1
|
Parviainen T, Alexandrou AM, Lapinkero H, Sipilä S, Kujala J. The link between executive skills and neural dynamics during encoding, inhibition, and retrieval of visual information in the elderly. Hum Brain Mapp 2024; 45:e26755. [PMID: 39185717 PMCID: PMC11345698 DOI: 10.1002/hbm.26755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/27/2024] Open
Abstract
During aging the inter-individual variability in both the neural and behavioral functions is likely to be emphasized. Decreased competence particularly in working memory and general executive control compromises many aspects of the quality of life also within the nonclinical population. We aimed, first, to clarify the brain basis of visual working memory and inhibition during multi-stage natural-like task performance, and second, to identify associations between variation in task-related neural activity and relevant cognitive skills, namely inhibition and general working memory capacity. We recorded, using magnetoencephalography (MEG), the neural modulations associated with encoding, maintenance, and retrieval, as well as interference suppression during a visual working memory task in older adults. We quantified the neural correlates of these cognitive processes through two complementary approaches: evoked responses and oscillatory activity. Neural activity during memory retrieval and interference suppression were correlated with behavioral measures of task switching and general executive functions. Our results show that general inhibitory control induced frontocentral neural modulation across a broad range of frequencies whereas domain-specific inhibition was limited to right posterior areas. Our findings also suggest that modulations particularly in phase-locked evoked neural activity can be reliably associated with explicit measures of cognitive skills, with better inhibitory control linked with an early neural effect of distractor inhibition during retrieval. In general, we show that exploiting the inherent inter-individual variability in neural measures and behavioral markers of cognition in aging populations can help establish reliable links between specific brain functions and their behavioral manifestations.
Collapse
Affiliation(s)
- Tiina Parviainen
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Anna Maria Alexandrou
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Maija Lapinkero
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Sarianna Sipilä
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jan Kujala
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
2
|
Kujala J, Maria Alexandrou A, Lapinkero HM, Stigsdotter-Neely A, Sipilä S, Parviainen T. Beta-band MEG signal power changes in older adults after physical exercise program with and without additional cognitive training. Brain Cogn 2023; 165:105929. [PMID: 36436387 DOI: 10.1016/j.bandc.2022.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
Physical exercise has been considered to be an efficient mean of preserving cognitive function and it influences both the structural and functional characteristics of the brain. It has especially been shown to increase brain plasticity, the capacity to re-structure brain properties in response to interaction, such as cognitive practice. Studies have also examined the potential additive effect of cognitive training on the documented benefit of physical exercise, commonly, however, not at the neural level. We monitored, using magnetoencephalography (MEG), the brain processes associated with executive functions in older individuals who participated in a 12-month randomized controlled trial including two research arms: physical and cognitive training vs physical training alone. Measurements were conducted at 0 months, 6 months, and 12 months. The addition of cognitive training was associated with better performance in the Stroop test that reflects executive control. The extra benefit of cognitive training was also manifested as decreased modulation of beta frequency band (15-25 Hz) especially to difficult distractors. As beta band activity is associated with attentional control, this indicates fewer resources needed to inhibit irrelevant sensory inputs. These results imply an enhancing role of cognitive elements integrated with physical training in improving or maintaining executive functions in older individuals.
