1
|
Wang S, Sun Z, Martinez-Tejada LA, Yoshimura N. Comparison of autism spectrum disorder subtypes based on functional and structural factors. Front Neurosci 2024; 18:1440222. [PMID: 39429701 PMCID: PMC11486766 DOI: 10.3389/fnins.2024.1440222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders that may affect a patient's social, behavioral, and communication abilities. As a typical mental illness, ASD is not a single disorder. ASD is often divided into subtypes, such as autism, Asperger's, and pervasive developmental disorder-not otherwise specified (PDD-NOS). Studying the differences among brain networks of the subtypes has great significance for the diagnosis and treatment of ASD. To date, many studies have analyzed the brain activity of ASD as a single mental disorder, whereas few have focused on its subtypes. To address this problem, we explored whether indices derived from functional and structural magnetic resonance imaging (MRI) data exhibited significant dissimilarities between subtypes. Utilizing a brain pattern feature extraction method from fMRI based on tensor decomposition, amplitude of low-frequency fluctuation and its fractional values of fMRI, and gray matter volume derived from MRI, impairments of function in the subcortical network and default mode network of autism were found to lead to major differences from the other two subtypes. Our results provide a systematic comparison of the three common ASD subtypes, which may provide evidence for the discrimination between ASD subtypes.
Collapse
Affiliation(s)
- Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Zhe Sun
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Tokyo, Japan
| | | | - Natsue Yoshimura
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Cosío-Guirado R, Tapia-Medina MG, Kaya C, Peró-Cebollero M, Villuendas-González ER, Guàrdia-Olmos J. A comprehensive systematic review of fMRI studies on brain connectivity in healthy children and adolescents: Current insights and future directions. Dev Cogn Neurosci 2024; 69:101438. [PMID: 39153422 PMCID: PMC11381617 DOI: 10.1016/j.dcn.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
This systematic review considered evidence of children's and adolescents' typical brain connectivity development studied through resting-state functional magnetic resonance imaging (rs-fMRI). With aim of understanding the state of the art, what has been researched thus far and what remains unknown, this paper reviews 58 studies from 2013 to 2023. Considering the results, rs-fMRI stands out as an appropriate technique for studying language and attention within cognitive domains, and personality traits such as impulsivity and empathy. The most used analyses encompass seed-based, independent component analysis (ICA), the amplitude of the low frequency fluctuations (ALFF), and fractional ALFF (fALFF). The findings highlight key themes, including age-related changes in intrinsic connectivity, sex-specific patterns, and the relevance of the Default Mode Network (DMN). Overall, there is a need for longitudinal approaches to trace the typical developmental trajectory of neural networks from childhood through adolescence with fMRI at rest.
Collapse
Affiliation(s)
- Raquel Cosío-Guirado
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain; Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.
| | - Mérida Galilea Tapia-Medina
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain; Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Ceren Kaya
- Department of Psychology, Faculty of Arts and Sciences, Izmir University of Economics, Izmir, Turkey
| | - Maribel Peró-Cebollero
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain; Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | | | - Joan Guàrdia-Olmos
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain; Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, Bernhardt BC. Contracted functional connectivity profiles in autism. Mol Autism 2024; 15:38. [PMID: 39261969 PMCID: PMC11391747 DOI: 10.1186/s13229-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
Collapse
Affiliation(s)
- Clara F Weber
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hongxiu Jiang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | | | - Sofie Valk
- Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
5
|
Wu T, Yin X, Xu L, Yu J. Using dynamic spatio-temporal graph pooling network for identifying autism spectrum disorders in spontaneous functional infrared spectral sequence signals. J Neurosci Methods 2024; 409:110157. [PMID: 38705284 DOI: 10.1016/j.jneumeth.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Autism classification work on fNIRS data using dynamic graph networks. Explore the impact of the dynamic connection relationship between brain channels on ASD, and compare the brain channel connection diagrams of ASD and TD to explore potential factors that influence the development of autism. METHOD Using dynamic graph construction to mine the dynamic relationships of fNIRS data, obtain spatio-temporal correlations through dynamic feature extraction, and improve the information extraction capabilities of the network through spatio-temporal graph pooling to achieve classification of ASD. RESULT A classification effect with an accuracy of 97.2% was achieved using a short sequence of 1.75s. The results showed that the dynamic connections of channel 5 and 19, channel 12 and 25, and channel 7 and 34 have a greater impact on the classification of autism. Comparison with previously used method(s): Compared with previous deep learning models, our model achieves efficient classification using short-term fNIRS data of 1.75s, and analyzes the impact of dynamic connections on classification through dynamic graphs. CONCLUSION Using Dynamic Spatio-Temporal Graph Pooled Neural Networks (DSTGPN), dynamic connectivity between brain channels was found to have an impact on the classification of autism. By modeling the brain channel relationship maps of ASD and TD, hyperlink clusters were found to exist on the brain channel connections of ASD.
Collapse
Affiliation(s)
- Taoxing Wu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xiao Yin
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Lingyu Xu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China; Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.
| | - Jie Yu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| |
Collapse
|
6
|
Jahani A, Jahani I, Khadem A, Braden BB, Delrobaei M, MacIntosh BJ. Twinned neuroimaging analysis contributes to improving the classification of young people with autism spectrum disorder. Sci Rep 2024; 14:20120. [PMID: 39209988 PMCID: PMC11362281 DOI: 10.1038/s41598-024-71174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is diagnosed using comprehensive behavioral information. Neuroimaging offers additional information but lacks clinical utility for diagnosis. This study investigates whether multi-forms of magnetic resonance imaging (MRI) contrast can be used individually and in combination to produce a categorical classification of young individuals with ASD. MRI data were accessed from the Autism Brain Imaging Data Exchange (ABIDE). Young participants (ages 2-30) were selected, and two group cohorts consisted of 702 participants: 351 ASD and 351 controls. Image-based classification was performed using one-channel and two-channel inputs to 3D-DenseNet deep learning networks. The models were trained and tested using tenfold cross-validation. Two-channel models were twinned with combinations of structural MRI (sMRI) maps and amplitude of low-frequency fluctuations (ALFF) or fractional ALFF (fALFF) maps from resting-state functional MRI (rs-fMRI). All models produced classification accuracy that exceeded 65.1%. The two-channel ALFF-sMRI model achieved the highest mean accuracy of 76.9% ± 2.34. The one-channel ALFF-based model alone had mean accuracy of 72% ± 3.1. This study leveraged the ABIDE dataset to produce ASD classification results that are comparable and/or exceed literature values. The deep learning approach was conducive to diverse neuroimaging inputs. Findings reveal that the ALFF-sMRI two-channel model outperformed all others.
