1
|
Sahraoui G, Rahoui N, Driss M, Mrad K. Inflammatory breast cancer: An overview about the histo-pathological aspect and diagnosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:47-61. [PMID: 38637099 DOI: 10.1016/bs.ircmb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory Breast Cancer (IBC) is a rare and aggressive form of locally advanced breast cancer, classified as stage T4d according to the tumor-node-metastasis staging criteria. This subtype of breast cancer is known for its rapid progression and significantly lower survival rates compared to other forms of breast cancer. Despite its distinctive clinical features outlined by the World Health Organization, the histopathological characteristics of IBC remain not fully elucidated, presenting challenges in its diagnosis and treatment. Histologically, IBC tumors often exhibit a ductal phenotype, characterized by emboli composed of pleomorphic cells with a high nuclear grade. These emboli are predominantly found in the papillary and reticular dermis of the skin overlaying the breast, suggesting a primary involvement of the lymphatic vessels. The tumor microenvironment in IBC is a complex network involving various cells such as macrophages, monocytes, and predominantly T CD8+ lymphocytes, and elements including blood vessels and extracellular matrix molecules, which play a pivotal role in the aggressive nature of IBC. A significant aspect of IBC is the frequent loss of expression of hormone receptors like estrogen and progesterone receptors, a phenomenon that is still under active investigation. Moreover, the overexpression of ERBB2/HER2 and TP53 in IBC cases is a topic of ongoing debate, with studies indicating a higher prevalence in IBC compared to non-inflammatory breast cancer. This overview seeks to provide a comprehensive understanding of the histopathological features and diagnostic approaches to IBC, emphasizing the critical areas that require further research.
Collapse
Affiliation(s)
- Ghada Sahraoui
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia.
| | - Nabil Rahoui
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, United States
| | - Maha Driss
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia
| | - Karima Mrad
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia
| |
Collapse
|
2
|
Sarfraz Z, Sarfraz A, Mehak O, Akhund R, Bano S, Aftab H. Racial and socioeconomic disparities in triple-negative breast cancer treatment. Expert Rev Anticancer Ther 2024; 24:107-116. [PMID: 38436305 DOI: 10.1080/14737140.2024.2326575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) continues to be a significant concern, especially among minority populations, where treatment disparities are notably pronounced. Addressing these disparities, especially among African American women and other minorities, is crucial for ensuring equitable healthcare. AREAS COVERED This review delves into the continuum of TNBC treatment, noting that the standard of care, previously restricted to chemotherapy, has now expanded due to emerging clinical trial results. With advances like PARP inhibitors, immunotherapy, and antibody-drug conjugates, a more personalized treatment approach is on the horizon. The review highlights innovative interventions tailored for minorities, such as utilizing technology like text messaging, smartphone apps, and targeted radio programming, coupled with church-based behavioral interventions. EXPERT OPINION Addressing TNBC treatment disparities demands a multifaceted approach, blending advanced medical treatments with culturally sensitive community outreach. The potential of technology, especially in the realm of promoting health awareness, is yet to be fully harnessed. As the field progresses, understanding and integrating the socio-economic, biological, and access-related challenges faced by minorities will be pivotal for achieving health equity in TNBC care.
Collapse
Affiliation(s)
- Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Onaiza Mehak
- Department of Medicine, Aziz Fatimah Medical and Dental College, Faisalabad, Pakistan
| | - Ramsha Akhund
- Department of Surgery, University of Alabama at Birmingham, Tuscaloosa, AL, USA
| | - Shehar Bano
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Hinna Aftab
- Department of Medicine, CMH Lahore Medical College, Lahore, Pakistan
| |
Collapse
|
3
|
Pintor S, Lopez A, Flores D, Lozoya B, Soti B, Pokhrel R, Negrete J, Persans MW, Gilkerson R, Gunn B, Keniry M. FOXO1 promotes the expression of canonical WNT target genes in examined basal-like breast and glioblastoma multiforme cancer cells. FEBS Open Bio 2023; 13:2108-2123. [PMID: 37584250 PMCID: PMC10626282 DOI: 10.1002/2211-5463.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are aggressive cancers associated with poor prognosis. BBC and GBM have stem cell-like gene expression signatures, which are in part driven by forkhead box O (FOXO) transcription factors. To gain further insight into the impact of FOXO1 in BBC, we treated BT549 cells with AS1842856 and performed RNA sequencing. AS1842856 binds to unphosphorylated FOXO1 and inhibits its ability to directly bind to DNA. Gene Set Enrichment Analysis indicated that a set of WNT pathway target genes, including lymphoid enhancer-binding factor 1 (LEF1) and transcription factor 7 (TCF7), were robustly induced after AS1842856 treatment. These same genes were also induced in GBM cell lines U87MG, LN18, LN229, A172, and DBTRG upon AS1842856 treatment. By contrast, follow-up RNA interference (RNAi) targeting of FOXO1 led to reduced LEF1 and TCF7 gene expression in BT549 and U87MG cells. In agreement with RNAi experiments, CRISPR Cas9-mediated FOXO1 disruption reduced the expression of canonical WNT genes LEF1 and TCF7 in U87MG cells. The loss of TCF7 gene expression in FOXO1 disruption mutants was restored by exogenous expression of the DNA-binding-deficient FOXO1-H215R. Therefore, FOXO1 induces TCF7 in a DNA-binding-independent manner, similar to other published FOXO1-activated genes such as TCF4 and hes family bHLH transcription factor 1. Our work demonstrates that FOXO1 promotes canonical WNT gene expression in examined BBC and GBM cells, similar to results found in Drosophila melanogaster, T-cell development, and murine acute myeloid leukemia models.
Collapse
Affiliation(s)
- Shania Pintor
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Alma Lopez
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - David Flores
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Brianda Lozoya
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Bipul Soti
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Rishi Pokhrel
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Joaquin Negrete
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Michael W. Persans
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Robert Gilkerson
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
- Medical Laboratory SciencesThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Bonnie Gunn
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Megan Keniry
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| |
Collapse
|
4
|
Zamani-Ahmadmahmudi M, Jajarmi M, Talebipour S. Molecular phenotyping of malignant canine mammary tumours: Detection of high-risk group and its relationship with clinicomolecular characteristics. Vet Comp Oncol 2023; 21:73-81. [PMID: 36251017 DOI: 10.1111/vco.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Canine mammary gland tumours (CMTs) constitute the most common cancer in female dogs and comprise approximately 50% of all canine cancers. With the advent of high-throughput technologies such as microarray and next-generation sequencing, the molecular phenotyping (classification) of various cancers has been extensively developed. The present study used a canine RNA-sequencing dataset, namely GSE119810, to classify 113 malignant CMTs and 64 matched normal samples via an unsupervised hierarchical algorithm with a view to evaluating the association between the resulting subtypes (clusters) (n = 4) and clinical and molecular characteristics. Finally, a molecular classifier was developed, and it detected 1 high-risk molecular subtype in the training dataset (GSE119810) and 2 independent validation datasets (GSE20718 and GSE22516). Our results revealed four molecular subtypes (C2-C5) in malignant CMTs. Furthermore, the normal samples constituted a distinct group in the clustering analysis. Marked significant associations were observed between the molecular subtypes (especially C5) and clinical/molecular features, including positive lymphatic invasion, high tumour grades, histopathology diagnoses, short survival and high TP53 mutation rates (ps <.05). The high-risk subtype (C5) was further characterized through the development of a cell cycle-based gene signature, which comprised 37 proliferation-related genes according to the support vector machine algorithm. This signature identified the high-risk group in both training and validation datasets (ps <.001). In the validation analysis, our potential classifier robustly predicted patients with positive lymphatic invasion, metastases and short survival.
Collapse
Affiliation(s)
- Mohamad Zamani-Ahmadmahmudi
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maziar Jajarmi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeedeh Talebipour
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
5
|
Mohamed HT, El-Sharkawy AA, El-Shinawi M, Schneider RJ, Mohamed MM. Inflammatory Breast Cancer: The Secretome of HCMV+ Tumor-Associated Macrophages Enhances Proliferation, Invasion, Colony Formation, and Expression of Cancer Stem Cell Markers. Front Oncol 2022; 12:899622. [PMID: 35847899 PMCID: PMC9281473 DOI: 10.3389/fonc.2022.899622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive phenotype of breast cancer that is characterized by a high incidence early metastasis. We previously reported a significant association of human cytomegalovirus (HCMV) DNA in the carcinoma tissues of IBC patients but not in the adjacent normal tissues. HCMV-infected macrophages serve as “mobile vectors” for spreading and disseminating virus to different organs, and IBC cancer tissues are highly infiltrated by tumor-associated macrophages (TAMs) that enhance IBC progression and promote breast cancer stem cell (BCSC)-like properties. Therefore, there is a need to understand the role of HCMV-infected TAMs in IBC progression. The present study aimed to test the effect of the secretome (cytokines and secreted factors) of TAMs derived from HCMV+ monocytes isolated from IBC specimens on the proliferation, invasion, and BCSC abundance when tested on the IBC cell line SUM149. HCMV+ monocytes were isolated from IBC patients during modified radical mastectomy surgery and tested in vitro for polarization into TAMs using the secretome of SUM149 cells. MTT, clonogenic, invasion, real-time PCR arrays, PathScan Intracellular Signaling array, and cytokine arrays were used to characterize the secretome of HCMV+ TAMs for their effect on the progression of SUM149 cells. The results showed that the secretome of HCMV+ TAMs expressed high levels of IL-6, IL-8, and MCP-1 cytokines compared to HCMV- TAMs. In addition, the secretome of HCMV+ TAMs induced the proliferation, invasion, colony formation, and expression of BCSC-related genes in SUM149 cells compared to mock untreated cells. In addition, the secretome of HCMV+ TAMs activated the phosphorylation of intracellular signaling molecules p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK in SUM149 cells. In conclusion, this study shows that the secretome of HCMV+ TAMs enhances the proliferation, invasion, colony formation, and BCSC properties by activating the phosphorylation of p-STAT3, p-AMPKα, p-PRAS40, and p-SAPK/JNK intracellular signaling molecules in IBC cells.
