1
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Zhang C, Liang J, Yan H, Li X, Li X, Jing H, Liang W, Li R, Ou Y, Wu W, Guo H, Deng W, Xie G, Guo W. Fractional amplitude of low-frequency fluctuations in sensory-motor networks and limbic system as a potential predictor of treatment response in patients with schizophrenia. Schizophr Res 2024; 267:519-527. [PMID: 38704344 DOI: 10.1016/j.schres.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Rongwei Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
3
|
Zhao C, Jiang R, Bustillo J, Kochunov P, Turner JA, Liang C, Fu Z, Zhang D, Qi S, Calhoun VD. Cross-cohort replicable resting-state functional connectivity in predicting symptoms and cognition of schizophrenia. Hum Brain Mapp 2024; 45:e26694. [PMID: 38727014 PMCID: PMC11083889 DOI: 10.1002/hbm.26694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.
Collapse
Affiliation(s)
- Chunzhi Zhao
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Rongtao Jiang
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Juan Bustillo
- Department of Psychiatry and Behavioral SciencesUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Peter Kochunov
- Department of Psychiatry and Behavioral SciencesUniversity of Texas Health Science Center HoustonHoustonTexasUSA
| | - Jessica A. Turner
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Chuang Liang
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Zening Fu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Daoqiang Zhang
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Shile Qi
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
- Key Laboratory of Brain‐Machine Intelligence Technology, Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Okamura A, Hashizume A, Kagawa K, Seyama G, Yoshino A, Yamawaki S, Horie N, Iida K. Magnetoencephalographic detection of synchronized epileptic activity between the hippocampus and insular cortex. Epilepsy Behav Rep 2024; 26:100669. [PMID: 38699062 PMCID: PMC11063376 DOI: 10.1016/j.ebr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Most magnetoencephalographic signals are derived from synchronized activity in the brain surface cortex. By contrast, the contribution of synchronized activity in the deep brain to magnetoencephalography (MEG) has remained unclear. We compared stereotactic electroencephalography (sEEG) with simultaneous MEG findings in a patient with temporal lobe epilepsy to determine the conditions under which MEG could also detect sEEG findings. The synchrony and similarity of the waves were evaluated using visual inspection and wavelet coherence. A 45-year-old woman with intractable temporal lobe epilepsy underwent sEEG and MEG simultaneously to determine the laterality and precise location of the epileptic focus. When spike-and-waves were seen in the right hippocampal head alone, no distinct spike-and-waves were observed visually in the right temporal MEG. The seizure then spread to the right insula on sEEG with a rhythmic theta frequency while synchronous activity was observed in the right temporal MEG channels. When polyspikes appeared in the right hippocampus, the right temporal MEG showed electrical activity with relatively high similarity to that of the right hippocampal head and insular cortex but less similarity to that of the right lateral temporal lobe cortex. MEG might detect epileptic activity synchronized between the hippocampus and insular cortex.
Collapse
Affiliation(s)
- Akitake Okamura
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Hashizume
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kota Kagawa
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Go Seyama
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuo Yoshino
- Center for Brain, Mind and KANSEI Science Research, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Science Research, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Iida
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
5
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
6
|
Chang J, Song D, Yu R. The double-edged sword of the hippocampus-ventromedial prefrontal cortex resting-state connectivity in stress susceptibility and resilience: A prospective study. Neurobiol Stress 2023; 27:100584. [PMID: 37965440 PMCID: PMC10641247 DOI: 10.1016/j.ynstr.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
The hippocampus has long been considered a pivotal region implicated in both stress susceptibility and resilience. A wealth of evidence from animal and human studies underscores the significance of hippocampal functional connectivity with the ventromedial prefrontal cortex (vmPFC) in these stress-related processes. However, there remains a scarcity of research that explores and contrasts the roles of hippocampus-vmPFC connectivity in stress susceptibility and resilience when facing a real-life traumatic event from a prospective standpoint. In the present study, we investigated the contributions of undirected and directed connectivity between the hippocampus and vmPFC to stress susceptibility and resilience within the context of the COVID-19 pandemic. Our findings revealed that the left hippocampus-left vmPFC connectivity prior to the pandemic exhibited a negative correlation with both stress susceptibility and resilience. Specifically, individuals with stronger left hippocampus-left vmPFC connectivity reported experiencing fewer stress-related feelings during the outbreak period of the epidemic but displayed lower levels of stress resilience five months later. Our application of spectral dynamic causal modeling unveiled an additional inhibitory connectivity pathway from the left hippocampus to the left vmPFC in the context of stress susceptibility, which was notably absent in stress resilience. Furthermore, we observed a noteworthy positive association between self-inhibition of the vmPFC and stress susceptibility, with this effect proving substantial enough to predict an individual's susceptibility to stress; conversely, these patterns did not manifest in the realm of stress resilience. These findings enrich our comprehension of stress susceptibility and stress resilience and might have implications for innovative approaches to managing stress-related disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Institute of Psychology, School of Public Policy, Xiamen University, Xiamen, China
| | - Di Song