Collapse
Affiliation(s)
- Ali Jahani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Iman Jahani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - B Blair Braden
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Mehdi Delrobaei
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
- Computational Radiology and Artificial Intelligence Unit, Departments of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Eckardt N, Sinke C, Bleich S, Lichtinghagen R, Zedler M. Investigation of the relationship between neuroplasticity and grapheme-color synesthesia. Front Neurosci 2024; 18:1434309. [PMID: 39224579 PMCID: PMC11366591 DOI: 10.3389/fnins.2024.1434309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.
Collapse
Affiliation(s)
- Nadine Eckardt
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology & Sexual Medicine, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Markus Zedler
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
8
|
Li M, Izumoto M, Wang Y, Kato Y, Iwatani Y, Hirata I, Mizuno Y, Tachibana M, Mohri I, Kagitani-Shimono K. Altered white matter connectivity of ventral language networks in autism spectrum disorder: An automated fiber quantification analysis with multi-site datasets. Neuroimage 2024; 297:120731. [PMID: 39002786 DOI: 10.1016/j.neuroimage.2024.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024] Open
Abstract
Comprehension and pragmatic deficits are prevalent in autism spectrum disorder (ASD) and are potentially linked to altered connectivity in the ventral language networks. However, previous magnetic resonance imaging studies have not sufficiently explored the microstructural abnormalities in the ventral fiber tracts underlying comprehension dysfunction in ASD. Additionally, the precise locations of white matter (WM) changes in the long tracts of patients with ASD remain poorly understood. In the current study, we applied the automated fiber-tract quantification (AFQ) method to investigate the fine-grained WM properties of the ventral language pathway and their relationships with comprehension and symptom manifestation in ASD. The analysis included diffusion/T1 weighted imaging data of 83 individuals with ASD and 83 age-matched typically developing (TD) controls. Case-control comparisons were performed on the diffusion metrics of the ventral tracts at both the global and point-wise levels. We also explored correlations between diffusion metrics, comprehension performance, and ASD traits, and conducted subgroup analyses based on age range to examine developmental moderating effects. Individuals with ASD exhibited remarkable hypoconnectivity in the ventral tracts, particularly in the temporal portions of the left inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF). These WM abnormalities were associated with poor comprehension and more severe ASD symptoms. Furthermore, WM alterations in the ventral tract and their correlation with comprehension dysfunction were more prominent in younger children with ASD than in adolescents. These findings indicate that WM disruptions in the temporal portions of the left ILF/IFOF are most notable in ASD, potentially constituting the core neurological underpinnings of comprehension and communication deficits in autism. Moreover, impaired WM connectivity and comprehension ability in patients with ASD appear to improve with age.
Collapse
Affiliation(s)
- Min Li
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Maya Izumoto
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yide Wang
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yoko Kato
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yoshiko Iwatani
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Ikuko Hirata
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Masaya Tachibana
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Ikuko Mohri
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- Osaka University, Department of Child Development, United Graduate School of Child Development, Suita, Osaka, Japan.
| |
Collapse
|
9
|
Zhou D, Hua T, Tang H, Yang R, Huang L, Gong Y, Zhang L, Tang G. Gender and age related brain structural and functional alterations in children with autism spectrum disorder. Cereb Cortex 2024; 34:bhae283. [PMID: 38997211 DOI: 10.1093/cercor/bhae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
To explore the effects of age and gender on the brain in children with autism spectrum disorder using magnetic resonance imaging. 185 patients with autism spectrum disorder and 110 typically developing children were enrolled. In terms of gender, boys with autism spectrum disorder had increased gray matter volumes in the insula and superior frontal gyrus and decreased gray matter volumes in the inferior frontal gyrus and thalamus. The brain regions with functional alterations are mainly distributed in the cerebellum, anterior cingulate gyrus, postcentral gyrus, and putamen. Girls with autism spectrum disorder only had increased gray matter volumes in the right cuneus and showed higher amplitude of low-frequency fluctuation in the paracentral lobule, higher regional homogeneity and degree centrality in the calcarine fissure, and greater right frontoparietal network-default mode network connectivity. In terms of age, preschool-aged children with autism spectrum disorder exhibited hypo-connectivity between and within auditory network, somatomotor network, and visual network. School-aged children with autism spectrum disorder showed increased gray matter volumes in the rectus gyrus, superior temporal gyrus, insula, and suboccipital gyrus, as well as increased amplitude of low-frequency fluctuation and regional homogeneity in the calcarine fissure and precentral gyrus and decreased in the cerebellum and anterior cingulate gyrus. The hyper-connectivity between somatomotor network and left frontoparietal network and within visual network was found. It is essential to consider the impact of age and gender on the neurophysiological alterations in autism spectrum disorder children when analyzing changes in brain structure and function.
Collapse
Affiliation(s)
- Di Zhou
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Hua
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai 200040, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Linsheng Huang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujiao Gong
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Radiology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201103, China
| |
Collapse
|
10
|
Kausel L, Michon M, Soto-Icaza P, Aboitiz F. A multimodal interface for speech perception: the role of the left superior temporal sulcus in social cognition and autism. Cereb Cortex 2024; 34:84-93. [PMID: 38696598 DOI: 10.1093/cercor/bhae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 05/04/2024] Open
Abstract
Multimodal integration is crucial for human interaction, in particular for social communication, which relies on integrating information from various sensory modalities. Recently a third visual pathway specialized in social perception was proposed, which includes the right superior temporal sulcus (STS) playing a key role in processing socially relevant cues and high-level social perception. Importantly, it has also recently been proposed that the left STS contributes to audiovisual integration of speech processing. In this article, we propose that brain areas along the right STS that support multimodal integration for social perception and cognition can be considered homologs to those in the left, language-dominant hemisphere, sustaining multimodal integration of speech and semantic concepts fundamental for social communication. Emphasizing the significance of the left STS in multimodal integration and associated processes such as multimodal attention to socially relevant stimuli, we underscore its potential relevance in comprehending neurodevelopmental conditions characterized by challenges in social communication such as autism spectrum disorder (ASD). Further research into this left lateral processing stream holds the promise of enhancing our understanding of social communication in both typical development and ASD, which may lead to more effective interventions that could improve the quality of life for individuals with atypical neurodevelopment.