Collapse
Affiliation(s)
- Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
- *Correspondence: Hossam Taha Mohamed,
| | | | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Galala University, Suez, Egypt
| | - Robert J. Schneider
- Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
- Sector of International Cooperation, Galala University, Suez, Egypt
| |
Collapse
|
6
|
Allouchery V, Perdrix A, Calbrix C, Berghian A, Lequesne J, Fontanilles M, Leheurteur M, Etancelin P, Sarafan-Vasseur N, Di Fiore F, Clatot F. Circulating PIK3CA mutation detection at diagnosis in non-metastatic inflammatory breast cancer patients. Sci Rep 2021; 11:24041. [PMID: 34911971 PMCID: PMC8674263 DOI: 10.1038/s41598-021-02643-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive BC subtype with poor outcomes. A targetable somatic PIK3CA mutation is reported in 30% of IBC, allowing for treatment by PI3Kα-specific inhibitors, such as alpelisib. The aim of this study was to evaluate the detection rate of circulating PIK3CA mutation in locally-advanced IBC (LAIBC) patients harbouring a PIK3CA mutation on initial biopsy. This monocentric retrospective study was based on available stored plasma samples and tumour biopsies at diagnosis from all LAIBC patients treated with neo-adjuvant chemotherapy (NCT) between 2008 and 2018 at the Centre Henri Becquerel. PIK3CA mutations (E542K, E545K, H1047R/L) were assessed by droplet digital PCR (ddPCR) in plasma samples and tumoral tissue at diagnosis. A total of 55 patients were included. Overall, 14/55 patients (25%) had a PIK3CA mutation identified on baseline biopsy (H1047R = 8; H1047L = 3; E545K = 2; E542K = 1). Among them, 11 (79%) patients had enough DNA for circulating DNA analyses, and corresponding circulating PIK3CA mutations were found in 6/11 (55%). Among the 41 patients without PIK3CA mutations on biopsy, 32 (78%) had enough DNA for circulating DNA analysis, and no circulating PIK3CA mutation was identified. Our results revealed no prognostic or predictive value of PIK3CA mutations at the diagnosis of non-metastatic IBC but highlighted the prognostic value of the cfDNA rate at diagnosis. Our study showed that a corresponding circulating PIK3CA mutation was identified in 55% of LAIBC patients with PIK3CA-mutated tumours, while no circulating mutation was found among patients with PI3KCA wild-type tumours.
Collapse
Affiliation(s)
- Violette Allouchery
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.
| | - Anne Perdrix
- IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Céline Calbrix
- IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Anca Berghian
- Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Justine Lequesne
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Maxime Fontanilles
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.,IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France
| | - Marianne Leheurteur
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France
| | | | - Nasrin Sarafan-Vasseur
- IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Bio-Pathology, Centre Henri Becquerel, Rouen, France
| | - Frédéric Di Fiore
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.,IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France.,Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Florian Clatot
- Department of Medical Oncology, Centre Henri Becquerel, 1 Rue d'Amiens, 76038, Rouen Cedex 1, France.,IRON Group, Inserm U1245, UNIROUEN, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandie Université, Rouen, France
| |
Collapse
|
7
|
Metastatic inflammatory breast cancer: survival outcomes and prognostic factors in the national, multicentric, and real-life French cohort (ESME). ESMO Open 2021; 6:100220. [PMID: 34303929 PMCID: PMC8327489 DOI: 10.1016/j.esmoop.2021.100220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background Primary inflammatory breast cancer (IBC) is a rare and aggressive entity whose prognosis has been improved by multimodal therapy. However, 5-year overall survival (OS) remains poor. Given its low incidence, the prognosis of IBC at metastatic stage is poorly described. Materials and methods This study aimed to compare OS calculated from the diagnosis of metastatic disease between IBC patients and non-IBC patients in the Epidemiological Strategy and Medical Economics database (N = 16 702 patients). Secondary objectives included progression-free survival (PFS) after first-line metastatic treatment, identification of prognostic factors for OS and PFS, and evolution of survival during the study period. Results From 2008 to 2014, 7465 patients with metastatic breast cancer and known clinical status of their primary tumor (T) were identified (582 IBC and 6883 non-IBC). Compared with metastatic non-IBC, metastatic IBC was associated with less hormone receptor-positive (44% versus 65.6%), more human epidermal growth factor receptor 2-positive (30% versus 18.6%), and more triple-negative (25.9% versus 15.8%) cases, more frequent de novo M1 stage (53.3% versus 27.7%; P < 0.001), and shorter median disease-free interval (2.02 years versus 4.9 years; P < 0.001). With a median follow-up of 50.2 months, median OS was 28.4 months [95% confidence interval (CI) 24.1-33.8 months] versus 37.2 months (95% CI 36.1-38.5 months) in metastatic IBC and non-IBC cases, respectively (P < 0.0001, log-rank test). By multivariate analysis, OS was significantly shorter in the metastatic IBC group compared with the metastatic non-IBC group [hazard ratio = 1.27 (95% CI 1.1-1.4); P = 0.0001]. Survival of metastatic IBC patients improved over the study period: median OS was 24 months (95% CI 20-31.9 months), 29 months (95% CI 21.7-39.9 months), and 36 months (95% CI 27.9-not estimable months) if diagnosis of metastatic disease was carried out until 2010, between 2011 and 2012, and from 2013, respectively (P = 0.003). Conclusion IBC is independently associated with adverse outcome when compared with non-IBC in the metastatic setting. IBC is a rare and aggressive form of breast cancer with poor prognosis. OS was compared between IBC and non-IBC patients in a national French cohort of metastatic breast cancer. IBC was correlated with more pejorative histologic characteristics. Outcomes (OS and PFS) were significantly and independently worse in IBC than in non-IBC metastatic breast cancer.
Collapse
|
8
|
Schairer C, Hablas A, Eldein IAS, Gaafar R, Rais H, Mezlini A, Ayed FB, Ayoub WB, Benider A, Tahri A, Khouchani M, Aboulazm D, Karkouri M, Eissa S, Bastawisy AE, Yehia M, Gadalla SM, Swain SM, Merajver SD, Brown LM, Pfeiffer RM, Soliman AS. Risk factors for inflammatory and non-inflammatory breast cancer in North Africa. Breast Cancer Res Treat 2020; 184:543-558. [PMID: 32876910 PMCID: PMC10440960 DOI: 10.1007/s10549-020-05864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Studies of the etiology of inflammatory breast cancer (IBC), a rare but aggressive breast cancer, have been hampered by limited risk factor information. We extend previous studies by evaluating a broader range of risk factors. METHODS Between 2009 and 2015, we conducted a case-control study of IBC at six centers in Egypt, Tunisia, and Morocco; enrolled were 267 IBC cases and for comparison 274 non-IBC cases and 275 controls, both matched on age and geographic area to the IBC cases. We administered questionnaires and collected anthropometric measurements for all study subjects. We used multiple imputation methods to account for missing values and calculated odds ratios (ORs) and 95% confidence intervals (CIs) using polytomous logistic regression comparing each of the two case groups to the controls, with statistical tests for the difference between the coefficients for the two case groups. RESULTS After multivariable adjustment, a livebirth within the previous 2 years (OR 4.6; 95% CI 1.8 to 11.7) and diabetes (OR 1.8; 95% CI 1.1 to 3.0) were associated with increased risk of IBC, but not non-IBC (OR 0.9; 95% CI 0.3 to 2.5 and OR 0.9; 95% CI 0.5 to 1.6 for livebirth and diabetes, respectively). A family history of breast cancer, inflammatory-like breast problems, breast trauma, and low socioeconomic status were associated with increased risk of both tumor types. CONCLUSIONS We identified novel risk factors for IBC and non-IBC, some of which preferentially increased risk of IBC compared to non-IBC. Upon confirmation, these findings could help illuminate the etiology and aid in prevention of this aggressive cancer.
Collapse
Affiliation(s)
- Catherine Schairer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | - Ali Tahri
- Clinique Spécialisée Menara, Marrakech, Morocco
| | | | | | | | | | | | | | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandra M Swain
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- , 9609 Medical Center Drive, Rm 7E142, Bethesda, MD, 20892, USA.
| | - Amr S Soliman
- Medical School of the City University of New York, New York, USA
| |
Collapse
|
9
|
Holm J, Yu NYL, Johansson A, Ploner A, Hall P, Lindström LS, Czene K. Concordance of Immunohistochemistry-Based and Gene Expression-Based Subtyping in Breast Cancer. JNCI Cancer Spectr 2020; 5:pkaa087. [PMID: 33442660 PMCID: PMC7791620 DOI: 10.1093/jncics/pkaa087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/04/2022] Open
Abstract
Background Use of immunohistochemistry-based surrogates of molecular breast cancer subtypes is common in research and clinical practice, but information on their comparative validity and prognostic capacity is scarce. Methods Data from 2 PAM50-subtyped Swedish breast cancer cohorts were used: Stockholm tamoxifen trial–3 with 561 patients diagnosed 1976-1990 and Clinseq with 237 patients diagnosed 2005-2012. We evaluated 3 surrogate classifications; the immunohistochemistry-3 surrogate classifier based on estrogen receptor, progesterone receptor, and HER2 and the St. Gallen and Prolif surrogate classifiers also including Ki-67. Accuracy, kappa, sensitivity, and specificity were computed as compared with PAM50. Alluvial diagrams of misclassification patterns were plotted. Distant recurrence-free survival was assessed using Kaplan-Meier plots, and tamoxifen treatment benefit for luminal subtypes was modeled using flexible parametric survival models. Results The concordance with PAM50 ranged from poor to moderate (kappa = 0.36-0.57, accuracy = 0.54-0.75), with best performance for the Prolif surrogate classification in both cohorts. Good concordance was only achieved when luminal subgroups were collapsed (kappa = 0.71-0.69, accuracy = 0.90-0.91). The St. Gallen surrogate classification misclassified luminal A into luminal B; the reverse pattern was seen with the others. In distant recurrence-free survival, surrogates were more similar to each other than PAM50. The difference in tamoxifen treatment benefit between luminal A and B for PAM50 was not replicated with any surrogate classifier. Conclusions All surrogate classifiers had limited ability to distinguish between PAM50 luminal A and B, but patterns of misclassifications differed. PAM50 subtyping appeared to yield larger separation of survival between luminal subtypes than any of the surrogate classifications.