Collapse
Affiliation(s)
- Jan Kujala
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Maria Alexandrou
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Hanna-Maija Lapinkero
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Stigsdotter-Neely
- Department of Health, Learning and Technology, Luleå University of Technology, Luleå, Sweden; Department of Social and Psychological Studies, Karlstad University, Karlstad, Sweden
| | - Sarianna Sipilä
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
3
|
Vázquez-Hernández N, Martínez-Torres NI, González-Burgos I. Plastic changes to dendritic spines in the cerebellar and prefrontal cortices underlie the decline in motor coordination and working memory during successful aging. Behav Brain Res 2020; 400:113014. [PMID: 33309738 DOI: 10.1016/j.bbr.2020.113014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Old age is the last stage of life and by taking a multidimensional view of aging, Neuroscientists have been able to characterize pathological or successful aging. Psychomotor and cognitive performance are recognized as two major domains of successful aging, with a loss of motor coordination and working memory deficits two of the most characteristic features of elderly people. Dendritic spines in both the cerebellar and prefrontal cortices diminish in aging, yet the plastic changes in dendritic spines have not been related to behavioral performance neither the changes in the cerebellar or prefrontal cortices. As such, motor coordination and visuospatial working memory (vsWM) was evaluated here in aged, 22-month-old rats, calculating the density of spines and the proportion of the different types of spines. These animals performed erratically and slowly in a motor coordination-related paradigm, and the vsWM was resolved deficiently. Spine density was reduced in aged animals, and the proportional density of each of the spine types studied diminished in both the brain regions studied. The loss of dendritic spines and particularly, the changes in the proportional density of the different spine types could underlie, at least in part, the behavioral deficits observed during aging. To our knowledge, this is the first study of the plastic changes in different dendritic spine types that might underlie the behavioral alterations in motor and cognitive abilities associated with aging. Further neurochemical and molecular studies will help better understand the functional significance of the plastic changes to dendritic spines in both successful and pathological aging.
Collapse
Affiliation(s)
- N Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico
| | - N I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jal, Mexico
| | - I González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico.
| |
Collapse
|
4
|
|
5
|
Santoso D, Yolanda S, Redjeki S, Andraini T, Ivanali K. Continuous environmental enrichment and aerobic exercise improves spatial memory: focus on rat hippocampal BDNF and NGF. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Memory is an important cognitive function in humans. Exercise and environmental enrichment (EE) exposure have positive effects on memory function via improved neurogenesis through expression of growth factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Exercise and environmental enrichment have independently been shown to increase BDNF and NGF, but the effect of the combination of these treatments has not been widely studied. This experimental study aims to analyse the effect of aerobic exercise, EE exposure, and combination of aerobic exercise and EE exposure on memory function. This study used twenty 7-month old male Wistar rats that were given treatment for 8 weeks. Memory function was tested using forced alternation Y-maze. Hippocampal expression of BDNF and NGF were also assessed. The results showed the combination group has highest performance in memory function test and also the highest level of hippocampal BDNF and NGF (P<0.05). It can be concluded that the combination of aerobic exercise and continuous EE exposure produces the best results for memory function through higher levels of hippocampal BDNF and NGF in adult rats.
Collapse
Affiliation(s)
- D.I.I. Santoso
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - S. Yolanda
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - S. Redjeki
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - T. Andraini
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - K. Ivanali
- Biomedical Sciences, Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| |
Collapse
|
6
|
Abstract
In this paper we describe an open-access collection of multimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of ~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also presented from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS).
Collapse
|
7
|
Toppi J, Astolfi L, Risetti M, Anzolin A, Kober SE, Wood G, Mattia D. Different Topological Properties of EEG-Derived Networks Describe Working Memory Phases as Revealed by Graph Theoretical Analysis. Front Hum Neurosci 2018; 11:637. [PMID: 29379425 PMCID: PMC5770976 DOI: 10.3389/fnhum.2017.00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke.
