated through case examples. Primary care physicians play a crucial role in the early detection and prompt treatment of patients with late-onset inborn errors of metabolism.
Collapse
|
46
|
Olpin SE, Murphy E, Kirk RJ, Taylor RW, Quinlivan R. The investigation and management of metabolic myopathies. J Clin Pathol 2015; 68:410-7. [DOI: 10.1136/jclinpath-2014-202808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Metabolic myopathies (MM) are rare inherited primary muscle disorders that are mainly due to abnormalities of muscle energy metabolism resulting in skeletal muscle dysfunction. These diseases include disorders of fatty acid oxidation, glyco(geno)lytic muscle disorders and mitochondrial respiratory chain (MRC) disease. Clinically these disorders present with a range of symptoms including infantile hypotonia, myalgia/exercise tolerance, chronic or acute muscle weakness, cramps/spasms/stiffness or episodic acute rhabdomyolysis. The precipitant may be fasting, infection, general anaesthesia, heat/cold or most commonly, exercise. However, the differential diagnosis includes a wide range of both acquired and inherited conditions and these include exposure to drugs/toxins, inflammatory myopathies, dystrophies and channelopathies. Streamlining of existing diagnostic protocols has now become a realistic prospect given the availability of second-generation sequencing. A diagnostic pathway using a ‘rhabdomyolysis’ gene panel at an early stage of the diagnostic process is proposed. Following detailed clinical evaluation and first-line investigations, some patients will be identified as candidates for McArdle disease/glycogen storage disease type V or MRC disease and these will be referred directly to the specialised services. However, for the majority of patients, second-line investigation is best undertaken through next-generation sequencing using a ‘rhabdomyolysis’ gene panel. Following molecular analysis and careful evaluation of the findings, some patients will receive a clear diagnosis. Further functional or specific targeted testing may be required in other patients to evaluate the significance of uncertain/equivocal findings. For patients with no clear diagnosis, further investigations will be required through a specialist centre.
Collapse
|
47
|
Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2014; 2:19. [PMID: 25250177 PMCID: PMC4171726 DOI: 10.1186/2049-3002-2-19] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023] Open
Abstract
The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells.
Collapse
Affiliation(s)
- Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| |
Collapse
|
48
|
Birth Prevalence of Fatty Acid β-Oxidation Disorders in Iberia. JIMD Rep 2014; 16:89-94. [PMID: 25012579 DOI: 10.1007/8904_2014_324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAOD) are main targets for newborn screening (NBS) programs, which are excellent data sources for accurate estimations of disease birth prevalence. Epidemiological data is of key importance for the understanding of the natural history of the disorders as well as to define more effective public health strategies. In order to estimate FAOD birth prevalence in Iberia, the authors collected data from six NBS programs from Portugal and Spain, encompassing the screening of more than 1.6 million newborns by tandem mass spectrometry (MS/MS), and compared it with available data from other populations. The participating NBS programs are responsible for the screening of about 46% of all Iberian newborns. Data reveals that Iberia has one of the highest FAOD prevalence in Europe (1:7,914) and that Portugal has the highest birth prevalence of FAOD reported so far (1:6,351), strongly influenced by the high prevalence of medium-chain acyl-CoA dehydrogenase deficiency (MCADD; 1:8,380), one of the highest ever reported. This is justified by the fact that more than 90% of Portuguese MCADD patients are of Gypsy origin, a community characterized by a high degree of consanguinity. From the comparative analysis of various populations with comparable data other differences emerge, which points to the existence of significant variations in FAOD prevalences among different populations, but without any clear European variation pattern. Considering that FAOD are one of the justifications for MS/MS NBS, the now estimated birth prevalences stress the need to screen all Iberian newborns for this group of inherited metabolic disorders.
Collapse
|
49
|
Aires V, Delmas D, Le Bachelier C, Latruffe N, Schlemmer D, Benoist JF, Djouadi F, Bastin J. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet J Rare Dis 2014; 9:79. [PMID: 24898617 PMCID: PMC4051957 DOI: 10.1186/1750-1172-9-79] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
Background Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models. Our study explores its possible effects on FAO and mitochondrial energy metabolism in human cells, which are still very little documented. Methods Using cells from controls and from patients with Carnitine Palmitoyl Transferase 2 (CPT2) or Very Long Chain AcylCoA Dehydrogenase (VLCAD) deficiency we characterized the metabolic effects of RSV, RSV metabolites, and other stilbenes. We also focused on analysis of RSV uptake, and on the effects of low RSV concentrations, considering the limited bioavailability of RSV in vivo. Results Time course of RSV accumulation in fibroblasts over 48 h of treatment were consistent with the resulting stimulation or correction of FAO capacities. At 48 h, half maximal and maximal FAO stimulations were respectively achieved for 37,5 microM (EC50) and 75 microM RSV, but we found that serum content of culture medium negatively modulated RSV uptake and FAO induction. Indeed, decreasing serum from 12% to 3% led to shift EC50 from 37,5 to 13 microM, and a 2.6-3.6-fold FAO stimulation was reached with 20 microM RSV at 3% serum, that was absent at 12% serum. Two other stilbenes often found associated with RSV, i.e. cis- RSV and piceid, also triggered significant FAO up-regulation. Resveratrol glucuro- or sulfo- conjugates had modest or no effects. In contrast, dihydro-RSV, one of the most abundant circulating RSV metabolites in human significantly stimulated FAO (1.3-2.3-fold). Conclusions This study provides the first compared data on mitochondrial effects of resveratrol, its metabolites, and other natural compounds of the stilbene family in human cells. The results clearly indicate that several of these compounds can improve mitochondrial FAO capacities in human FAO-deficient cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Bastin
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris cedex 06, France.
| |
Collapse
|