Collapse
Affiliation(s)
- Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Chile, Vergara 275, 8370076 Santiago, Chile
| | - Maëva Michon
- Praxiling Laboratory, Joint Research Unit (UMR 5267), Centre National de la Recherche Scientifique (CNRS), Université Paul Valéry, Montpellier, France, Route de Mende, 34199 Montpellier cedex 5, France
- Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Chile, Marcoleta 391, 2do piso, 8330024 Santiago, Chile
- Laboratorio de Neurociencia Cognitiva y Evolutiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile, Marcoleta 391, 2do piso, 8330024 Santiago, Chile
| | - Patricia Soto-Icaza
- Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Chile, Av. Las Condes 12461, edificio 3, piso 3, 7590943, Las Condes Santiago, Chile
| | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Chile, Marcoleta 391, 2do piso, 8330024 Santiago, Chile
- Laboratorio de Neurociencia Cognitiva y Evolutiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile, Marcoleta 391, 2do piso, 8330024 Santiago, Chile
| |
Collapse
|
11
|
Xue Y, Bai MS, Dong HY, Wang TT, Mohamed ZA, Jia FY. Altered intra- and inter-network brain functional connectivity associated with prolonged screen time in pre-school children with autism spectrum disorder. Eur J Pediatr 2024; 183:2391-2399. [PMID: 38448613 DOI: 10.1007/s00431-024-05500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Prolonged screen time (ST) has adverse effects on autistic characteristics and language development. However, the mechanisms underlying the effects of prolonged ST on the neurodevelopment of children with autism spectrum disorder (ASD) remain unclear. Neuroimaging technology may help to further explain the role of prolonged ST in individuals with ASD. This study included 164 cases, all cases were divided into low-dose ST exposure (LDE group 108 cases) and high-dose ST exposure (HDE group 56 cases) based on the average ST of all subjects. Spatial independent component analysis (ICA) was used to identify resting state networks (RSNs) and investigate intra- and inter-network alterations in ASD children with prolonged ST. We found that the total Childhood Autism Rating Scale (CARS) scores in the HDE group were significantly higher than those in the LDE group (36.2 ± 3.1 vs. 34.6 ± 3.9, p = 0.008). In addition, the developmental quotient (DQ) of hearing and language in the HDE group were significantly lower than those in the LDE group (31.5 ± 13.1 vs. 42.5 ± 18.5, p < 0.001). A total of 13 independent components (ICs) were identified. Between-group comparison revealed that the HDE group exhibited decreased functional connectivity (FC) in the left precuneus (PCUN) of the default mode network (DMN), the right middle temporal gyrus (MTG) of the executive control network (ECN), and the right median cingulate and paracingulate gyri (MCG) of the attention network (ATN), compared with the LDE group. Additionally, there was an increase in FC in the right orbital part of the middle frontal gyrus (ORBmid) of the salience network (SAN), compared with the LDE group. The inter-network analysis revealed increased FC between the visual network (VN) and basal ganglia (BG) and decreased FC between the sensorimotor network (SMN) and DMN, SMN and ATN, SMN and auditory network (AUN), and DMN and SAN in the HDE group, compared with the LDE group. There was a significant negative correlation between altered FC values in MTG and total CARS scores in subjects (r = - 0.18, p = 0.018). Conclusion: ASD children with prolonged ST often exhibit lower DQ of language development and more severe autistic characteristics. The alteration of intra- and inter-network FC may be a key neuroimaging feature of the effect of prolonged ST on neurodevelopment in ASD children. Clinical trial registration: ChiCTR2100051141. What is Known: • Prolonged ST has adverse effects on autistic characteristics and language development. • Neuroimaging technology may help to further explain the role of prolonged ST in ASD. What is New: • This is the first study to explore the impact of ST on intra- and inter-network FC in children with ASD. • ASD children with prolonged ST have atypical changes in intra- and inter-brain network FC.
Collapse
Affiliation(s)
- Yang Xue
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Miao-Shui Bai
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Han-Yu Dong
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Tian-Tian Wang
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Zakaria Ahmed Mohamed
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China.
- The Child Health Clinical Research Center of Jilin Province, Changchun, China.