Collapse
Affiliation(s)
- Jlenia Toppi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Monica Risetti
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Alessandra Anzolin
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia E Kober
- Department of Psychology, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Guilherme Wood
- Department of Psychology, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Donatella Mattia
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
8
|
Grape Seed Proanthocyanidin and Swimming Exercise Protects Against Cognitive Decline: A Study on M1 Acetylcholine Receptors in Aging Male Rat Brain. Neurochem Res 2017; 42:3573-3586. [DOI: 10.1007/s11064-017-2406-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
|
9
|
Sanfratello L, Lundy S, Qualls C, Knoefel J, Adair J, Caprihan A, Stephen J, Aine C. Brain structure and verbal function across adulthood while controlling for cerebrovascular risks. Hum Brain Mapp 2017; 38:3472-3490. [PMID: 28390167 PMCID: PMC5632576 DOI: 10.1002/hbm.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2017] [Accepted: 03/26/2017] [Indexed: 11/08/2022] Open
Abstract
The development and decline of brain structure and function throughout adulthood is a complex issue, with cognitive aging trajectories influenced by a host of factors including cerebrovascular risk. Neuroimaging studies of age-related cognitive decline typically reveal a linear decrease in gray matter (GM) volume/density in frontal regions across adulthood. However, white matter (WM) tracts mature later than GM, particularly in regions necessary for executive functions and memory. Therefore, it was predicted that a middle-aged group (MC: 35-45 years) would perform best on a verbal working memory task and reveal greater regional WM integrity, compared with both young (YC: 18-25 years) and elder groups (EC: 60+ years). Diffusion tensor imaging (DTI) and magnetoencephalography (MEG) were obtained from 80 healthy participants. Objective measures of cerebrovascular risk and cognition were also obtained. As predicted, MC revealed best verbal working memory accuracy overall indicating some maturation of brain function between YC and MC. However, contrary to the prediction fractional anisotropy values (FA), a measure of WM integrity, were not greater in MC (i.e., there were no significant differences in FA between YC and MC but both groups showed greater FA than EC). An overall multivariate model for MEG ROIs showed greater peak amplitudes for MC and YC, compared with EC. Subclinical cerebrovascular risk factors (systolic blood pressure and blood glucose) were negatively associated with FA in frontal callosal, limbic, and thalamic radiation regions which correlated with executive dysfunction and slower processing speed, suggesting their contribution to age-related cognitive decline. Hum Brain Mapp 38:3472-3490, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L. Sanfratello
- The Mind Research Network1101 Yale Blvd. NEAlbuquerqueNew Mexico87106
- Department of RadiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
| | - S.L. Lundy
- Center for Neuropsychological Services, University of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
| | - C. Qualls
- Clinical and Translational Science Center (Biostatistics),University of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
| | - J.E. Knoefel
- Department of Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
- Department of NeurologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
| | - J.C. Adair
- Department of NeurologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
- New Mexico VA Health Care SystemAlbuquerqueNew Mexico87108
| | - A. Caprihan
- The Mind Research Network1101 Yale Blvd. NEAlbuquerqueNew Mexico87106
| | - J.M. Stephen
- The Mind Research Network1101 Yale Blvd. NEAlbuquerqueNew Mexico87106
| | - C.J. Aine
- The Mind Research Network1101 Yale Blvd. NEAlbuquerqueNew Mexico87106
- Department of RadiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico87131
| |
Collapse
|
10
|
Peterson DJ, Gargya S, Kopeikin KS, Naveh-Benjamin M. The impact of level of education on age-related deficits in associative memory: Behavioral and neuropsychological perspectives. Cortex 2016; 91:9-24. [PMID: 28111047 DOI: 10.1016/j.cortex.2016.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Older adults have difficulty forming associations and binding distinct item components despite mostly preserved item memory potentially because they rely on more automatic, rather than strategic, processing when attempting to form, store, and retrieve associations from memory. An intriguing possibility is that older adults with greater access to strategic processes (e.g., those with a high level of education) may be less susceptible to age-related associative memory deficits. Two experiments assessed the degree to which a high level of education provides an effective dose of cognitive reserve (CR), potentially preserving associative memory. Standard younger and older adults' item and associative memory performance was compared to older adults who had attained a high level of education (mostly doctoral degrees). In both experiments (Experiment 1: person-action pairs; Experiment 2: unrelated word pairs), consistent evidence was found that older adults, regardless of the level of education, exhibited an age-related associative memory deficit relative to younger adults. Interestingly, neuropsychological assessment of both older adult groups revealed greater frontal lobe, but not enhanced medial temporal lobe, functioning in the highly educated. As such, although the highly educated older adults exhibited greater frontal lobe functioning than the standard older adults, this did not aid in the reduction of the age-related associative memory deficit.