Collapse
Affiliation(s)
- Johanna Holm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy Yiu-Lin Yu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Inflammatory Breast Cancer: Diagnostic, Molecular and Therapeutic Considerations. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Chas M, Goupille C, Arbion F, Bougnoux P, Pinault M, Jourdan ML, Chevalier S, Ouldamer L. Low eicosapentaenoic acid and gamma-linolenic acid levels in breast adipose tissue are associated with inflammatory breast cancer. Breast 2019; 45:113-117. [DOI: 10.1016/j.breast.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/24/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
|
12
|
Valeta-Magara A, Gadi A, Volta V, Walters B, Arju R, Giashuddin S, Zhong H, Schneider RJ. Inflammatory Breast Cancer Promotes Development of M2 Tumor-Associated Macrophages and Cancer Mesenchymal Cells through a Complex Chemokine Network. Cancer Res 2019; 79:3360-3371. [PMID: 31043378 DOI: 10.1158/0008-5472.can-17-2158] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/14/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive form of breast cancer that displays profound cancer stem cell (CSC) and mesenchymal features that promote rapid metastasis. Another hallmark of IBC is high infiltration of M2 tumor-associated (immune-suppressing) macrophages. The molecular mechanism that drives these IBC phenotypes is not well understood. Using patient breast tumor specimens, breast cancer cell lines, and a patient-derived xenograft model of IBC, we demonstrate that IBC strongly expresses IL8 and growth-regulated oncogene (GRO) chemokines that activate STAT3, which promotes development of high levels of CSC-like cells and a mesenchymal phenotype. We also show that IBC expresses high levels of many monocyte recruitment and macrophage polarization factors that attract and differentiate monocytes into tumor-promoting, immune-suppressing M2-like macrophages. The M2 macrophages in turn were found to secrete high levels of IL8 and GRO chemokines, thereby creating a feed-forward chemokine loop that further drives an IBC epithelial-to-mesenchymal transition. Our study uncovers an intricate IBC-initiated autocrine-paracrine signaling network between IBC cells and monocytes that facilitates development of this highly aggressive form of breast cancer. SIGNIFICANCE: This study uncovers a signaling network in which IBC cells commandeer macrophages to become tumor-promoting, and they in turn drive IBC cells to be more cancer stem-like, mesenchymal, and aggressive.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3360/F1.large.jpg.
Collapse
Affiliation(s)
| | - Abhilash Gadi
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Viviana Volta
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Beth Walters
- Department of Microbiology, NYU School of Medicine, New York, New York
| | - Rezina Arju
- Department of Microbiology, NYU School of Medicine, New York, New York
| | | | - Hua Zhong
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, New York
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, New York. .,Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, New York.,NYU Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| |
Collapse
|
13
|
Qi Y, Wang X, Kong X, Zhai J, Fang Y, Guan X, Wang J. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int 2019; 19:23. [PMID: 30733644 PMCID: PMC6357482 DOI: 10.1186/s12935-018-0709-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an infrequent but aggressive manifestation of breast cancer, which accounts for 2-4% of all breast cancer cases but responsible for 7-10% of breast cancer-related deaths, and with a 20-30% 10-year overall survival compared with 80% for patients with non-IBC with an unordinary phenotype, whose molecular mechanisms are still largely unknown to date. Discovering and identifying novel bio-markers responsible for diagnosis and therapeutic targets is a pressing need. MicroRNAs are a class of small non-coding RNAs that are capable to post-transcriptionally regulate gene expression of genes by targeting mRNAs, exerting vital and tremendous affects in numerous malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. In this study, we review present and high-quality evidences regarding the potential applications of inflammatory breast cancer associated microRNAs for diagnosis and prognosis of this lethal disease.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
14
|
Zare A, Petrova A, Agoumi M, Amstrong H, Bigras G, Tonkin K, Wine E, Baksh S. RIPK2: New Elements in Modulating Inflammatory Breast Cancer Pathogenesis. Cancers (Basel) 2018; 10:cancers10060184. [PMID: 29874851 PMCID: PMC6025367 DOI: 10.3390/cancers10060184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that is associated with significantly high mortality. In spite of advances in IBC diagnoses, the prognosis is still poor compared to non-IBC. Due to the aggressive nature of the disease, we hypothesize that elevated levels of inflammatory mediators may drive tumorigenesis and metastasis in IBC patients. Utilizing IBC cell models and patient tumor samples, we can detect elevated NF-κB activity and hyperactivation of non-canonical drivers of NF-κB (nuclear factor kappaB)-directed inflammation such as tyrosine phosphorylated receptor-interacting protein kinase 2 (pY RIPK2), when compared to non-IBC cells or patients. Interestingly, elevated RIPK2 activity levels were present in a majority of pre-chemotherapy samples from IBC patients at the time of diagnosis to suggest that patients at diagnosis had molecular activation of NF-κB via RIPK2, a phenomenon we define as “molecular inflammation”. Surprisingly, chemotherapy did cause a significant increase in RIPK2 activity and thus molecular inflammation suggesting that chemotherapy does not resolve the molecular activation of NF-κB via RIPK2. This would impact on the metastatic potential of IBC cells. Indeed, we can demonstrate that RIPK2 activity correlated with advanced tumor, metastasis, and group stage as well as body mass index (BMI) to indicate that RIPK2 might be a useful prognostic marker for IBC and advanced stage breast cancer.
Collapse
Affiliation(s)
- Alaa Zare
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Alexandra Petrova
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Mehdi Agoumi
- Anatomic Pathologist at DynalifeDx, Diagnostic Laboratory Services; Department of Laboratory Medicine and Pathology, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2R3, Canada.
| | - Heather Amstrong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Gilbert Bigras
- Cross Cancer Institute Department of Laboratory Medicine and Pathology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.
| | - Katia Tonkin
- Division of Medical Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada.
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Shairaz Baksh
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Division of Medical Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada.
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2R7, Canada.
- Women and Children's Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue NW Edmonton, AB T6G 1C9, Canada.
| |
Collapse
|
15
|
Mohamed HT, El-Husseiny N, El-Ghonaimy EA, Ibrahim SA, Bazzi ZA, Cavallo-Medved D, Boffa MB, El-Shinawi M, Mohamed MM. IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: The potential role of tumor infiltrated macrophages. Curr Probl Cancer 2018; 42:215-230. [PMID: 29459177 DOI: 10.1016/j.currproblcancer.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+/CD16+) isolated from inflammatory breast cancer (IBC) patients' secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients' clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC.
Collapse
Affiliation(s)
| | - Noura El-Husseiny
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Zainab A Bazzi
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Michael B Boffa
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt
| | - Mona Mostafa Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt; Breast-Gynecological International Cancer Society, Cairo, Egypt.
| |
Collapse
|
16
|
Ibrahim SA, Gadalla R, El-Ghonaimy EA, Samir O, Mohamed HT, Hassan H, Greve B, El-Shinawi M, Mohamed MM, Götte M. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer 2017; 16:57. [PMID: 28270211 PMCID: PMC5341174 DOI: 10.1186/s12943-017-0621-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Background Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC. Methods We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey’s multiple comparison tests. Results Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44(+)CD24(-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling. Conclusions Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0621-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramy Gadalla
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Omnia Samir
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Hossam Taha Mohamed
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, 11566, Cairo, Egypt
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany.
| |
Collapse
|
17
|
Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, Jones S, Velculescu VE, Cristofanilli M, Bacus S. Genomic and Immunological Tumor Profiling Identifies Targetable Pathways and Extensive CD8+/PDL1+ Immune Infiltration in Inflammatory Breast Cancer Tumors. Mol Cancer Ther 2016; 15:1746-56. [PMID: 27196778 DOI: 10.1158/1535-7163.mct-15-0353] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 04/13/2016] [Indexed: 11/16/2022]
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that remains poorly understood at the molecular level. Comprehensive tumor profiling was performed to understand clinically actionable alterations in IBC. Targeted next-generation sequencing (NGS) and IHC were performed to identify activated pathways in IBC tumor tissues. siRNA studies examined the impact of IBC genomic variants in cellular models. IBC tumor tissues were further characterized for immune infiltration and immune checkpoint expression by IHC. Genomic analysis identified recurrent alterations in core biologic pathways, including activating and targetable variants in HER/PI3K/mTOR signaling. High rates of activating HER3 point mutations were discovered in IBC tumors. Cell line studies confirmed a role for mutant HER3 in IBC cell proliferation. Immunologic analysis revealed a subset of IBC tumors associated with high CD8(+)/PD-L1(+) lymphocyte infiltration. Immune infiltration positively correlated with an NGS-based estimate of neoantigen exposure derived from the somatic mutation rate and mutant allele frequency, iScore. Additionally, DNA mismatch repair alterations, which may contribute to higher iScores, occurred at greater frequency in tumors with higher immune infiltration. Our study identifies genomic alterations that mechanistically contribute to oncogenic signaling in IBC and provides a genetic basis for the selection of clinically relevant targeted and combination therapeutic strategies. Furthermore, an NGS-based estimate of neoantigen exposure developed in this study (iScore) may be a useful biomarker to predict immune infiltration in IBC and other cancers. The iScore may be associated with greater levels of response to immunotherapies, such as PD-L1/PD-1-targeted therapies. Mol Cancer Ther; 15(7); 1746-56. ©2016 AACR.