| |
Collapse
|
12
|
Ramos Benitez J, Kannan S, Hastings WL, Parker BJ, Willbrand EH, Weiner KS. Ventral temporal and posteromedial sulcal morphology in autism spectrum disorder. Neuropsychologia 2024; 195:108786. [PMID: 38181845 DOI: 10.1016/j.neuropsychologia.2024.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Two parallel research tracks link the morphology of small and shallow indentations, or sulci, of the cerebral cortex with functional features of the cortex and human cognition, respectively. The first track identified a relationship between the mid-fusiform sulcus (MFS) in ventral temporal cortex (VTC) and cognition in individuals with Autism Spectrum Disorder (ASD). The second track identified a new sulcus, the inframarginal sulcus (IFRMS), that serves as a tripartite landmark within the posteromedial cortex (PMC). As VTC and PMC are structurally and functionally different in ASD, here, we integrated these two tracks and tested if there are morphological differences in VTC and PMC sulci in a sample of young (5-17 years old) male participants (50 participants with ASD and 50 neurotypical controls). Our approach replicates and extends recent findings in four ways. First, regarding replication, the standard deviation (STD) of MFS cortical thickness (CT) was increased in ASD. Second, MFS length was shorter in ASD. Third, the CT STD effect extended to other VTC and to PMC sulci. Fourth, additional morphological features of VTC sulci (depth, surface area, gray matter volume) and PMC sulci (mean CT) were decreased in ASD, including putative tertiary sulci, which emerge last in gestation and continue to develop after birth. To our knowledge, this study is the most extensive comparison of the sulcal landscape (including putative tertiary sulci) in multiple cortical expanses between individuals with ASD and NTs based on manually defined sulci at the level of individual hemispheres, providing novel targets for future studies of neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Javier Ramos Benitez
- Neuroscience Graduate Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Sandhya Kannan
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - William L Hastings
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Tailor G, Telles-Langdon DM, Glazebrook CM. Müller-Lyer Illusion susceptibility is conditionally predicted by autistic trait expression. Exp Brain Res 2024; 242:429-442. [PMID: 38147086 DOI: 10.1007/s00221-023-06756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/26/2023] [Indexed: 12/27/2023]
Abstract
Müller-Lyer (ML) figures bias size estimation consistently, yet different methods can lead to different degrees of illusory bias. Autistic individuals may also be less likely to perceive illusory biases with varying levels of autistic trait expression proposed to modulate reported illusory biases. The Autism-Spectrum Quotient (AQ) and Systemizing Quotient (SQ) are self-report measures that quantify autistic trait expression and systemizing ability in neurotypical individuals. The current study sought to determine if perceptions of illusory size bias negatively correlate with autistic trait expression and the extent to which varying methods of illusion presentation change the magnitude of illusory bias. Thirty neurotypical adults completed both questionnaires as well as four size estimation tasks. Two tasks involved perceptual discrimination of ML figures by concurrent and successive presentation, where participants selected the longer figure by keypress. For Tasks 3 and 4, participants adjusted the size of a non-illusory line (Task 3) or complementary illusory figure (Task 4) to match the perceived length. Overall, task performance was not correlated with autistic trait expression. One exception was a negative correlation with AQ when adjusting a complementary illusory ML figure in Task 4. Illusory biases were also stronger when two illusory figures were presented concurrently. Given these results, illusion susceptibility to the ML is suggested to be reduced with increases in AQ, but only when the method of illusion measurement is adjustment of concurrent illusory figures. Taken together the results provide evidence that traits associated with autism in a neurotypical population may systematically modulate perception.
Collapse
Affiliation(s)
- Ganesh Tailor
- Faculty of Kinesiology and Recreation Management, The University of Manitoba, Winnipeg, MB, Canada.
| | - David M Telles-Langdon
- Gupta Faculty of Kinesiology and Applied Health, The University of Winnipeg, Winnipeg, MB, Canada
| | - Cheryl M Glazebrook
- Faculty of Kinesiology and Recreation Management, The University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J Clin Med 2024; 13:279. [PMID: 38202286 PMCID: PMC10779511 DOI: 10.3390/jcm13010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last decade, the comorbidity between Autism Spectrum Disorder (ASD) and epilepsy has been widely demonstrated, and many hypotheses regarding the common neurobiological bases of these disorders have been put forward. A variable, but significant, prevalence of abnormalities on electroencephalogram (EEG) has been documented in non-epileptic children with ASD; therefore, several scientific studies have recently tried to demonstrate the role of these abnormalities as a possible biomarker of altered neural connectivity in ASD individuals. This narrative review intends to summarize the main findings of the recent scientific literature regarding abnormalities detected with standard EEG in children/adolescents with idiopathic ASD. Research using three different databases (PubMed, Scopus and Google Scholar) was conducted, resulting in the selection of 10 original articles. Despite an important lack of studies on preschoolers and a deep heterogeneity in results, some authors speculated on a possible association between EEG abnormalities and ASD characteristics, in particular, the severity of symptoms. Although this correlation needs to be more strongly elucidated, these findings may encourage future studies aimed at demonstrating the role of electrical brain abnormalities as an early biomarker of neural circuit alterations in ASD, highlighting the potential diagnostic, prognostic and therapeutic value of EEG in this field.
Collapse
Affiliation(s)
- Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
16
|
Shang J, Shen E, Yu Y, Jin A, Wang X, Xiang D. Relationship between abnormal intrinsic functional connectivity of subcortices and autism symptoms in high-functioning adults with autism spectrum disorder. Psychiatry Res Neuroimaging 2024; 337:111762. [PMID: 38043369 DOI: 10.1016/j.pscychresns.2023.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE This study explores subcortices and their intrinsic functional connectivity (iFC) in autism spectrum disorder (ASD) adults and investigates their relationship with clinical severity. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 74 ASD patients, and 63 gender and age-matched typically developing (TD) adults. Independent component analysis (ICA) was conducted to evaluate subcortical patterns of basal ganglia (BG) and thalamus. These two brain areas were treated as regions of interest to further calculate whole-brain FC. In addition, we employed multivariate machine learning to identify subcortices-based FC brain patterns and clinical scores to classify ASD adults from those TD subjects. RESULTS In ASD individuals, autism diagnostic observation schedule (ADOS) was negatively correlated with the BG network. Similarly, social responsiveness scale (SRS) was negatively correlated with the thalamus network. The BG-based iFC analysis revealed adults with ASD versus TD had lower FC, and its FC with the right medial temporal lobe (MTL), was positively correlated with SRS and ADOS separately. ASD could be predicted with a balanced accuracy of around 60.0 % using brain patterns and 84.7 % using clinical variables. CONCLUSION Our results revealed the abnormal subcortical iFC may be related to autism symptoms.