Collapse
Affiliation(s)
- Dwight J Peterson
- Department of Psychological Sciences, University of Missouri, USA; Department of Psychology, Concordia College, USA.
| | - Sanchita Gargya
- Department of Psychological Sciences, University of Missouri, USA.
| | | | | |
Collapse
|
11
|
Ojo JO, Rezaie P, Gabbott PL, Stewart MG. Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 2015; 7:57. [PMID: 25972808 PMCID: PMC4413780 DOI: 10.3389/fnagi.2015.00057] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022] Open
Abstract
Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS). These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signaling. These changes may occur without any overt concurrent pathology, however, they typically correlate with deteriorations in hippocamapal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function) and underlying neuroglial response(s), and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Department of Life Sciences, The Open UniversityWalton Hall, UK
- Department of Neuropathology, Roskamp InstituteSarasota, FL, USA
| | - Payam Rezaie
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | - Paul L. Gabbott
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | | |
Collapse
|
12
|
Chen LY, Liu LK, Peng LN, Lin MH, Chen LK, Lan CF, Chang PL. Identifying residents at greater risk for cognitive decline by Minimum Data Set in long-term care settings. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.jcgg.2014.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Sanfratello L, Caprihan A, Stephen JM, Knoefel JE, Adair JC, Qualls C, Lundy SL, Aine CJ. Same task, different strategies: how brain networks can be influenced by memory strategy. Hum Brain Mapp 2014; 35:5127-40. [PMID: 24931401 DOI: 10.1002/hbm.22538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 11/07/2022] Open
Abstract
Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a WM task is defined as verbal or spatial, different types of memory strategies may be used to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18-25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography and structural diffusion tensor imaging measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were used during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and time courses of activation differed between participants who used each. Task performance also varied by type of strategy used with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from Wechsler Adult Intelligence Scale-IV, Rey Complex Figure Test) correlated significantly with fractional anisotropy measures for the visuospatial strategy group in white matter tracts implicated in other WM and attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results.
Collapse
Affiliation(s)
- Lori Sanfratello
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vanden Noven ML, Pereira HM, Yoon T, Stevens AA, Nielson KA, Hunter SK. Motor Variability during Sustained Contractions Increases with Cognitive Demand in Older Adults. Front Aging Neurosci 2014; 6:97. [PMID: 24904410 PMCID: PMC4033244 DOI: 10.3389/fnagi.2014.00097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/05/2014] [Indexed: 01/26/2023] Open
Abstract
To expose cortical involvement in age-related changes in motor performance, we compared steadiness (force fluctuations) and fatigability of submaximal isometric contractions with the ankle dorsiflexor muscles in older and young adults and with varying levels of cognitive demand imposed. Sixteen young (20.4 ± 2.1 year: 8 men, 9 women) and 17 older adults (68.8 ± 4.4 years: 9 men, 8 women) attended three sessions and performed a 40 s isometric contraction at 5% maximal voluntary contraction (MVC) force followed by an isometric contraction at 30% MVC until task failure. The cognitive demand required during the submaximal contractions in each session differed as follows: (1) high-cognitive demand session where difficult mental math was imposed (counting backward by 13 from a 4-digit number); (2) low-cognitive demand session which involved simple mental math (counting backward by 1); and (3) control session with no mental math. Anxiety was elevated during the high-cognitive demand session compared with other sessions for both age groups but more so for the older adults than young adults (p < 0.05). Older adults had larger force fluctuations than young adults during: (1) the 5% MVC task as cognitive demand increased (p = 0.007), and (2) the fatiguing contraction for all sessions (p = 0.002). Time to task failure did not differ between sessions or age groups (p > 0.05), but the variability between sessions (standard deviation of three sessions) was greater for older adults than young (2.02 ± 1.05 vs. 1.25 ± 0.51 min, p < 0.05). Thus, variability in lower limb motor performance for low- and moderate-force isometric tasks increased with age and was exacerbated when cognitive demand was imposed, and may be related to modulation of synergist and antagonist muscles and an altered neural strategy with age originating from central sources. These data have significant implications for cognitively demanding low-force motor tasks that are relevant to functional and ergonomic in an aging workforce.