Collapse
Affiliation(s)
| | - Diarmuid Moran
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois. Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois.
| | - Kakuturu Rao
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois
| | | | - Karen Pry
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois
| | - Mark Sausen
- Personal Genome Diagnostics, Inc., Baltimore, Maryland
| | - Siân Jones
- Personal Genome Diagnostics, Inc., Baltimore, Maryland
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Massimo Cristofanilli
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Sarah Bacus
- Translational R&D Oncology Group, Quintiles, Westmont, Illinois. Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, Liu CG, Liu X, Lin F, Symmans WF, Wei W, Zhang X, Sun L, Alvarez RH, Ueno NT, Fouad TM, Harano K, Debeb BG, Wu Y, Reuben J, Cristofanilli M, Zuo Z. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol 2016; 29:330-46. [PMID: 26916073 DOI: 10.1038/modpathol.2016.38] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
Abstract
Inflammatory breast cancer is the most aggressive form of breast cancer. Identifying new biomarkers to be used as therapeutic targets is in urgent need. Messenger RNA expression profiling studies have indicated that inflammatory breast cancer is a transcriptionally heterogeneous disease, and specific molecular targets for inflammatory breast cancer have not been well established. We performed microRNA expression profiling in inflammatory breast cancer in comparison with locally advanced noninflammatory breast cancer in this study. Although many microRNAs were differentially expressed between normal breast tissue and tumor tissue, most of them did not show differential expression between inflammatory and noninflammatory tumor samples. However, by microarray analysis, quantitative reverse transcription PCR, and in situ hybridization, we showed that microRNA-205 expression was decreased not only in tumor compared with normal breast tissue, but also in inflammatory breast cancer compared with noninflammatory breast cancer. Lower expression of microRNA-205 correlated with worse distant metastasis-free survival and overall survival in our cohort. A small-scale immunohistochemistry analysis showed coexistence of decreased microRNA-205 expression and decreased E-cadherin expression in some ductal tumors. MicroRNA-205 may serve as a therapeutic target in advanced breast cancer including inflammatory breast cancer.
Collapse
Affiliation(s)
- Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Lin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo H Alvarez
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamer M Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenichi Harano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bisrat G Debeb
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Kai M, Kogawa T, Liu DD, Fouad TM, Kai K, Niikura N, Hsu L, Willey JS, Theriault RL, Valero V, Ueno NT. Clinical Characteristics and Outcome of Bone-Only Metastasis in Inflammatory and Noninflammatory Breast Cancers. Clin Breast Cancer 2015; 15:37-42. [DOI: 10.1016/j.clbc.2014.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/30/2014] [Indexed: 10/24/2022]
|
20
|
AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor (EGFR), HER2, and HER3: preclinical activity in HER2 non-amplified inflammatory breast cancer models. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:47. [PMID: 24886365 PMCID: PMC4061513 DOI: 10.1186/1756-9966-33-47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/13/2014] [Indexed: 12/02/2022]
Abstract
Introduction Epidermal growth factor receptor (EGFR) overexpression has been associated with prognostic and predictive value in inflammatory breast cancer (IBC). Epidermal growth factor receptor 2 (HER2) overexpression is observed at a higher rate in IBC compared with noninflammatory breast cancer. Current clinically available anti-HER2 therapies are effective only in patients with HER2 amplified breast cancer, including IBC. AZD8931 is a novel small-molecule equipotent inhibitor of EGFR, HER2, and HER3 signaling. In this study, we investigated the antitumor activity of AZD8931 alone or in combination with paclitaxel using preclinical models of EGFR-overexpressed and HER2 non-amplified IBC cells. Methods Two IBC cell lines SUM149 and FC-IBC-02 derived from pleural effusion of an IBC patient were used in this study. Cell growth and apoptotic cell death were examined in vitro. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice. AZD8931 was given by daily oral gavage at doses of 25 mg/kg, 5 days/week for 4 weeks. Paclitaxel was subcutaneously injected twice weekly. Results AZD8931 significantly suppressed cell growth of IBC cells and induced apoptosis of human IBC cells in vitro. Significantly, we showed that AZD8931 monotherapy inhibited xenograft growth and the combination of paclitaxel + AZD8931 was demonstrably more effective than paclitaxel or AZD8931 alone treatment at delaying tumor growth in vivo in orthotopic IBC models. Conclusion AZD8931 single agent and in combination with paclitaxel demonstrated signal inhibition and antitumor activity in EGFR-overexpressed and HER2 non-amplified IBC models. These results suggest that AZD8931 may provide a novel therapeutic strategy for the treatment of IBC patients with HER2 non-amplified tumors.
Collapse
|
21
|
Mohamed MM, El-Ghonaimy EA, Nouh MA, Schneider RJ, Sloane BF, El-Shinawi M. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 2014. [DOI: 10.1016/j.biocel.2013.11.015 s1357-2725(13)00353-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
|
22
|
Camacho L, Peña L, González Gil A, Cáceres S, Díez L, Illera J. Establishment and characterization of a canine xenograft model of inflammatory mammary carcinoma. Res Vet Sci 2013; 95:1068-75. [DOI: 10.1016/j.rvsc.2013.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/07/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
23
|
Intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and represent new targets for therapy. Br J Cancer 2013; 110:146-55. [PMID: 24281005 PMCID: PMC3887278 DOI: 10.1038/bjc.2013.526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sialophorin is a transmembrane sialoglycoprotein. Normally, the molecule is only produced by white blood cells where it regulates functions such as intercellular adhesion, intracellular signalling, apoptosis, migration and proliferation. METHODS Normal breast tissue and primary breast tumours were analysed by immunohistochemistry for sialophorin expression. The sialophorin-positive breast cancer cell line MCF7 was engineered to stably express either non-targeted or sialophorin-targeted small interfering RNA (siRNA). Assays were then performed in vitro to assess apoptosis, intracellular adhesion, transendothelial migration and cytotoxicity. An orthotopic mouse model assayed ability to produce tumours in vivo. RESULTS Normal breast epithelial cells exhibit expression of the N-terminal domain of sialophorin in the cytoplasm but not the nucleus. The majority of these normal cells are also negative for expression of the C-terminal domain. In contrast, malignant breast epithelial cells exhibit N-terminal expression both in the cytoplasm and nucleus and the majority express the C-terminus in the nucleus. Using differential patterns of intracellular expression of the N and C termini of sialophorin, we define six subtypes of breast cancer that are independent of histological and receptor status classification. Targeting sialophorin with siRNA resulted in the MCF7 breast cancer cell line exhibiting increased homotypic adhesion, decreased transendothelial migration, increased susceptibility to apoptosis, increased vulnerability to lysis by natural killer cells and decreased ability to produce tumours in mice. CONCLUSION Our results indicate that intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and that sialophorin represents a novel therapeutic target.
Collapse
|
24
|
Mohamed MM, El-Ghonaimy EA, Nouh MA, Schneider RJ, Sloane BF, El-Shinawi M. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 2013; 46:138-47. [PMID: 24291763 DOI: 10.1016/j.biocel.2013.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/02/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
Although there is a growing literature describing the role of macrophages in breast cancer, the role of macrophages in inflammatory breast cancer (IBC) is unclear. The aim of present study was to isolate and characterize tumor associated macrophages of IBC and non-IBC patients and define their role in IBC. Tumor infiltrating monocytes/macrophages (CD14+ and CD68+) were measured by immunohistochemistry using specific monoclonal antibodies. Blood drained from axillary vein tributaries was collected during breast cancer surgery and the percentage of CD14+ in the total isolated leukocytes was assessed by flow cytometric analysis. CD14+ cells were separated from total leukocytes by immuno-magnetic beads technique and were cultured overnight. Media conditioned by CD14+ were collected and subjected to cytokine profiling using cytokine antibody array. Wound healing and invasion assays were used to test whether cytokines highly secreted by tumor drained macrophages induce motility and invasion of breast cancer cells. We found that macrophages highly infiltrate into carcinoma tissues of IBC patients. In addition blood collected from axillary tributaries of IBC patients is highly enriched with CD14+ cells as compared to blood collected from non-IBC patients. Cytokine profiling of CD14+ cells isolated from IBC patients revealed a significant increase in secretion of tumor necrosis factor-α; monocyte chemoattractant protein-1/CC-chemokine ligand 2; interleukin-8 and interleukin-10 as compared to CD14+ cells isolated from non-IBC patients. Tumor necrosis factor-α, interleukin-8 and interleukin-10 significantly increased motility and invasion of IBC cells in vitro. In conclusion, macrophages isolated from the tumor microenvironment of IBC patients secrete chemotactic cytokines that may augment dissemination and metastasis of IBC carcinoma cells.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Mohamed A Nouh
- Department of Pathology, National Cancer institute, Cairo University, Giza 12613, Egypt.
| | - Robert J Schneider
- Department of Microbiology, New York University, School of Medicine, 10016 New York, USA.
| | - Bonnie F Sloane
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
25
|
Masuda H, Baggerly KA, Wang Y, Iwamoto T, Brewer T, Pusztai L, Kai K, Kogawa T, Finetti P, Birnbaum D, Dirix L, Woodward WA, Reuben JM, Krishnamurthy S, Symmans W, Van Laere SJ, Bertucci F, Hortobagyi GN, Ueno NT. Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers. Breast Cancer Res 2013; 15:R112. [PMID: 24274653 PMCID: PMC3978878 DOI: 10.1186/bcr3579] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 11/01/2013] [Indexed: 01/26/2023] Open
Abstract
Introduction Because of its high rate of metastasis, inflammatory breast cancer (IBC) has a poor prognosis compared with non-inflammatory types of breast cancer (non-IBC). In a recent study, Lehmann and colleagues identified seven subtypes of triple-negative breast cancer (TNBC). We hypothesized that the distribution of TNBC subtypes differs between TN-IBC and TN-non-IBC. We determined the subtypes and compared clinical outcomes by subtype in TN-IBC and TN-non-IBC patients. Methods We determined TNBC subtypes in a TNBC cohort from the World IBC Consortium for which IBC status was known (39 cases of TN-IBC; 49 cases of TN-non-IBC). We then determined the associations between TNBC subtypes and IBC status and compared clinical outcomes between TNBC subtypes. Results We found the seven subtypes exist in both TN-IBC and TN-non-IBC. We found no association between TNBC subtype and IBC status (P = 0.47). TNBC subtype did not predict recurrence-free survival. IBC status was not a significant predictor of recurrence-free or overall survival in the TNBC cohort. Conclusions Our data show that, like TN-non-IBC, TN-IBC is a heterogeneous disease. Although clinical characteristics differ significantly between IBC and non-IBC, no unique IBC-specific TNBC subtypes were identified by mRNA gene-expression profiles of the tumor. Studies are needed to identify the subtle molecular or microenvironmental differences that contribute to the differing clinical behaviors between TN-IBC and TN-non-IBC.