Collapse
Affiliation(s)
- Jing Shang
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Erwei Shen
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Aiying Jin
- Department of Nursing, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xuemei Wang
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Dehui Xiang
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Weber CF, Lake EMR, Haider SP, Mozayan A, Bobba PS, Mukherjee P, Scheinost D, Constable RT, Ment L, Payabvash S. Autism spectrum disorder-specific changes in white matter connectome edge density based on functionally defined nodes. Front Neurosci 2023; 17:1285396. [PMID: 38075286 PMCID: PMC10702224 DOI: 10.3389/fnins.2023.1285396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is associated with both functional and microstructural connectome disruptions. We deployed a novel methodology using functionally defined nodes to guide white matter (WM) tractography and identify ASD-related microstructural connectome changes across the lifespan. Methods We used diffusion tensor imaging and clinical data from four studies in the national database for autism research (NDAR) including 155 infants, 102 toddlers, 230 adolescents, and 96 young adults - of whom 264 (45%) were diagnosed with ASD. We applied cortical nodes from a prior fMRI study identifying regions related to symptom severity scores and used these seeds to construct WM fiber tracts as connectome Edge Density (ED) maps. Resulting ED maps were assessed for between-group differences using voxel-wise and tract-based analysis. We then examined the association of ASD diagnosis with ED driven from functional nodes generated from different sensitivity thresholds. Results In ED derived from functionally guided tractography, we identified ASD-related changes in infants (pFDR ≤ 0.001-0.483). Overall, more wide-spread ASD-related differences were detectable in ED based on functional nodes with positive symptom correlation than negative correlation to ASD, and stricter thresholds for functional nodes resulted in stronger correlation with ASD among infants (z = -6.413 to 6.666, pFDR ≤ 0.001-0.968). Voxel-wise analysis revealed wide-spread ED reductions in central WM tracts of toddlers, adolescents, and adults. Discussion We detected early changes of aberrant WM development in infants developing ASD when generating microstructural connectome ED map with cortical nodes defined by functional imaging. These were not evident when applying structurally defined nodes, suggesting that functionally guided DTI-based tractography can help identify early ASD-related WM disruptions between cortical regions exhibiting abnormal connectivity patterns later in life. Furthermore, our results suggest a benefit of involving functionally informed nodes in diffusion imaging-based probabilistic tractography, and underline that different age cohorts can benefit from age- and brain development-adapted image processing protocols.
Collapse
Affiliation(s)
- Clara F Weber
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Lübeck University, Lübeck, Germany
| | - Evelyn M R Lake
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stefan P Haider
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
- Department of Otorhinolaryngology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Mozayan
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Pratheek S Bobba
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Dustin Scheinost
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Robert T Constable
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Laura Ment
- Yale University School of Medicine, Department of Pediatrics and Neurology, New Haven, CT, United States
| | - Seyedmehdi Payabvash
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| |
Collapse
|
18
|
Ruiz M, Groessing A, Guran A, Koçan AU, Mikus N, Nater UM, Kouwer K, Posserud MB, Salomon-Gimmon M, Todorova B, Wagner IC, Gold C, Silani G, Specht K. Music for autism: a protocol for an international randomized crossover trial on music therapy for children with autism. Front Psychiatry 2023; 14:1256771. [PMID: 37886114 PMCID: PMC10598663 DOI: 10.3389/fpsyt.2023.1256771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The notion of a connection between autism and music is as old as the first reported cases of autism, and music has been used as a therapeutic tool for many decades. Music therapy holds promise as an intervention for individuals with autism, harnessing their strengths in music processing to enhance communication and expression. While previous randomized controlled trials have demonstrated positive outcomes in terms of global improvement and quality of life, their reliance on psychological outcomes restricts our understanding of underlying mechanisms. This paper introduces the protocol for the Music for Autism study, a randomized crossover trial designed to investigate the effects of a 12-week music therapy intervention on a range of psychometric, neuroimaging, and biological outcomes in school-aged children with autism. The protocol builds upon previous research and aims to both replicate and expand upon findings that demonstrated improvements in social communication and functional brain connectivity following a music intervention. The primary objective of this trial is to determine whether music therapy leads to improvements in social communication and functional brain connectivity as compared to play-based therapy. In addition, secondary aims include exploring various relevant psychometric, neuroimaging, and biological outcomes. To achieve these objectives, we will enroll 80 participants aged 6-12 years in this international, assessor-blinded, crossover randomized controlled trial. Each participant will be randomly assigned to receive either music therapy or play-based therapy for a period of 12 weeks, followed by a 12-week washout period, after which they will receive the alternate intervention. Assessments will be conducted four times, before and after each intervention period. The protocol of the Music for Autism trial provides a comprehensive framework for studying the effects of music therapy on a range of multidimensional outcomes in children with autism. The findings from this trial have the potential to contribute to the development of evidence-based interventions that leverage strengths in music processing to address the complex challenges faced by individuals with autism. Clinical Trial Registration: Clinicaltrials.gov identifier NCT04936048.
Collapse
Affiliation(s)
- Marianna Ruiz
- Department of Health and Social Sciences, Norwegian Research Centre (NORCE), Bergen, Norway
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Alexander Groessing
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Alexandrina Guran
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Asena U. Koçan
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Nace Mikus
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- School of Culture and Society, Interacting Minds Centre, Aarhus University, Aarhus, Denmark
| | - Urs M. Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Karlijn Kouwer
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Maj-Britt Posserud
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Maayan Salomon-Gimmon
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- The School of Creative Arts Therapies, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Boryana Todorova
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Isabella C. Wagner
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Christian Gold
- Department of Health and Social Sciences, Norwegian Research Centre (NORCE), Bergen, Norway
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Karsten Specht
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
- Department of Radiology, Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, Faculty of Humanities, Social Sciences and Education, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
19
|
Wang M, Xu D, Zhang L, Jiang H. Application of Multimodal MRI in the Early Diagnosis of Autism Spectrum Disorders: A Review. Diagnostics (Basel) 2023; 13:3027. [PMID: 37835770 PMCID: PMC10571992 DOI: 10.3390/diagnostics13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in children. Early diagnosis and intervention can remodel the neural structure of the brain and improve quality of life but may be inaccurate if based solely on clinical symptoms and assessment scales. Therefore, we aimed to analyze multimodal magnetic resonance imaging (MRI) data from the existing literature and review the abnormal changes in brain structural-functional networks, perfusion, neuronal metabolism, and the glymphatic system in children with ASD, which could help in early diagnosis and precise intervention. Structural MRI revealed morphological differences, abnormal developmental trajectories, and network connectivity changes in the brain at different ages. Functional MRI revealed disruption of functional networks, abnormal perfusion, and neurovascular decoupling associated with core ASD symptoms. Proton magnetic resonance spectroscopy revealed abnormal changes in the neuronal metabolites during different periods. Decreased diffusion tensor imaging signals along the perivascular space index reflected impaired glymphatic system function in children with ASD. Differences in age, subtype, degree of brain damage, and remodeling in children with ASD led to heterogeneity in research results. Multimodal MRI is expected to further assist in early and accurate clinical diagnosis of ASD through deep learning combined with genomics and artificial intelligence.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Dandan Xu
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Lili Zhang
- Department of Child Health Care, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| |
Collapse
|
20
|
Li Y, Zhou F, Li R, Gu J, He J. Exploring the correlation between genetic transcription and multi-temporal developmental autism spectrum disorder using resting-state functional magnetic resonance imaging. Front Neurosci 2023; 17:1219753. [PMID: 37456995 PMCID: PMC10339831 DOI: 10.3389/fnins.2023.1219753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The present investigation aimed to explore the neurodevelopmental trajectory of autism spectrum disorder (ASD) by identifying the changes in brain function and gene expression associated with the disorder. Previous studies have indicated that ASD is a highly inherited neurodevelopmental disorder of the brain that displays symptom heterogeneity across different developmental periods. However, the transcriptomic changes underlying these developmental differences remain largely unknown. Methods To address this gap in knowledge, our study employed resting-state functional magnetic resonance imaging (rs-fMRI) data from a large sample of male participants across four representative age groups to stratify the abnormal changes in brain function associated with ASD. Partial least square regression (PLSr) was utilized to identify unique changes in gene expression in brain regions characterized by aberrant functioning in ASD. Results Our results revealed that ASD exhibits distinctive developmental trajectories in crucial brain regions such as the default mode network (DMN), temporal lobe, and prefrontal lobes during critical periods of neurodevelopment when compared to the control group. These changes were also associated with genes primarily located in synaptic tissues. Discussion The findings of this study suggest that the neurobiology of ASD is uniquely heterogeneous across different ages and may be accompanied by distinct molecular mechanisms related to gene expression.