Collapse
Affiliation(s)
- Marnie L Vanden Noven
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Alyssa A Stevens
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| | - Kristy A Nielson
- Department of Psychology, Marquette University , Milwaukee, WI , USA
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, WI , USA
| |
Collapse
|
15
|
Josef Golubic S, Aine CJ, Stephen JM, Adair JC, Knoefel JE, Supek S. Modulatory role of the prefrontal generator within the auditory M50 network. Neuroimage 2014; 92:120-31. [PMID: 24531051 PMCID: PMC4059503 DOI: 10.1016/j.neuroimage.2014.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022] Open
Abstract
The amplitude variability of the M50 component of neuromagnetic responses is commonly used to explore the brain's ability to modulate its response to incoming repetitive or novel auditory stimuli, a process conceptualized as a gating mechanism. The goal of this study was to identify the spatial and temporal characteristics of the cortical sources underlying the M50 network evoked by tones in a passive oddball paradigm. Twenty elderly subjects [10 patients diagnosed with mild cognitive impairment (MCI) or probable Alzheimer disease (AD) and 10 age-matched controls] were examined using magnetoencephalographic (MEG) recordings and the multi-dipole Calibrated Start Spatio-Temporal (CSST) source localization method. We identified three cortical regions underlying the M50 network: prefrontal cortex (PF) in addition to bilateral activation of the superior temporal gyrus (STG). The cortical dynamics of the PF source within the 30-100 ms post-stimulus interval was characterized and was found to be comprised of two subcomponents, Mb1c and Mb2c. The PF source was localized for 10/10 healthy subjects, whereas 9/10 MCI/AD patients were lacking the PF source for both tone conditions. The selective activation of the PF source in healthy controls along with the inactivation of the PF region for MCI/AD patients, enabled us to examine the dynamics of this network of activity when it was functional and dysfunctional, respectively. We found significantly enhanced activity of the STG sources in response to both tone conditions for all subjects who lacked a PF source. The reported results provide novel insights into the topology and neurodynamics of the M50 auditory network, which suggest an inhibitory role of the PF source that normally suppresses activity of the STG sources.
Collapse
Affiliation(s)
| | - Cheryl J Aine
- Department of Radiology, UNM School of Medicine, Albuquerque, NM 87131, USA
| | | | - John C Adair
- Department of Neurology, UNM School of Medicine, Albuquerque, NM 87131, USA
| | - Janice E Knoefel
- Department of Internal Medicine, UNM School of Medicine, Albuquerque, NM 87131, USA
| | - Selma Supek
- Department of Physics, Faculty of Science, University of Zagreb, Croatia.
| |
Collapse
|
16
|
Macpherson HN, White DJ, Ellis KA, Stough C, Camfield D, Silberstein R, Pipingas A. Age-related changes to the neural correlates of working memory which emerge after midlife. Front Aging Neurosci 2014; 6:70. [PMID: 24795625 PMCID: PMC3997023 DOI: 10.3389/fnagi.2014.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/29/2014] [Indexed: 11/13/2022] Open
Abstract
Previous research has indicated that the neural processes which underlie working memory change with age. Both age-related increases and decreases to cortical activity have been reported. This study investigated which stages of working memory are most vulnerable to age-related changes after midlife. To do this we examined age-differences in the 13 Hz steady state visually evoked potential (SSVEP) associated with a spatial working memory delayed response task. Participants were 130 healthy adults separated into a midlife (40–60 years) and an older group (61–82 years). Relative to the midlife group, older adults demonstrated greater bilateral frontal activity during encoding and this pattern of activity was related to better working memory performance. In contrast, evidence of age-related under activation was identified over left frontal regions during retrieval. Findings from this study suggest that after midlife, under-activation of frontal regions during retrieval contributes to age-related decline in working memory performance.