Collapse
|
26
|
Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 2013; 36:1419-31. [PMID: 24222504 DOI: 10.1007/s12272-013-0271-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The primary reason for the high mortality rate of breast cancer is metastasis, which can result in a poor survival rate. The tumor environment is important for promotion and invasion of cancer cells. Recent studies have shown that inflammation is associated with breast cancer. Therefore, it is important to investigate the role of the inflammatory and microenvironment in breast cancer progression and metastasis. The present review summarizes some of the markers for inflammation and breast cancer invasion, which may aid in the design of an appropriate therapy for metastatic breast cancer. The following four inflammatory markers are discussed in this review: (1) Tumor associated macrophages (TAMs); (2) Matrix metalloproteinases (MMPs); (3) Sphingosine 1-phosphate (S1P); (4) C-reactive protein (CRP). TAMs are commonly found in breast cancer patients, and high infiltration is positively correlated with poor prognosis and low survival rate. MMPs are well-known for their roles in the degradation of ECM components when cancer cells invade and migrate. MMPs are also associated with inflammation through recruitment of a variety of stromal cells such as fibroblasts and leukocytes. S1P is an inflammatory lipid and is involved in various cellular processes such as proliferation, survival, and migration. Recent studies indicate that S1P participates in breast cancer invasion in various ways. CRP is used clinically to indicate the outcome of cancer patients as well as acute inflammatory status. This review summarizes the current understanding on the role of S1P in CRP expression which promotes the breast epithelial cell invasion, suggesting a specific mechanism linking inflammation and breast cancer. The present review might be useful for understanding the relationship between inflammation and breast cancer for the development of pharmacological interventions that may control the primary molecules involved in the breast cancer microenvironment.
Collapse
|
27
|
Amiri-Kordestani L, Kamangar F, Zujewski JA. Inflammatory breast cancer: yet another risk of the obesity epidemic? J Natl Cancer Inst 2013; 105:1340-2. [PMID: 24046389 DOI: 10.1093/jnci/djt236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Laleh Amiri-Kordestani
- Affiliations of authors: Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Rockville, MD (LA-K, JAZ); School of Community Health and Policy, Morgan State University, Baltimore, MD (FK)
| | | | | |
Collapse
|
28
|
Mu Z, Li H, Fernandez SV, Alpaugh KR, Zhang R, Cristofanilli M. EZH2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:70. [PMID: 24294976 PMCID: PMC3850122 DOI: 10.1186/1756-9966-32-70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022]
Abstract
Introduction Inflammatory breast cancer (IBC) is the most metastatic variant of breast cancer with the poorest survival in all types of breast cancer patients and presently therapeutic targets for IBC are very limited. Enhancer of zeste homolog 2 (EZH2) is frequently expressed in human IBC and its expression positively correlates with worse clinical outcome. However, the molecular basis for EZH2 promoting IBC has not been explored. Here, we investigated the functional role of EZH2 in IBC cells by examining the effects of its knockdown on the formation of tumor spheroids and invasion of these cells in vitro and in vivo in an orthotopic xenograft model. Methods SUM149 and a new IBC cell line-FC-IBC-02 derived from pleural effusion fluid of an IBC patient were used in this study. Specific knockdown of EZH2 was performed using short hairpin RNA (shRNA) specific to the human EZH2 gene. Cell growth and the formation of tumor spheroids were examined in vitro. The effects of EZH2 knockdown on IBC cell migration and invasion were examined by a Boyden chamber assay. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice. Results The results showed that EZH2 is expressed at higher levels in human IBC cell lines compared with normal human mammary epithelial cells, and the knockdown of EZH2 expression significantly suppressed cell growth and tumor spheroid formation of human IBC cells in vitro. In addition, EZH2 knockdown inhibited the migration and invasion of IBC cells. Significantly, EZH2 knockdown suppressed the angiogenesis and tumor growth of IBC cells in vivo. Conclusions Our results provide direct evidence that EZH2 is critical for the formation of tumor spheroids and invasion of human IBC cells and could be a potential target for developing novel therapeutic strategies for human IBC.
Collapse
|
29
|
Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, van Dam P, Woodward WA, Viens P, Cristofanilli M, Birnbaum D, Dirix L, Reuben JM, Bertucci F. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res 2013; 19:4685-96. [PMID: 23396049 PMCID: PMC6156084 DOI: 10.1158/1078-0432.ccr-12-2549] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. EXPERIMENTAL DESIGN Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. RESULTS Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. CONCLUSION We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner.
Collapse
Affiliation(s)
- Steven J. Van Laere
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Naoto T. Ueno
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pascal Finetti
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fredika M. Robertson
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melike Marsan
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
- Department Oncology, KU Leuven, Leuven, Belgium
| | - Takayuki Iwamoto
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter van Dam
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Wendy A. Woodward
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrice Viens
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Massimo Cristofanilli
- Department of Medical Oncology,G. Morris Dorrance Jr. Endowed Chair in Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Birnbaum
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Luc Dirix
- Translational Cancer Research Unit Antwerp, Oncology Center, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - James M. Reuben
- Morgan Welch Inflammatory Breast Cancer Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - François Bertucci
- Département d’Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Institut Paoli-Calmettes (IPC), Marseille, France
| |
Collapse
|
30
|
Abstract
Inflammatory breast cancer (IBC) is an uncommon and aggressive presentation of locally advanced breast cancer that is potentially curable when localized but may be associated with distant metastasis in up to one-third of patients at presentation. The diagnosis of IBC is made based on clinical features, including the presence of skin edema and erythema involving at least one-third of the breast, with or without a mass, and usually associated with dermal lymphatic invasion (DLI) on skin biopsy. Management requires combined modality therapy, including neoadjuvant chemotherapy with an anthracycline and taxane-based regimen, followed by surgery and radiotherapy, plus concurrent anti-HER2 therapy for HER2-positive disease, and endocrine therapy for at least 5 years after surgery for estrogen-receptor-positive disease (Fig. 1). There have been few large clinical trials focused on IBC; therefore, most data regarding treatment are derived from retrospective analyses, small studies, and extrapolation of results from trials of noninflammatory locally advanced breast cancer. Patients with IBC should be encouraged to enroll in clinical trials whenever possible. In addition, further research into the biology of IBC may help to elucidate the mechanisms underlying its aggressive clinical behavior and to assist in the development of therapies targeted for this specific population.
Collapse
Affiliation(s)
- Della Makower
- Department of Oncology, Montefiore Medical Center, 600 East 233rd St, 6th floor, Bronx, NY 10466, USA.
| | | |
Collapse
|
31
|
Fernandez SV, Robertson FM, Pei J, Aburto-Chumpitaz L, Mu Z, Chu K, Alpaugh RK, Huang Y, Cao Y, Ye Z, Cai KQ, Boley KM, Klein-Szanto AJ, Devarajan K, Addya S, Cristofanilli M. Inflammatory breast cancer (IBC): clues for targeted therapies. Breast Cancer Res Treat 2013; 140:23-33. [PMID: 23784380 PMCID: PMC4273486 DOI: 10.1007/s10549-013-2600-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/06/2013] [Indexed: 01/26/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer characterized by rapid proliferation, early metastatic development and poor prognosis. Since there are few preclinical models of IBC, there is a general lack of understanding of the complexity of the disease. Recently, we have developed a new model of IBC derived from the pleural effusion of a woman with metastatic secondary IBC. FC-IBC02 cells are triple negative and form clusters (mammospheres) in suspension that are strongly positive for E-cadherin, β-catenin and TSPAN24, all adhesion molecules that play an important role in cell migration and invasion. FC-IBC02 cells expressed stem cell markers and some, but not all of the characteristics of cells undergoing epithelial mesenchymal transition (EMT). Breast tumor FC-IBC02 xenografts developed quickly in SCID mice with the presence of tumor emboli and the development of lymph node and lung metastases. Remarkably, FC-IBC02 cells were able to produce brain metastasis in mice on intracardiac or intraperitoneal injections. Genomic studies of FC-IBC02 and other IBC cell lines showed that IBC cells had important amplification of 8q24 where MYC, ATAD2 and the focal adhesion kinase FAK1 are located. MYC and ATAD2 showed between 2.5 and 7 copies in IBC cells. FAK1, which plays important roles in anoikis resistance and tumor metastasis, showed 6–4 copies in IBC cells. Also, CD44 was amplified in triple-negative IBC cells (10–3 copies). Additionally, FC-IBC02 showed amplification of ALK and NOTCH3. These results indicate that MYC, ATAD2, CD44, NOTCH3, ALK and/or FAK1 may be used as potential targeted therapies against IBC.