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Avery SN, Rogers BP, McHugo M, Armstrong K, Blackford JU, Vandekar SN, Woodward ND, Heckers S. Hippocampal Network Dysfunction in Early Psychosis: A 2-Year Longitudinal Study. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:979-989. [PMID: 37881573 PMCID: PMC10593896 DOI: 10.1016/j.bpsgos.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Background Hippocampal abnormalities are among the most consistent findings in schizophrenia. Numerous studies have reported deficits in hippocampal volume, function, and connectivity in the chronic stage of illness. While hippocampal volume and function deficits are also present in the early stage of illness, there is mixed evidence of both higher and lower functional connectivity. Here, we use graph theory to test the hypothesis that hippocampal network connectivity is broadly lowered in early psychosis and progressively worsens over 2 years. Methods We examined longitudinal resting-state functional connectivity in 140 participants (68 individuals in the early stage of psychosis, 72 demographically similar healthy control individuals). We used an anatomically driven approach to quantify hippocampal network connectivity at 2 levels: 1) a core hippocampal-medial temporal lobe cortex (MTLC) network; and 2) an extended hippocampal-cortical network. Group and time effects were tested in a linear mixed effects model. Results Early psychosis patients showed elevated functional connectivity in the core hippocampal-MTLC network, but contrary to our hypothesis, did not show alterations within the broader hippocampal-cortical network. Hippocampal-MTLC network hyperconnectivity normalized longitudinally and predicted improvement in positive symptoms but was not associated with increasing illness duration. Conclusions These results show abnormally elevated functional connectivity in a core hippocampal-MTLC network in early psychosis, suggesting that selectively increased hippocampal signaling within a localized cortical circuit may be a marker of the early stage of psychosis. Hippocampal-MTLC hyperconnectivity could have prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Suzanne N. Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, Tennessee
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Simon N. Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Zarghami TS, Zeidman P, Razi A, Bahrami F, Hossein‐Zadeh G. Dysconnection and cognition in schizophrenia: A spectral dynamic causal modeling study. Hum Brain Mapp 2023; 44:2873-2896. [PMID: 36852654 PMCID: PMC10089110 DOI: 10.1002/hbm.26251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Schizophrenia (SZ) is a severe mental disorder characterized by failure of functional integration (aka dysconnection) across the brain. Recent functional connectivity (FC) studies have adopted functional parcellations to define subnetworks of large-scale networks, and to characterize the (dys)connection between them, in normal and clinical populations. While FC examines statistical dependencies between observations, model-based effective connectivity (EC) can disclose the causal influences that underwrite the observed dependencies. In this study, we investigated resting state EC within seven large-scale networks, in 66 SZ and 74 healthy subjects from a public dataset. The results showed that a remarkable 33% of the effective connections (among subnetworks) of the cognitive control network had been pathologically modulated in SZ. Further dysconnection was identified within the visual, default mode and sensorimotor networks of SZ subjects, with 24%, 20%, and 11% aberrant couplings. Overall, the proportion of discriminative connections was remarkably larger in EC (24%) than FC (1%) analysis. Subsequently, to study the neural correlates of impaired cognition in SZ, we conducted a canonical correlation analysis between the EC parameters and the cognitive scores of the patients. As such, the self-inhibitions of supplementary motor area and paracentral lobule (in the sensorimotor network) and the excitatory connection from parahippocampal gyrus to inferior temporal gyrus (in the cognitive control network) were significantly correlated with the social cognition, reasoning/problem solving and working memory capabilities of the patients. Future research can investigate the potential of whole-brain EC as a biomarker for diagnosis of brain disorders and for neuroimaging-based cognitive assessment.
Collapse
Affiliation(s)
- Tahereh S. Zarghami
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Peter Zeidman
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| | - Adeel Razi
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
- Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
- CIFAR Azrieli Global Scholars Program, CIFARTorontoCanada
| | - Fariba Bahrami
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Gholam‐Ali Hossein‐Zadeh
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
| |
Collapse
|
9
|
Resting state effective connectivity abnormalities of the Papez circuit and cognitive performance in multiple sclerosis. Mol Psychiatry 2022; 27:3913-3919. [PMID: 35624146 DOI: 10.1038/s41380-022-01625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
The Papez circuit is central to memory and emotional processes. However, little is known about its involvement in multiple sclerosis (MS). We aimed to investigate abnormalities of resting state (RS) effective connectivity (EC) between regions of the Papez circuit in MS and their relationship with cognitive performances. Sixty-two MS patients and 64 healthy controls (HC) underwent neuropsychological assessment, 3D T1-weighted, and RS functional MRI. RS EC analysis was performed using SPM12 and dynamic causal modeling. RS EC abnormalities were investigated using parametric empirical Bayes models and were correlated with cognitive scores. Compared to HC, MS patients showed (posterior probability > 0.95) higher EC between the right entorhinal cortex and right subiculum, and lower EC from the anterior cingulate cortex (ACC) to the posterior cingulate cortex (PCC), from left to right subiculum, from left anterior thalamus to ACC, and within ACC and PCC. Lower RS EC from the ACC to the PCC correlated with worse global cognitive scores (rho = 0.19; p = 0.03), worse visuospatial memory (rho = 0.19; p = 0.03) and worse semantic fluency (rho = 0.21; p = 0.02). Lower RS EC from the left to the right subiculum correlated with worse verbal memory (rho = 0.20; p = 0.02), lower RS EC within the ACC correlated with worse attention (rho = -0.19; p = 0.04) and more severe brain atrophy (rho = -0.26; p = 0.003). Higher EC from the right entorhinal cortex to right subiculum correlated with worse semantic fluency (rho = 0.21; p = 0.02). In conclusion, MS patients showed altered RS EC within the Papez circuit. Abnormal RS EC involving cingulate cortices and hippocampal formation contributed to explain cognitive deficits.
Collapse
|