Collapse
Affiliation(s)
- Helen N Macpherson
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - Kathryn A Ellis
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, St. Vincent's Aged Psychiatry Service, St. Georges Hospital, University of Melbourne Melbourne, VIC, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - David Camfield
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - Richard Silberstein
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| |
Collapse
|
17
|
Lee SH, Kim H, Kim J, Yoon JH, Kim SR. Initial phase performance in a 30-s verbal fluency task as being reflective of aging effect. Geriatr Gerontol Int 2014; 15:496-500. [PMID: 24730516 DOI: 10.1111/ggi.12284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2014] [Indexed: 11/29/2022]
Abstract
AIM The purpose of the present study was to investigate if performance in a 30-s verbal semantic fluency task (i.e. animal naming) across five elderly aged groups (60-64; 65-69; 70-74; 75-79; 80-84 years) would be reflective of aging effect. METHODS We analyzed differences in performance across 5-s phases and the moment of first word production in these five age groups. RESULTS The following results were obtained: (i) with increasing age, the total number of words produced gradually declined (P < 0.001); (ii) there were significant differences in performance among the age groups in three phases (0-5, 6-10, 16-20 s) (P < 0.05); and (iii) the first word production within the first 5-s phase was significantly delayed in the 75-79 years and 80-84 years age groups compared with the rest of the age groups. CONCLUSIONS Performance in the initial 5-s phase might be sensitive to cognitive degeneration in normal older adults.
Collapse
Affiliation(s)
- Seon Ha Lee
- Graduate Program in Speech and Language Pathology, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
18
|
González-Ramírez MM, Velázquez-Zamora DA, Olvera-Cortés ME, González-Burgos I. Changes in the plastic properties of hippocampal dendritic spines underlie the attenuation of place learning in healthy aged rats. Neurobiol Learn Mem 2014; 109:94-103. [DOI: 10.1016/j.nlm.2013.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 12/23/2022]
|
19
|
Liu Z, Ke L, Liu H, Huang W, Hu Z. Changes in topological organization of functional PET brain network with normal aging. PLoS One 2014; 9:e88690. [PMID: 24586370 PMCID: PMC3930631 DOI: 10.1371/journal.pone.0088690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks composed of regions in younger (mean age years) and older (mean age years) age groups with PET data. younger and older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.
Collapse
Affiliation(s)
- Zhiliang Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Lining Ke
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- * E-mail: (WHH); (ZHH)
| | - Zhenghui Hu
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China
- * E-mail: (WHH); (ZHH)
| |
Collapse
|
20
|
Tunc-Skarka N, Meier S, Demirakca T, Sack M, Weber-Fahr W, Brusniak W, Wolf I, Matthäus F, Schulze TG, Diener C, Ende G. Effects of normal aging and SCN1A risk-gene expression on brain metabolites: evidence for an association between SCN1A and myo-inositol. NMR IN BIOMEDICINE 2014; 27:228-234. [PMID: 24357141 DOI: 10.1002/nbm.3057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
Previously reported MRS findings in the aging brain include lower N-acetylaspartate (NAA) and higher myo-inositol (mI), total creatine (Cr) and choline-containing compound (Cho) concentrations. Alterations in the sodium channel voltage gated type I, alpha subunit SCN1A variant rs10930201 have been reported to be associated with several neurological disorders with cognitive deficits. MRS studies in SCN1A-related diseases have reported striking differences in the mI concentrations between patients and controls. In a study on 'healthy aging', we investigated metabolite spectra in a sample of 83 healthy volunteers and determined their age dependence. We also investigated a potential link between SCN1A and mI. We observed a significantly negative association of NAA (p = 0.004) and significantly positive associations of mI (p ≤ 0.001), Cr (p ≤ 0.001) and Cho (p = 0.034) with age in frontal white matter. The linear association of Cho ends at the age of about 50 years and is followed by an inverted 'U'-shaped curve. Further, mI was higher in C allele carriers of the SCN1A variant rs10930201. Our results corroborated the age-related changes in metabolite concentrations, and found evidence for a link between SCN1A and frontal white matter mI in healthy subjects.