Collapse
|
32
|
Anticancer Activities of PPARγ in Breast Cancer Are Context-Dependent. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1972-5. [DOI: 10.1016/j.ajpath.2013.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 03/15/2013] [Indexed: 11/21/2022]
|
33
|
Woodward WA, Krishnamurthy S, Yamauchi H, El-Zein R, Ogura D, Kitadai E, Niwa SI, Cristofanilli M, Vermeulen P, Dirix L, Viens P, van Laere S, Bertucci F, Reuben JM, Ueno NT. Genomic and expression analysis of microdissected inflammatory breast cancer. Breast Cancer Res Treat 2013; 138:761-72. [PMID: 23568481 DOI: 10.1007/s10549-013-2501-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/23/2013] [Indexed: 12/01/2022]
Abstract
Inflammatory breast cancer (IBC) is a unique clinical entity characterized by rapid onset of erythema and swelling of the breast often without an obvious breast mass. Many studies have examined and compared gene expression between IBC and non-IBC (nIBC), repeatedly finding clusters associated with receptor subtype, but no consistent gene signature associated with IBC has been validated. Here we compared microdissected IBC tumor cells to microdissected nIBC tumor cells matched based on estrogen and HER-2/neu receptor status. Gene expression analysis and comparative genomic hybridization were performed. An IBC gene set and genomic set were identified using a training set and validated on the remaining data. The IBC gene set was further tested using data from IBC consortium samples and publicly available data. Receptor driven clusters were identified in IBC; however, no IBC-specific gene signature was identified. Fifteen genes were correlated between increased genomic copy number and gene overexpression data. An expression-guided gene set upregulated in the IBC training set clustered the validation set into two clusters independent of receptor subtype but segregated only 75 % of samples in each group into IBC or nIBC. In a larger consortium cohort and in published data, the gene set failed to optimally enrich for IBC samples. However, this gene set had a high negative predictive value for excluding the diagnosis of IBC in publicly available data (100 %). An IBC enriched genomic data set accurately identified 10/16 cases in the validation data set. Even with microdissection, no IBC-specific gene signature distinguishes IBC from nIBC. Using microdissected data, a validated gene set was identified that is associated with IBC tumor cells. Inflammatory breast cancer comparative genomic hybridization data are presented, but a validated genomic data set that identifies IBC is not demonstrated.
Collapse
Affiliation(s)
- Wendy A Woodward
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Human cytomegalovirus infection enhances NF-κB/p65 signaling in inflammatory breast cancer patients. PLoS One 2013; 8:e55755. [PMID: 23418456 PMCID: PMC3572094 DOI: 10.1371/journal.pone.0055755] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/31/2012] [Indexed: 01/29/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is an endemic herpes virus that re-emerges in cancer patients enhancing oncogenic potential. Recent studies have shown that HCMV infection is associated with certain types of cancer morbidity such as glioblastoma. Although HCMV has been detected in breast cancer tissues, its role, if any, in the etiology of specific forms of breast cancer has not been investigated. In the present study we investigated the presence of HCMV infection in inflammatory breast cancer (IBC), a rapidly progressing form of breast cancer characterized by specific molecular signature. We screened for anti-CMV IgG antibodies in peripheral blood of 49 non-IBC invasive ductal carcinoma (IDC) and 28 IBC patients. In addition, we screened for HCMV-DNA in postsurgical cancer and non-cancer breast tissues of non-IBC and IBC patients. We also tested whether HCMV infection can modulate the expression and activation of transcriptional factor NF-κB/p65, a hallmark of IBC. Our results reveal that IBC patients are characterized by a statistically significant increase in HCMV IgG antibody titers compared to non-IBC patients. HCMV-DNA was significantly detected in cancer tissues than in the adjacent non-carcinoma tissues of IBC and IDC, and IBC cancer tissues were significantly more infected with HCMV-DNA compared to IDC. Further, HCMV sequence analysis detected different HCMV strains in IBC patients tissues, but not in the IDC specimens. Moreover, HCMV-infected IBC cancer tissues were found to be enhanced in NF-κB/p65 signaling compared to non-IBC patients. The present results demonstrated a correlation between HCMV infection and IBC. Etiology and causality of HCMV infection with IBC now needs to be rigorously examined.
Collapse
|
35
|
A comparison of cholesterol uptake and storage in inflammatory and noninflammatory breast cancer cells. Int J Breast Cancer 2012; 2012:412581. [PMID: 23346407 PMCID: PMC3549370 DOI: 10.1155/2012/412581] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023] Open
Abstract
Although there are many subtypes of breast cancer, inflammatory breast cancer (IBC) is arguably the deadliest. Research over the past decade has demonstrated that IBC is a distinct entity from other forms of breast cancer. Important risk factors that have been associated with the development of aggressive breast cancers, such as IBC, include obesity and diet, which are evident in the United States, where the overconsumption of high-fat foods continues to contribute to obesity in the nation. Here we investigate differences in cholesterol uptake and storage between IBC, non-IBC, and mammary epithelial cell lines. Our results demonstrate that compared with human mammary epithelial cells (HMECs), both IBC and non-IBC cells have increased cholesterol content. IBC cells retain intracellular cholesterol esters, free cholesterol, and triglycerides in lipid-deficient environments. In contrast, we observe in cell-type-of-origin-matched non-IBC a significant decrease in lipid content under the same lipid-deficient conditions. These data suggest that cholesterol storage may be affected by the cholesterol content of the environment where the tumor cell was isolated. Here, we suggest that breast cancer cells may migrate when they are unable to obtain cholesterol from their extracellular environments.
Collapse
|
36
|
Guiu S, Michiels S, André F, Cortes J, Denkert C, Di Leo A, Hennessy BT, Sorlie T, Sotiriou C, Turner N, Van de Vijver M, Viale G, Loi S, Reis-Filho JS. Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 2012; 23:2997-3006. [PMID: 23166150 DOI: 10.1093/annonc/mds586] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 2012 IMPAKT task force investigated the medical usefulness of current methods for the classification of breast cancer into the 'intrinsic' molecular subtypes (luminal A, luminal B, basal-like and HER2). A panel of breast cancer and/or gene expression profiling experts evaluated the analytical validity, clinical validity and clinical utility of two approaches for molecular subtyping of breast cancer: the prediction analysis of microarray (PAM)50 assay and an immuno-histochemical (IHC) surrogate panel including oestrogen receptor (ER), HER2 and Ki67. The panel found the currently available evidence on the analytical validity and clinical utility of Ki67 based on a 14% cut-off and PAM50 to be inadequate. The majority of the working group members found the available evidence on the analytical validity, clinical validity and clinical utility of ER/HER2 to be convincing. The panel concluded that breast cancer classification into molecular subtypes based on the IHC assessment of ER, HER2 and Ki67 with a 14% cut-off and on the PAM50 test does not provide sufficiently robust information to modify systemic treatment decisions, and recommended the use IHC for ER and HER2 for the identification of clinically relevant subtypes of breast cancers. Methods for breast cancer classification into molecular subtypes should, however, be incorporated into clinical trial design.
Collapse
Affiliation(s)
- S Guiu
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - S Michiels
- Department of Biostatistics and Epidemiology, Jules Bordet Institute, Brussels, Belgium
| | - F André
- Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France.
| | - J Cortes
- Department of Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C Denkert
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - A Di Leo
- Medical Oncology Unit, Hospital of Prato, Istituto Toscani Tumori, Prato, Italy
| | - B T Hennessy
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - T Sorlie
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - C Sotiriou
- Centre des Tumeurs, Jules Bordet Institute, Brussels, Belgium
| | - N Turner
- Institute of Cancer Research, Royal Marsden Foundation Trust, London, UK
| | - M Van de Vijver
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - G Viale
- European Institute of Oncology, University of Milan, Milan, Italy
| | - S Loi
- Department of Translational Research, Jules Bordet Institute, Brussels, Belgium
| | - J S Reis-Filho
- Breakthrough Breast Cancer Research, Institute of Cancer Research, London, UK
| |
Collapse
|
37
|
Lehman HL, Van Laere SJ, van Golen CM, Vermeulen PB, Dirix LY, van Golen KL. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBα phosphorylation of RhoC GTPase. Mol Cancer Res 2012; 10:1306-18. [PMID: 22896661 DOI: 10.1158/1541-7786.mcr-12-0173] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With a 42% and 18% 5- and 10-year respective disease-free survival rate, inflammatory breast cancer (IBC) is arguably the deadliest form of breast cancer. IBC invades the dermal lymphatic vessels of the skin overlying the breast and as a consequence nearly all women have lymph node involvement and ~1/3 have gross distant metastases at the time of diagnosis. One year after diagnosis ~90% of patients have detectable metastases, making IBC a paradigm for lymphovascular invasion. Understanding the underlying mechanisms of the IBC metastatic phenotype is essential for new therapies. Work from our laboratory and others show distinct molecular differences between IBC and non-IBCs (nIBCs). Previously we showed that RhoC GTPase is a metastatic switch responsible for the invasive phenotype of IBC. In this study we integrate observations made in IBC patients with in vitro analysis. We show that the PI3K/Akt signaling pathway is crucial in IBC invasion. Key molecules involved in cytoskeletal control and cell motility are specifically upregulated in IBC patients compared with stage and cell-type-of-origin matched nIBCs patients. Distinctively, RhoC GTPase is a substrate for Akt1 and its phosphorylation is absolutely essential for IBC cell invasion. Further our data show that Akt3, not Akt1 has a role in IBC cell survival. Together our data show a unique and targetable pathway for IBC invasion and survival.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hillyer RL, Sirinvasin P, Joglekar M, Sikes RA, van Golen KL, Nohe A. Differential effects of vitamin D treatment on inflammatory and non-inflammatory breast cancer cell lines. Clin Exp Metastasis 2012; 29:971-9. [PMID: 22610818 DOI: 10.1007/s10585-012-9486-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/10/2012] [Indexed: 12/23/2022]
Abstract
Vitamin D is a known regulator of breast cancer cell proliferation, apoptosis, migration, invasion and differentiation in vitro. Recent studies have suggested a preventative role for vitamin D in breast cancer development and suggested a possible therapeutic application of vitamin D for patients with various forms of breast cancer. Inflammatory breast cancer (IBC) is a highly aggressive and phenotypically unique form of breast cancer that has a very poor prognosis. IBC invades the dermal lymphatics of the breast as tumor emboli early in the course of the disease. Because of the invasive nature of IBC, novel therapeutics are needed desperately. In the current study we examined the effect of the active form of vitamin D, calcitriol, treatment on the aggressive IBC phenotype. Herein we demonstrate that although the vitamin D receptor (VDR) is present in both IBC and non-IBC cell lines, the effect of vitamin D treatment is significant only on the IBC cells. SUM149 IBC cells showed increased protein concentration in response to 24 h of calcitriol exposure; likely mediated by an increase in protein synthesis as opposed to increased cellular proliferation. In addition, treatment with 100 nM calcitriol showed a significant decrease in SUM149 migration (67.8 % decrease, P = 0.030), invasion (43.9 % decrease, P = 0.015), and tumor spheroid size (69.4 % decrease, P = 0.018) compared to nontreated control groups. Finally, calcitriol treatment of SUM149 cells led to significantly fewer IBC experimental metastases as compared to control. Our study demonstrates that calcitriol treatment of SUM149 affected several of the processes important for IBC metastasis but had little effect on MDA-MB-231 cells. Therefore, calcitriol treatment may have the potential to decrease the rate and incidence of metastasis in IBC patients.
