1
|
Ramos R, Vale N. Dual Drug Repurposing: The Example of Saracatinib. Int J Mol Sci 2024; 25:4565. [PMID: 38674150 PMCID: PMC11050334 DOI: 10.3390/ijms25084565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Saracatinib (AZD0530) is a dual Src/Abl inhibitor initially developed by AstraZeneca for cancer treatment; however, data from 2006 to 2024 reveal that this drug has been tested not only for cancer treatment, but also for the treatment of other diseases. Despite the promising pre-clinical results and the tolerability shown in phase I trials, where a maximum tolerated dose of 175 mg was defined, phase II clinical data demonstrated a low therapeutic action against several cancers and an elevated rate of adverse effects. Recently, pre-clinical research aimed at reducing the toxic effects and enhancing the therapeutic performance of saracatinib using nanoparticles and different pharmacological combinations has shown promising results. Concomitantly, saracatinib was repurposed to treat Alzheimer's disease, targeting Fyn. It showed great clinical results and required a lower daily dose than that defined for cancer treatment, 125 mg and 175 mg, respectively. In addition to Alzheimer's disease, this Src inhibitor has also been studied in relation to other health conditions such as pulmonary and liver fibrosis and even for analgesic and anti-allergic functions. Although saracatinib is still not approved by the Food and Drug Administration (FDA), the large number of alternative uses for saracatinib and the elevated number of pre-clinical and clinical trials performed suggest the huge potential of this drug for the treatment of different kinds of diseases.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta 2024; 557:117855. [PMID: 38453050 DOI: 10.1016/j.cca.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is the most common cancer and the leading cause of mortality worldwide. Despite advancements in detection and treatment, it remains a major cause of cancer-related deaths in women. Breast cancer stem cells (BCSCs) are a crucial group of cells responsible for carcinogenesis, metastasis, medication resistance, and tumor recurrence. Identifying and understanding their molecular pathways is essential for developing effective breast cancer therapy. BCSCs are responsible for tumor genesis, development, metastasis, treatment resistance, and recurrence. Biomarkers are essential tools for identifying high-risk patients, improving diagnostic accuracy, developing follow-up programs, assessing treatment susceptibility, and predicting prognostic outcomes. Stem cell intervention therapy can provide specialized tools for precision therapy. Biomarker analysis in cancer patients is crucial to identify cells associated with disease progression and post-therapeutic relapse. However, negative post-therapeutic impacts can enhance cancer stemness by boosting BCSCs plasticity phenotypes, activating stemness pathways in non-BCSCs, and promoting senescence escape, leading to tumor relapse and metastasis. Despite the advancements in precision medicine, challenges persist in identifying stem cell markers, limiting the number of eligible patients for treatment. The diversity of biomedical research hinders the development of individualization-based preventative, monitoring, and treatment strategies, especially in oncology. Integrating and interpreting clinical and scientific data remains challenging. The development of stem cell-related indicators could significantly improve disease precision, enabling stem cell-targeted therapy and personalized treatment plans, although BCSCs are promising for breast cancer treatment optimization, serving as biomarkers for current therapy modalities. This summary discusses recent advancements in breast cancer stem cell research, including biomarkers, identification methods, molecular mechanisms, and tools for studying their biological origin and lineage development for precision medicine.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
3
|
Goel RK, Kim N, Lukong KE. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon 2023; 9:e16421. [PMID: 37251450 PMCID: PMC10220380 DOI: 10.1016/j.heliyon.2023.e16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
SRMS (Src-Related kinase lacking C-terminal regulatory tyrosine and N-terminal Myristoylation Sites) is a non-receptor tyrosine kinase first reported in a 1994 screen for genes regulating murine neural precursor cells. SRMS, pronounced "Shrims", lacks the C-terminal regulatory tyrosine critical for the regulation of the enzymatic activity of Src-family kinases (SFKs). Another remarkable characteristic of SRMS is its localization into distinct SRMS cytoplasmic punctae (SCPs) or GREL (Goel Raghuveera-Erique Lukong) bodies, a pattern not observed in the SFKs. This unique subcellular localization of SRMS could dictate its cellular targets, proteome, and potentially, substrates. However, the function of SRMS is still relatively unknown. Further, how is its activity regulated and by what cellular targets? Studies have emerged highlighting the potential role of SRMS in autophagy and in regulating the activation of BRK/PTK6. Potential novel cellular substrates have also been identified, including DOK1, vimentin, Sam68, FBKP51, and OTUB1. Recent studies have also demonstrated the potential role of the kinase in various cancers, including gastric and colorectal cancers and platinum resistance in ovarian cancer. This review discusses the advancements made in SRMS-related biology to date and the path to understanding the cellular and physiological significance of the kinase.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nayoung Kim
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, Health Sciences Building, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| |
Collapse
|
4
|
Oswald AJ, Symeonides SN, Wheatley D, Chan S, Brunt AM, McAdam K, Schmid P, Waters S, Poole C, Twelves C, Perren T, Bartlett J, Piper T, Chisholm EM, Welsh M, Hill R, Hopcroft LEM, Barrett-Lee P, Cameron DA. Aromatase inhibition plus/minus Src inhibitor saracatinib (AZD0530) in advanced breast cancer therapy (ARISTACAT): a randomised phase II study. Breast Cancer Res Treat 2023; 199:35-46. [PMID: 36859649 PMCID: PMC10147753 DOI: 10.1007/s10549-023-06873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE The development of oestrogen resistance is a major challenge in managing hormone-sensitive metastatic breast cancer. Saracatinib (AZD0530), an oral Src kinase inhibitor, prevents oestrogen resistance in animal models and reduces osteoclast activity. We aimed to evaluate the efficacy of saracatinib addition to aromatase inhibitors (AI) in patients with hormone receptor-positive metastatic breast cancer. METHODS This phase II multicentre double-blinded randomised trial allocated post-menopausal women to AI with either saracatinib or placebo (1:1 ratio). Patients were stratified into an "AI-sensitive/naïve" group who received anastrozole and "prior-AI" group who received exemestane. Primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate (ORR) and toxicity. RESULTS 140 patients were randomised from 20 UK centres to saracatinib/AI (n = 69) or placebo/AI (n = 71). Saracatinib was not associated with an improved PFS (3.7 months v. 5.6 months placebo/AI) and did not reduce likelihood of bony progression. There was no benefit in OS or ORR. Effects were consistent in "AI-sensitive/naive" and "prior-AI" sub-groups. Saracatinib was well tolerated with dose reductions in 16% and the main side effects were gastrointestinal, hypophosphatemia and rash. CONCLUSION Saracatinib did not improve outcomes in post-menopausal women with metastatic breast cancer. There was no observed beneficial effect on bone metastases. CRUKE/11/023, ISRCTN23804370.