Collapse
Affiliation(s)
- Nuran Tunc-Skarka
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty of Mannheim/Heidelberg University, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Strøm C, Rasmussen LS, Sieber FE. Should general anaesthesia be avoided in the elderly? Anaesthesia 2014; 69 Suppl 1:35-44. [PMID: 24303859 PMCID: PMC5207212 DOI: 10.1111/anae.12493] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2013] [Indexed: 01/22/2023]
Abstract
Surgery and anaesthesia exert comparatively greater adverse effects on the elderly than on the younger brain, manifest by the higher prevalence of postoperative delirium and cognitive dysfunction. Postoperative delirium and cognitive dysfunction delay rehabilitation, and are associated with increases in morbidity and mortality among elderly surgical patients. We review the aetiology of postoperative delirium and cognitive dysfunction in the elderly with a particular focus on anaesthesia and sedation, discuss methods of diagnosing and monitoring postoperative cognitive decline, and describe the treatment strategies by which such decline may be prevented.
Collapse
Affiliation(s)
- C. Strøm
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - L. S. Rasmussen
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - F. E. Sieber
- Anaesthesiology, Department of Anaesthesiology/Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Qualls C, Lundy SL, Caprihan A, Stone D, Stephen JM. Characterization of a normal control group: are they healthy? Neuroimage 2013; 84:796-809. [PMID: 24060318 DOI: 10.1016/j.neuroimage.2013.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/28/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022] Open
Abstract
We examined the health of a control group (18-81years) in our aging study, which is similar to control groups used in other neuroimaging studies. The current study was motivated by our previous results showing that one third of the elder control group had moderate to severe white matter hyperintensities and/or cortical volume loss which correlated with poor performance on memory tasks. Therefore, we predicted that cardiovascular risk factors (e.g., hypertension, high cholesterol) within the control group would account for significant variance on working memory task performance. Fifty-five participants completed 4 verbal and spatial working memory tasks, neuropsychological exams, diffusion tensor imaging (DTI), and blood tests to assess vascular risk. In addition to using a repeated measures ANOVA design, a cluster analysis was applied to the vascular risk measures as a data reduction step to characterize relationships between conjoint risk factors. The cluster groupings were used to predict working memory performance. The results show that higher levels of systolic blood pressure were associated with: 1) poor spatial working memory accuracy; and 2) lower fractional anisotropy (FA) values in multiple brain regions. In contrast, higher levels of total cholesterol corresponded with increased accuracy in verbal working memory. An association between lower FA values and higher cholesterol levels were identified in different brain regions from those associated with systolic blood pressure. The conjoint risk analysis revealed that Risk Cluster Group 3 (the group with the greatest number of risk factors) displayed: 1) the poorest performance on the spatial working memory tasks; 2) the longest reaction times across both spatial and verbal memory tasks; and 3) the lowest FA values across widespread brain regions. Our results confirm that a considerable range of vascular risk factors are present in a typical control group, even in younger individuals, which have robust effects on brain anatomy and function. These results present a new challenge to neuroimaging studies both for defining a cohort from which to characterize 'normative' brain circuitry and for establishing a control group to compare with other clinical populations.
Collapse
Affiliation(s)
- C J Aine
- Department of Radiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Groot MJ, Hoeksma M, Reijngoud DJ, de Valk HW, Paans AMJ, Sauer PJJ, van Spronsen FJ. Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J Rare Dis 2013; 8:133. [PMID: 24007597 PMCID: PMC3847152 DOI: 10.1186/1750-1172-8-133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/21/2013] [Indexed: 11/25/2022] Open
Abstract
Background In phenylketonuria (PKU), elevated blood phenylalanine (Phe) concentrations are considered to impair transport of large neutral amino acids (LNAAs) from blood to brain. This impairment is believed to underlie cognitive deficits in PKU via different mechanisms, including reduced cerebral protein synthesis. In this study, we investigated the hypothesis that impaired LNAA influx relates to reduced cerebral protein synthesis. Methods Using positron emission tomography, L-[1-11C]-tyrosine (11C-Tyr) brain influx and incorporation into cerebral protein were studied in 16 PKU patients (median age 24, range 16 – 47 years), most of whom were early and continuously treated. Data were analyzed by regression analyses, using either 11C-Tyr brain influx or 11C-Tyr cerebral protein incorporation as outcome variable. Predictor variables were baseline plasma Phe concentration, Phe tolerance, age, and 11C-Tyr brain efflux. For the modelling of cerebral protein incorporation, 11C-Tyr brain influx was added as a predictor variable. Results 11C-Tyr brain influx was inversely associated with plasma Phe concentrations (median 512, range 233 – 1362 μmol/L; delta adjusted R2=0.571, p=0.013). In addition, 11C-Tyr brain influx was positively associated with 11C-Tyr brain efflux (delta adjusted R2=0.098, p=0.041). Cerebral protein incorporation was positively associated with 11C-Tyr brain influx (adjusted R2=0.567, p<0.001). All additional associations between predictor and outcome variables were statistically nonsignificant. Conclusions Our data favour the hypothesis that an elevated concentration of Phe in blood reduces cerebral protein synthesis by impairing LNAA transport from blood to brain. Considering the importance of cerebral protein synthesis for adequate brain development and functioning, our results support the notion that PKU treatment be continued in adulthood. Future studies investigating the effects of impaired LNAA transport on cerebral protein synthesis in more detail are indicated.