Collapse
|
21
|
Strang JF, McClellan LS, Li S, Jack AE, Wallace GL, McQuaid GA, Kenworthy L, Anthony LG, Lai MC, Pelphrey KA, Thalberg AE, Nelson EE, Phan JM, Sadikova E, Fischbach AL, Thomas J, Vaidya CJ. The autism spectrum among transgender youth: default mode functional connectivity. Cereb Cortex 2023; 33:6633-6647. [PMID: 36721890 PMCID: PMC10233301 DOI: 10.1093/cercor/bhac530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/02/2023] Open
Abstract
The common intersection of autism and transgender identities has been described in clinical and community contexts. This study investigates autism-related neurophenotypes among transgender youth. Forty-five transgender youth, evenly balanced across non-autistic, slightly subclinically autistic, and full-criteria autistic subgroupings, completed resting-state functional magnetic resonance imaging to examine functional connectivity. Results confirmed hypothesized default mode network (DMN) hub hyperconnectivity with visual and motor networks in autism, partially replicating previous studies comparing cisgender autistic and non-autistic adolescents. The slightly subclinically autistic group differed from both non-autistic and full-criteria autistic groups in DMN hub connectivity to ventral attention and sensorimotor networks, falling between non-autistic and full-criteria autistic groups. Autism traits showed a similar pattern to autism-related group analytics, and also related to hyperconnectivity between DMN hub and dorsal attention network. Internalizing, gender dysphoria, and gender minority-related stigma did not show connectivity differences. Connectivity differences within DMN followed previously reported patterns by designated sex at birth (i.e. female birth designation showing greater within-DMN connectivity). Overall, findings suggest behavioral diagnostics and autism traits in transgender youth correspond to observable differences in DMN hub connectivity. Further, this study reveals novel neurophenotypic characteristics associated with slightly subthreshold autism, highlighting the importance of research attention to this group.
Collapse
Affiliation(s)
- John F Strang
- Gender and Autism Program, Children’s National Hospital, 15245 Shady Grove Road, Suite 350, Rockville, MD 20850, USA
- Departments of Pediatrics, Psychiatry, and Behavioral Sciences, George Washington University School of Medicine, Washington, DC, USA
- Division of Neuropsychology, Children’s National Hospital, Washington, DC, USA
| | - Lucy S McClellan
- Division of Neuropsychology, Children’s National Hospital, Washington, DC, USA
| | - Sufang Li
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Allison E Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Gregory L Wallace
- Department of Speech, Language, & Hearing Sciences, George Washington University, Washington, DC, USA
| | - Goldie A McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Lauren Kenworthy
- Departments of Pediatrics, Psychiatry, and Behavioral Sciences, George Washington University School of Medicine, Washington, DC, USA
- Division of Neuropsychology, Children’s National Hospital, Washington, DC, USA
| | - Laura G Anthony
- Department of Psychiatry and Behavioral Sciences, University of Colorado School of Medicine, Aurora, CO, USA
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia Medical School, Charlottesville, VA, USA
| | | | - Eric E Nelson
- Center for Biobehavioral Health, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jenny M Phan
- Division of Neuropsychology, Children’s National Hospital, Washington, DC, USA
| | - Eleonora Sadikova
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Abigail L Fischbach
- Division of Neuropsychology, Children’s National Hospital, Washington, DC, USA
| | | | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
22
|
Yang B, Wang M, Zhou W, Wang X, Chen S, Potenza MN, Yuan LX, Dong GH. Disrupted network integration and segregation involving the default mode network in autism spectrum disorder. J Affect Disord 2023; 323:309-319. [PMID: 36455716 DOI: 10.1016/j.jad.2022.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Changes in the brain's default mode network (DMN) in the resting state are closely related to autism spectrum disorder (ASD). Module segmentation can effectively elucidate the neural mechanism of ASD and explore intra- and inter-network connections by means of the participation coefficient (PC). We used that resting-state fMRI data from 269 ASD patients and 340 healthy controls (HCs) in the current study. From the results, ASD subjects showed a significantly higher PC of the DMN than HC subjects. This difference was related to lower intra-module connections within the DMN and higher inter-network connections between the DMN and other networks. When the subjects were split into age groups, the results were verified in the 7-12- and 12-18-year-old age groups but not in the young adult group (18-25 years). When the subjects were divided according to different subtypes of ASD, the results were also observed in the classic autism and pervasive developmental disorder groups, but not in the Asperger disorder group. In conclusions, less developed network segregation in the DMN could be a valid biomarker for ASD. This provides network scientists with new insights into the intermodular connectivity configurations of complex networks from different dimensions in a systematic and comprehensive manner.