Collapse
Affiliation(s)
- Rebecca L Hillyer
- The Department of Biological Science, The University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zeng H, Liu C, Zeng YJ, Wang L, Chen GB, Shen XM. Collision metastasis of breast and thyroid carcinoma to a single cervical lymph node: report of a case. Surg Today 2012; 42:891-4. [PMID: 22484983 DOI: 10.1007/s00595-012-0172-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/27/2011] [Indexed: 11/24/2022]
Abstract
We herein report a rare case of collision lymph node metastases of breast and thyroid carcinomas. A 49-year-old female had undergone an extensively radical mastectomy of the right breast for inflammatory breast cancer at our hospital. Eleven months later, she presented with enlarged lymph nodes in her right lateral neck and multiple nodules in bilateral thyroid lobes. The patient underwent total thyroidectomy and radical dissection of the bilateral cervical lymph nodes. A histological examination showed multiple foci of papillary thyroid carcinoma (PTC) in the bilateral lobes. Surprisingly, concurrent metastases of breast carcinoma and PTC were shown in one of the lymph nodes from the right jugular region. This rare case of collision metastasis and the related literature are discussed.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
40
|
Mohamed MM. Monocytes conditioned media stimulate fibronectin expression and spreading of inflammatory breast cancer cells in three-dimensional culture: A mechanism mediated by IL-8 signaling pathway. Cell Commun Signal 2012; 10:3. [PMID: 22321604 PMCID: PMC3293033 DOI: 10.1186/1478-811x-10-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer characterized by invasion of carcinoma cells into dermal lymphatic vessels where they form tumor emboli over expressing adhesion molecule E-cadherin. Although invasion and metastasis are dynamic processes controlled by complex interaction between tumor cells and microenvironment the mechanisms by which soluble mediators may regulate motility and invasion of IBC cells are poorly understood. The present study investigated the effect of media conditioned by human monocytes U937 secreted cytokines, chemokines and growth factors on the expression of adhesion molecules E-cadherin and fibronectin of human IBC cell line SUM149. Furthermore, cytokines signaling pathway involved were also identified. Results U937 secreted cytokines, chemokines and growth factors were characterized by cytokine antibody array. The major U937 secreted cytokines/chemokines were interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1/CCL2). When SUM149 cells were seeded in three dimensional (3D) models with media conditioned by U937 secreted cytokines, chemokines and growth factors; results showed: 1) changes in the morphology of IBC cells from epithelial to migratory spindle shape branched like structures; 2) Over-expression of adhesion molecule fibronectin and not E-cadherin. Further analysis revealed that over-expression of fibronectin may be mediated by IL-8 via PI3K/Akt signaling pathway. Conclusion The present results suggested that cytokines secreted by human monocytes may promote chemotactic migration and spreading of IBC cell lines. Results also indicated that IL-8 the major secreted cytokine by U937 cells may play essential role in fibronectin expression by SUM149 cells via interaction with IL-8 specific receptors and stimulation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Mona M Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
41
|
Bertucci F, Finetti P, Birnbaum D. Basal breast cancer: a complex and deadly molecular subtype. Curr Mol Med 2012; 12:96-110. [PMID: 22082486 PMCID: PMC3343384 DOI: 10.2174/156652412798376134] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 12/15/2022]
Abstract
During the last decade, gene expression profiling of breast cancer has revealed the existence of five molecular subtypes and allowed the establishment of a new classification. The basal subtype, which represents 15-25% of cases, is characterized by an expression profile similar to that of myoepithelial normal mammary cells. Basal tumors are frequently assimilated to triple-negative (TN) breast cancers. They display epidemiological and clinico-pathological features distinct from other subtypes. Their pattern of relapse is characterized by frequent and early relapses and visceral locations. Despite a relative sensitivity to chemotherapy, the prognosis is poor. Recent characterization of their molecular features, such as the dysfunction of the BRCA1 pathway or the frequent expression of EGFR, provides opportunities for optimizing the systemic treatment. Several clinical trials dedicated to basal or TN tumors are testing cytotoxic agents and/or molecularly targeted therapies. This review summarizes the current state of knowledge of this aggressive and hard-to-treat subtype of breast cancer.
Collapse
Affiliation(s)
- F Bertucci
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, UMR891 Inserm, Marseille, France.
| | | | | |
Collapse
|
42
|
Li J, Gonzalez-Angulo AM, Allen PK, Yu TK, Woodward WA, Ueno NT, Lucci A, Krishnamurthy S, Gong Y, Bondy ML, Yang W, Willey JS, Cristofanilli M, Valero V, Buchholz TA. Triple-negative subtype predicts poor overall survival and high locoregional relapse in inflammatory breast cancer. Oncologist 2011; 16:1675-83. [PMID: 22147002 DOI: 10.1634/theoncologist.2011-0196] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Numerous studies have demonstrated that expression of estrogen/progesterone receptor (ER/PR) and human epidermal growth factor receptor (HER)-2 is important for predicting overall survival (OS), distant relapse (DR), and locoregional relapse (LRR) in early and advanced breast cancer patients. However, these findings have not been confirmed for inflammatory breast cancer (IBC), which has different biological features than non-IBC. METHODS We retrospectively analyzed the records of 316 women who presented to MD Anderson Cancer Center in 1989-2008 with newly diagnosed IBC without distant metastases. Most patients received neoadjuvant chemotherapy, mastectomy, and postmastectomy radiation. Patients were grouped according to receptor status: ER(+) (ER(+)/PR(+) and HER-2-; n = 105), ER(+)HER-2(+) (ER(+)/PR(+) and HER-2(+); n = 37), HER-2(+) (ER(-)/PR(-) and HER-2(+); n = 83), or triple-negative (TN) (ER(-)PR(-)HER-2(-); n = 91). Kaplan-Meier and Cox proportional hazards methods were used to assess LRR, DR, and OS rates and their associations with prognostic factors. RESULTS The median age was 50 years (range, 24-83 years). The median follow-up time and median OS time for all patients were both 33 months. The 5-year actuarial OS rates were 58.7% for the entire cohort, 69.7% for ER(+) patients, 73.5% for ER(+)HER-2(+) patients, 54.0% for HER=2(+) patients, and 42.7% for TN patients (p < .0001); 5-year LRR rates were 20.3%, 8.0%, 12.6%, 22.6%, and 38.6%, respectively, for the four subgroups (p < .0001); and 5-year DR rates were 45.5%, 28.8%, 50.1%, 52.1%, and 56.7%, respectively (p < .001). OS and LRR rates were worse for TN patients than for any other subgroup (p < .0001-.03). CONCLUSIONS TN disease is associated with worse OS, DR, and LRR outcomes in IBC patients, indicating the need for developing new locoregional and systemic treatment strategies for patients with this aggressive subtype.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dawood S, Ueno NT, Valero V, Woodward WA, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM, Cristofanilli M. Identifying factors that impact survival among women with inflammatory breast cancer. Ann Oncol 2011; 23:870-5. [PMID: 21765048 DOI: 10.1093/annonc/mdr319] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The objective of this retrospective study was to determine factors impacting survival among women with inflammatory breast cancer (IBC). METHODS The Surveillance, Epidemiology and End Results Registry (SEER) was searched to identify women with stage III/IV IBC diagnosed between 2004 and 2007. IBC was identified within SEER as T4d disease as defined by the sixth edition of the American Joint Committee on Cancer. The Kaplan-Meier product-limit method was used to describe inflammatory breast cancer-specific survival (IBCS). Cox models were fitted to assess the multivariable relationship of various patient and tumor characteristics and IBCS. RESULTS Two thousand three hundred and eighty-four women with stage IIIB/C and IV IBC were identified. Two-year IBCS among women with stage IIIB, IIIC and IV disease was 81%, 67% and 42%, respectively (P < 0.0001). In the multivariable model, patients with stage IIIB disease and those with stage IIIC disease had a 63% [hazard ratio (HR) 0.373, 95% confidence interval (CI) 0.296-0.470, P < 0.001] and 31% (HR 0.691, 95% CI 0.512-0.933, P = 0.016) decreased risk of death from IBC, respectively, compared with women with stage IV disease. Other factors significantly associated with decreased risk of death from IBC included low-grade tumors, being of white/other race, undergoing surgery, receiving radiation therapy and hormone receptor-positive disease. Among women with stage IV disease, those who underwent surgery of their primary had a 51% decreased risk of death compared with those who did not undergo surgery (HR = 0.489, 95% CI 0.339-0.704, P < 0.0001). CONCLUSIONS Although IBC is an aggressive subtype of locally advanced breast cancer, it is heterogeneous with various factors affecting survival. Furthermore, our results indicate that a subgroup of women with stage IV IBC may benefit from aggressive combined modality management.