Collapse
Affiliation(s)
- Martijn J de Groot
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Moynihan JA, Chapman BP, Klorman R, Krasner MS, Duberstein PR, Brown KW, Talbot NL. Mindfulness-based stress reduction for older adults: effects on executive function, frontal alpha asymmetry and immune function. Neuropsychobiology 2013; 68:34-43. [PMID: 23774986 PMCID: PMC3831656 DOI: 10.1159/000350949] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Mindfulness-based stress reduction (MBSR) has enhanced cognition, positive emotion, and immunity in younger and middle-aged samples; its benefits are less well known for older persons. Here we report on a randomized controlled trial of MBSR for older adults and its effects on executive function, left frontal asymmetry of the EEG alpha band, and antibody response. METHODS Older adults (n = 201) were randomized to MBSR or waiting list control. The outcome measures were: the Trail Making Test part B/A (Trails B/A) ratio, a measure of executive function; changes in left frontal alpha asymmetry, an indicator of positive emotions or approach motivation; depression, mindfulness, and perceived stress scores, and the immunoglobulin G response to a protein antigen, a measure of adaptive immunity. RESULTS MBSR participants had a lower Trails B/A ratio immediately after intervention (p < 0.05); reduced shift to rightward frontal alpha activation after intervention (p = 0.03); higher baseline antibody levels after intervention (p < 0.01), but lower antibody responses 24 weeks after antigen challenge (p < 0.04), and improved mindfulness after intervention (p = 0.023) and at 21 weeks of follow-up (p = 0.006). CONCLUSIONS MBSR produced small but significant changes in executive function, mindfulness, and sustained left frontal alpha asymmetry. The antibody findings at follow-up were unexpected. Further study of the effects of MBSR on immune function should assess changes in antibody responses in comparison to T-cell-mediated effector functions, which decline as a function of age.
Collapse
Affiliation(s)
- Jan A. Moynihan
- Rochester Center for Mind-Body Research, Department of Psychiatry, University of Rochester Medical Center, USA
| | - Benjamin P. Chapman
- Rochester Center for Mind-Body Research, Department of Psychiatry, University of Rochester Medical Center, USA
| | - Rafael Klorman
- Department of Clinical and Social Sciences in Psychology, University of Rochester, USA
| | - Michael S. Krasner
- Department of Medicine, University of Rochester Medical Center, Rochester, N.Y., USA
| | - Paul R. Duberstein
- Rochester Center for Mind-Body Research, Department of Psychiatry, University of Rochester Medical Center, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, Richmond, Va., USA
| | - Nancy L. Talbot
- Rochester Center for Mind-Body Research, Department of Psychiatry, University of Rochester Medical Center, USA
| |
Collapse
|
25
|
Pascual-Leone A, Taylor MJ. A developmental framework of brain and cognition from infancy to old age. Brain Topogr 2011; 24:183-6. [PMID: 21858551 DOI: 10.1007/s10548-011-0197-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Cognitive Neurology Unit and Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|