Collapse
Affiliation(s)
- Bo Yang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Weiran Zhou
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Xiuqin Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | | | - Li-Xia Yuan
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
23
|
A Systematic Review of the Human Accelerated Regions in Schizophrenia and Related Disorders: Where the Evolutionary and Neurodevelopmental Hypotheses Converge. Int J Mol Sci 2023; 24:ijms24043597. [PMID: 36835010 PMCID: PMC9962562 DOI: 10.3390/ijms24043597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global "HARome" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.
Collapse
|
24
|
Yoon N, Huh Y, Lee H, Kim JI, Lee J, Yang CM, Jang S, Ahn YD, Oh MR, Lee DS, Kang H, Kim BN. Alterations in Social Brain Network Topology at Rest in Children With Autism Spectrum Disorder. Psychiatry Investig 2022; 19:1055-1068. [PMID: 36588440 PMCID: PMC9806512 DOI: 10.30773/pi.2022.0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Underconnectivity in the resting brain is not consistent in autism spectrum disorder (ASD). However, it is known that the functional connectivity of the default mode network is mainly decreased in childhood ASD. This study investigated the brain network topology as the changes in the connection strength and network efficiency in childhood ASD, including the early developmental stages. METHODS In this study, 31 ASD children aged 2-11 years were compared with 31 age and sex-matched children showing typical development. We explored the functional connectivity based on graph filtration by assessing the single linkage distance and global and nodal efficiencies using resting-state functional magnetic resonance imaging. The relationship between functional connectivity and clinical scores was also analyzed. RESULTS Underconnectivities within the posterior default mode network subregions and between the inferior parietal lobule and inferior frontal/superior temporal regions were observed in the ASD group. These areas significantly correlated with the clinical phenotypes. The global, local, and nodal network efficiencies were lower in children with ASD than in those with typical development. In the preschool-age children (2-6 years) with ASD, the anterior-posterior connectivity of the default mode network and cerebellar connectivity were reduced. CONCLUSION The observed topological reorganization, underconnectivity, and disrupted efficiency in the default mode network subregions and social function-related regions could be significant biomarkers of childhood ASD.
Collapse
Affiliation(s)
- Narae Yoon
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngmin Huh
- Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyekyoung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Jung Lee
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Integrative Care Hub, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Chan-Mo Yang
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soomin Jang
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yebin D Ahn
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Rim Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Static and temporal dynamic changes of intrinsic brain activity in pediatric and adults OCD. J Affect Disord 2022; 311:416-424. [PMID: 35618169 DOI: 10.1016/j.jad.2022.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Epidemiological and clinical age differences in obsessive-compulsive disorder (OCD) have been reported in clinical symptoms and morphometry changes; however, age differences in amplitude of low-frequency fluctuation and the relationship between ALFF imaging and clinical symptoms has not been thoroughly studied in OCD. Age may be an important feature associated with distinct subtypes of OCD. To examine the effect of age on OCD, the current study enrolled 92 OCD patients (32 pediatrics and 60 adults) and matched HCs (33 pediatrics and 84 adults), undergoing resting-state functional magnetic resonance imaging. The spontaneous brain activity was measured by static and dynamic amplitude of low-frequency fluctuation (ALFF) followed by two-way ANOVA. In pediatric OCD patients versus adult patients, we observed a significantly higher ALFF in the default mode network (DMN), including posterior cingulate, precuneus and superior frontal gyrus, and extending to cuneus, lingual gyrus. Additionally, the increased ALFF and dynamic ALFF in the precentral gyrus were found in pediatric patients. In OCD patients compared with controls, we found a significantly increased ALFF in hippocampal gyrus, cerebellum network (CN), and the dALFF in middle and inferior occipital gyrus, bilateral paracentral lobule and sensorimotor network. The findings emphasized the different patterns of static and dynamic intrinsic brain activity alterations associated with pediatric and adult OCD patients. These results provide unique insights into constructing evidenced-based distinct OCD subtypes based on brain activity and point the need of specified management for pediatric and adult OCD patients in clinical setting.
Collapse
|
26
|
Keeratitanont K, Theerakulpisut D, Auvichayapat N, Suphakunpinyo C, Patjanasoontorn N, Tiamkao S, Tepmongkol S, Khiewvan B, Raruenrom Y, Srisuruk P, Paholpak S, Auvichayapat P. Brain laterality evaluated by F-18 fluorodeoxyglucose positron emission computed tomography in autism spectrum disorders. Front Mol Neurosci 2022; 15:901016. [PMID: 36034502 PMCID: PMC9399910 DOI: 10.3389/fnmol.2022.901016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Background and rationale Autism spectrum disorder (ASD) is a neuropsychiatric disorder that has no curative treatment. Little is known about the brain laterality in patients with ASD. F-18 fluorodeoxyglucose positron emission computed tomography (F-18 FDG PET/CT) is a neuroimaging technique that is suitable for ASD owing to its ability to detect whole brain functional abnormalities in a short time and is feasible in ASD patients. The purpose of this study was to evaluate brain laterality using F-18 FDG PET/CT in patients with high-functioning ASD. Materials and methods This case-control study recruited eight ASD patients who met the DSM-5 criteria, the recorded data of eight controls matched for age, sex, and handedness were also enrolled. The resting state of brain glucose metabolism in the regions of interest (ROIs) was analyzed using the Q.Brain software. Brain glucose metabolism and laterality index in each ROI of ASD patients were compared with those of the controls. The pattern of brain metabolism was analyzed using visual analysis and is reported in the data description. Results The ASD group’s overall brain glucose metabolism was lower than that of the control group in both the left and right hemispheres, with mean differences of 1.54 and 1.21, respectively. We found statistically lower mean glucose metabolism for ASD patients than controls in the left prefrontal lateral (Z = 1.96, p = 0.049). The left laterality index was found in nine ROIs for ASD and 11 ROIs for the control. The left laterality index in the ASD group was significantly lower than that in the control group in the prefrontal lateral (Z = 2.52, p = 0.012), precuneus (Z = 2.10, p = 0.036), and parietal inferior (Z = 1.96, p = 0.049) regions. Conclusion Individuals with ASD have lower brain glucose metabolism than control. In addition, the number of ROIs for left laterality index in the ASD group was lower than control. Left laterality defects may be one of the causes of ASD. This knowledge can be useful in the treatment of ASD by increasing the left-brain metabolism. This trial was registered in the Thai Clinical Trials Registry (TCTR20210705005).