Collapse
Affiliation(s)
- S Dawood
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Overmoyer BA, Lee JM, Lerwill MF. Case records of the Massachusetts General Hospital. Case 17-2011. A 49-year-old woman with a mass in the breast and overlying skin changes. N Engl J Med 2011; 364:2246-54. [PMID: 21651397 DOI: 10.1056/nejmcpc1100922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Beth A Overmoyer
- Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, USA
| | | | | |
Collapse
|
45
|
Mackay A, Weigelt B, Grigoriadis A, Kreike B, Natrajan R, A'Hern R, Tan DSP, Dowsett M, Ashworth A, Reis-Filho JS. Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst 2011; 103:662-73. [PMID: 21421860 PMCID: PMC3079850 DOI: 10.1093/jnci/djr071] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Breast cancers can be classified by hierarchical clustering using an “intrinsic” gene list into one of at least five molecular subtypes: basal-like, HER2, luminal A, luminal B, and normal breast-like. Five different intrinsic gene lists composed of varying numbers of genes have been used for molecular subtype identification and classification of breast cancers. The aim of this study was to determine the objectivity and interobserver reproducibility of the assignment of molecular subtype classes by hierarchical cluster analysis. Methods Three publicly available breast cancer datasets (n = 779) were subjected to two-way average-linkage hierarchical cluster analysis using five distinct intrinsic gene lists. We used free-marginal Kappa statistics to analyze interobserver agreement among five breast cancer researchers for the whole classification and for each molecular subtype separately according to each intrinsic gene list for each breast cancer dataset. Results None of the classification systems tested produced almost perfect agreement (Kappa ≥ 0.81) among observers. However, substantial interobserver agreement (70.8% to 76.1% of the samples and free-marginal Kappa scores from 0.635 to 0.701) was consistently observed in all datasets for four molecular subtypes (luminal, basal-like, HER2, and normal breast-like). When luminal cancers were subdivided (luminal A, B, and C), none of the classification systems produced substantial agreement (Kappa ≥ 0.61) in all the datasets analyzed. Analysis of each subtype separately revealed that only two (basal-like and HER2) could be reproducibly identified by independent observers (Kappa ≥ 0.81). Conclusions Assignment of molecular subtype classes of breast cancer based on the analysis of dendrograms obtained with hierarchical cluster analysis is subjective and shows modest interobserver reproducibility. For the development of a molecular taxonomy, objective definitions for each molecular subtype and standardized methods for their identification are required.
Collapse
Affiliation(s)
- Alan Mackay
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Rd, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nouh MA, Mohamed MM, El-Shinawi M, Shaalan MA, Cavallo-Medved D, Khaled HM, Sloane BF. Cathepsin B: a potential prognostic marker for inflammatory breast cancer. J Transl Med 2011. [PMID: 21199580 DOI: 10.1186/1479-5876-9-11479-5876-9-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer. In non-IBC, the cysteine protease cathepsin B (CTSB) is known to be involved in cancer progression and invasion; however, very little is known about its role in IBC. METHODS In this study, we enrolled 23 IBC and 27 non-IBC patients. All patient tissues used for analysis were from untreated patients. Using immunohistochemistry and immunoblotting, we assessed the levels of expression of CTSB in IBC versus non-IBC patient tissues. Previously, we found that CTSB is localized to caveolar membrane microdomains in cancer cell lines including IBC, and therefore, we also examined the expression of caveolin-1 (cav-1), a structural protein of caveolae in IBC versus non-IBC tissues. In addition, we tested the correlation between the expression of CTSB and cav-1 and the number of positive metastatic lymph nodes in both patient groups. RESULTS Our results revealed that CTSB and cav-1 were overexpressed in IBC as compared to non-IBC tissues. Moreover, there was a significant positive correlation between the expression of CTSB and the number of positive metastatic lymph nodes in IBC. CONCLUSIONS CTSB may initiate proteolytic pathways crucial for IBC invasion. Thus, our data demonstrate that CTSB may be a potential prognostic marker for lymph node metastasis in IBC.
Collapse
Affiliation(s)
- Mohamed A Nouh
- Department of Pathology, National Cancer Institute, Cairo University, Giza 12613 Egypt
| | | | | | | | | | | | | |
Collapse
|
47
|
Nouh MA, Mohamed MM, El-Shinawi M, Shaalan MA, Cavallo-Medved D, Khaled HM, Sloane BF. Cathepsin B: a potential prognostic marker for inflammatory breast cancer. J Transl Med 2011; 9:1. [PMID: 21199580 PMCID: PMC3022726 DOI: 10.1186/1479-5876-9-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer. In non-IBC, the cysteine protease cathepsin B (CTSB) is known to be involved in cancer progression and invasion; however, very little is known about its role in IBC. Methods In this study, we enrolled 23 IBC and 27 non-IBC patients. All patient tissues used for analysis were from untreated patients. Using immunohistochemistry and immunoblotting, we assessed the levels of expression of CTSB in IBC versus non-IBC patient tissues. Previously, we found that CTSB is localized to caveolar membrane microdomains in cancer cell lines including IBC, and therefore, we also examined the expression of caveolin-1 (cav-1), a structural protein of caveolae in IBC versus non-IBC tissues. In addition, we tested the correlation between the expression of CTSB and cav-1 and the number of positive metastatic lymph nodes in both patient groups. Results Our results revealed that CTSB and cav-1 were overexpressed in IBC as compared to non-IBC tissues. Moreover, there was a significant positive correlation between the expression of CTSB and the number of positive metastatic lymph nodes in IBC. Conclusions CTSB may initiate proteolytic pathways crucial for IBC invasion. Thus, our data demonstrate that CTSB may be a potential prognostic marker for lymph node metastasis in IBC.
Collapse
Affiliation(s)
- Mohamed A Nouh
- Department of Pathology, National Cancer Institute, Cairo University, Giza 12613 Egypt
| | | | | | | | | | | | | |
Collapse
|
48
|
Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN, Barsky SH, Woodward WA, Buchholz T, Lucci A, Ueno NT, Cristofanilli M. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin 2010; 60:351-75. [PMID: 20959401 DOI: 10.3322/caac.20082] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of invasive breast cancer accounting for 2.5% of all breast cancer cases. It is characterized by rapid progression, local and distant metastases, younger age of onset, and lower overall survival compared with other breast cancers. Historically, IBC is a lethal disease with less than a 5% survival rate beyond 5 years when treated with surgery or radiation therapy. Because of its rarity, IBC is often misdiagnosed as mastitis or generalized dermatitis. This review examines IBC's unique clinical presentation, pathology, epidemiology, imaging, and biology and details current multidisciplinary management of the disease, which comprises systemic therapy, surgery, and radiation therapy.
Collapse
Affiliation(s)
- Fredika M Robertson
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This Review outlines the understanding and management of triple-negative breast cancer (TNBC). TNBC shares morphological and genetic abnormalities with basal-like breast cancer (BLBC), a subgroup of breast cancer defined by gene-expression profiling. However, TNBC and BLBC tumors are heterogeneous and overlap is incomplete. Breast cancers found in BRCA1 mutation carriers are also frequently triple negative and basal like. TNBC and BLBC occur most frequently in young women, especially African Americans, and tend to exhibit aggressive, metastatic behavior. These tumors respond to conventional chemotherapy but relapse more frequently than hormone receptor-positive, luminal subtypes and have a worse prognosis. New systemic therapies are urgently needed as most patients with TNBC and/or BLBC relapse with distant metastases, and hormonal therapies and HER2-targeted agents are ineffective in this group of tumors. Poly (ADP-ribose) polymerase inhibitors, angiogenesis inhibitors, EGFR-targeted agents, and src kinase and mTOR inhibitors are among the therapeutic agents being actively investigated in clinical trials in patients with TNBC and/or BRCA1-associated tumors. Increased understanding of the genetic abnormalities involved in the pathogenesis of TNBC, BLBC and BRCA1-associated tumors is opening up new therapeutic possibilities for these hard-to-treat breast cancers.
Collapse
|
50
|
Abstract
Background: MicroRNAs (miRNAs) are key regulators of gene expression. In this study, we explored whether altered miRNA expression has a prominent role in defining the inflammatory breast cancer (IBC) phenotype. Methods: We used quantitative PCR technology to evaluate the expression of 384 miRNAs in 20 IBC and 50 non-IBC samples. To gain understanding on the biological functions deregulated by aberrant miRNA expression, we looked for direct miRNA targets by performing pair-wise correlation coefficient analysis on expression levels of 10 962 messenger RNAs (mRNAs) and by comparing these results with predicted miRNA targets from TargetScan5.1. Results: We identified 13 miRNAs for which expression levels were able to correctly predict the nature of the sample analysed (IBC vs non-IBC). For these miRNAs, we detected a total of 17 295 correlated miRNA–mRNA pairs, of which 7012 and 10 283 pairs showed negative and positive correlations, respectively. For four miRNAs (miR-29a, miR-30b, miR-342-3p and miR-520a-5p), correlated genes were concordant with predicted targets. A gene set enrichment analysis on these genes demonstrated significant enrichment in biological processes related to cell proliferation and signal transduction. Conclusions: This study represents, to the best of our knowledge, the first integrated analysis of miRNA and mRNA expression in IBC. We identified a set of 13 miRNAs of which expression differed between IBC and non-IBC, making these miRNAs candidate markers for the IBC subtype.
Collapse
|