Collapse
Affiliation(s)
- Keattichai Keeratitanont
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Daris Theerakulpisut
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanyut Suphakunpinyo
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Niramol Patjanasoontorn
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsak Tiamkao
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yutapong Raruenrom
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyawan Srisuruk
- Department of Educational Psychology and Counseling, Faculty of Education, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
| | - Suchat Paholpak
- Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
| | - Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Paradee Auvichayapat,
| |
Collapse
|
27
|
Wang M, Wang L, Yang B, Yuan L, Wang X, Potenza MN, Dong GH. Disrupted dynamic network reconfiguration of the brain functional networks of individuals with autism spectrum disorder. Brain Commun 2022; 4:fcac177. [PMID: 35950094 PMCID: PMC9356733 DOI: 10.1093/braincomms/fcac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Human and animal studies on brain functions in subjects with autism spectrum disorder have confirmed the aberrant organization of functional networks. However, little is known about the neural features underlying these impairments.
Using community structure analyses (recruitment and integration), the current study explored the functional network features of individuals with autism spectrum disorder from one database (101 individuals with autism spectrum disorder and 120 healthy controls) and tested the replicability in an independent database (50 individuals with autism spectrum disorder and 74 healthy controls). Additionally, the study divided subjects into different age groups and tested the features in different subgroups.
As for recruitment, subjects with autism spectrum disorder had lower coefficients in the default mode network and basal ganglia network than healthy controls. The integration results showed that subjects with autism spectrum disorder had a lower coefficient than healthy controls in the default mode network -medial frontal network and basal ganglia network -limbic networks. The results for the default mode network were mostly replicated in the independent database, but the results for the basal ganglia network were not. The results for different age groups were also analyzed, and the replicability was tested in different databases.
The lower recruitment in subjects with autism spectrum disorder suggests that they are less efficient at engaging these networks when performing relevant tasks. The lower integration results suggest impaired flexibility in cognitive functions in individuals with autism spectrum disorder. All these findings might explain why subjects with autism spectrum disorder show impaired brain networks and have important therapeutic implications for developing potentially effective interventions.
Collapse
Affiliation(s)
- Min Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
| | - Bo Yang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
| | - Lixia Yuan
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang Province , PR China
| | - Xiuqin Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang Province , PR China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine , New Haven, CT , USA
- Connecticut Mental Health Center , New Haven, CT , USA
- Connecticut Council on Problem Gambling , Wethersfield, CT , USA
- Department of Neuroscience and Wu Tsai Institute, Yale University , New Haven, CT , USA
| | - Guang Heng Dong
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang Province , PR China
| |
Collapse
|
28
|
Yue X, Zhang G, Li X, Shen Y, Wei W, Bai Y, Luo Y, Wei H, Li Z, Zhang X, Wang M. Brain Functional Alterations in Prepubertal Boys With Autism Spectrum Disorders. Front Hum Neurosci 2022; 16:891965. [PMID: 35664346 PMCID: PMC9160196 DOI: 10.3389/fnhum.2022.891965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Abnormal brain function in ASD patients changes dynamically across developmental stages. However, no one has studied the brain function of prepubertal children with ASD. Prepuberty is an important stage for children’s socialization. This study aimed to investigate alterations in local spontaneous brain activity in prepubertal boys with ASD. Materials and Methods Measures of the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) acquired from resting-state functional magnetic resonance imaging (RS-fMRI) database, including 34 boys with ASD and 49 typically developing (TD) boys aged 7 to 10 years, were used to detect regional brain activity. Pearson correlation analyses were conducted on the relationship between abnormal ALFF and ReHo values and Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) scores. Results In the ASD group, we found decreased ALFF in the left inferior parietal lobule (IPL) and decreased ReHo in the left lingual gyrus (LG), left superior temporal gyrus (STG), left middle occipital gyrus (MOG), and right cuneus (p < 0.05, FDR correction). There were negative correlations between ReHo values in the left LG and left STG and the ADOS social affect score and a negative correlation between ReHo values in the left STG and the calibrated severity total ADOS score. Conclusion Brain regions with functional abnormalities, including the left IPL, left LG, left STG, left MOG, and right cuneus may be crucial in the neuropathology of prepubertal boys with ASD. Furthermore, ReHo abnormalities in the left LG and left STG were correlated with sociality. These results will supplement the study of neural mechanisms in ASD at different developmental stages, and be helpful in exploring the neural mechanisms of prepubertal boys with ASD.
Collapse
Affiliation(s)
- Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaochen Li
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Luo
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqiang Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Meiyun Wang,
| |
Collapse
|
29
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
30
|
Maliske L, Kanske P. The Social Connectome - Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective Neuroscience. Front Psychiatry 2022; 13:845492. [PMID: 35449570 PMCID: PMC9016142 DOI: 10.3389/fpsyt.2022.845492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 150 years of neuroscientific research, the field has undergone a tremendous evolution. Starting out with lesion-based inference of brain function, functional neuroimaging, introduced in the late 1980s, and increasingly fine-grained and sophisticated methods and analyses now allow us to study the live neural correlates of complex behaviors in individuals and multiple agents simultaneously. Classically, brain-behavior coupling has been studied as an association of a specific area in the brain and a certain behavioral outcome. This has been a crucial first step in understanding brain organization. Social cognitive processes, as well as their neural correlates, have typically been regarded and studied as isolated functions and blobs of neural activation. However, as our understanding of the social brain as an inherently dynamic organ grows, research in the field of social neuroscience is slowly undergoing the necessary evolution from studying individual elements to how these elements interact and their embedding within the overall brain architecture. In this article, we review recent studies that investigate the neural representation of social cognition as interacting, complex, and flexible networks. We discuss studies that identify individual brain networks associated with social affect and cognition, interaction of these networks, and their relevance for disorders of social affect and cognition. This perspective on social cognitive neuroscience can highlight how a more fine-grained understanding of complex network (re-)configurations could improve our understanding of social cognitive deficits in mental disorders such as autism spectrum disorder and schizophrenia, thereby providing new impulses for methods of interventions.
Collapse
Affiliation(s)
- Lara Maliske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
31
|
An age-dependent Connectivity-based computer aided diagnosis system for Autism Spectrum Disorder using Resting-state fMRI. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|