Collapse
Affiliation(s)
| | | | | | - Stephen Chan
- Nottingham University Hospitals NHS Trust, Nottingham, England, UK
| | - Adrian Murray Brunt
- University Hospitals of North Midlands NHS Trust, Stoke-On-Trent & University of Keele, Staffordshire, England, UK
| | - Karen McAdam
- Peterborough City Hospital, Peterborough, England, UK
| | | | - Simon Waters
- Velindre Hospital, Whitchurch, Cardiff, Wales, UK
| | | | - Chris Twelves
- University of Leeds and St James' Hospital, Leeds, England, UK
| | - Timothy Perren
- University of Leeds and St James' Hospital, Leeds, England, UK
| | | | - Tammy Piper
- University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Michelle Welsh
- Scottish Clinical Trials Research Unit, Edinburgh, Scotland, UK
| | - Robert Hill
- Scottish Clinical Trials Research Unit, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
5
|
Lee TW, Lee KM. ECM1 is associated with endocrine resistance in ER + breast cancers. Anim Cells Syst (Seoul) 2022; 26:99-107. [PMID: 35784388 PMCID: PMC9246032 DOI: 10.1080/19768354.2022.2083235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular matrix protein 1 (ECM1) is associated with a poor prognosis of breast cancers. However, the role of ECM1 with endocrine resistance in estrogen receptor-positive (ER+) breast cancers has not been elucidated yet. We show that ECM1 promotes endocrine resistance in ER+ breast cancers. ECM1 is overexpressed in luminal breast cancer patients compared to the basal type of breast cancer. Significantly, higher expression of ECM1 is associated with poor response to endocrine therapies in luminal B breast cancer patients. We found that ECM1 is upregulated in CAMA1 and MDA-MB-361 cells grown in long-term estrogen-deprived (LTED) conditions. Moreover, the ablation of ECM1 significantly inhibited the proliferation of CAMA1 LTED and MDA-MB-361 LTED cells. Finally, an interrogation of a dataset containing transcriptome and proteome of breast cancer cell lines revealed that the level of ECM1 mRNA is positively correlated with that of phosphorylated Src. Based on these findings, we strongly suggest that ECM1 significantly contributes to the acquisition of endocrine resistance in ER+ breast cancers by the activation of Src.
Collapse
Affiliation(s)
- Tae Won Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyung-min Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proc Natl Acad Sci U S A 2022; 119:e2115308119. [PMID: 35263230 PMCID: PMC8931256 DOI: 10.1073/pnas.2115308119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Collapse
|
7
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
8
|
Moon SY, Lee H, Kim S, Hong JH, Chun SH, Lee HY, Kang K, Kim HS, Won HS, Ko YH. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer 2021; 21:931. [PMID: 34407787 PMCID: PMC8371881 DOI: 10.1186/s12885-021-08641-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The mechanisms of endocrine resistance are complex, and deregulation of several oncogenic signalling pathways has been proposed. We aimed to investigate the role of the EGFR and Src-mediated STAT3 signalling pathway in tamoxifen-resistant breast cancer cells. METHODS The ER-positive luminal breast cancer cell lines, MCF-7 and T47D, were used. We have established an MCF-7-derived tamoxifen-resistant cell line (TamR) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen. Cell viability was determined using an MTT assay, and protein expression levels were determined using western blot. Cell cycle and annexin V staining were analysed using flow cytometry. RESULTS TamR cells showed decreased expression of estrogen receptor and increased expression of EGFR. TamR cells showed an acceleration of the G1 to S phase transition. The protein expression levels of phosphorylated Src, EGFR (Y845), and STAT3 was increased in TamR cells, while phosphorylated Akt was decreased. The expression of p-STAT3 was enhanced according to exposure time of tamoxifen in T47D cells, suggesting that activation of STAT3 can cause tamoxifen resistance in ER-positive breast cancer cells. Both dasatinib (Src inhibitor) and stattic (STAT3 inhibitor) inhibited cell proliferation and induced apoptosis in TamR cells. However, stattic showed a much stronger effect than dasatinib. Knockdown of STAT3 expression by siRNA had no effect on sensitivity to tamoxifen in MCF-7 cells, while that enhanced sensitivity to tamoxifen in TamR cells. There was not a significant synergistic effect of dasatinib and stattic on cell survival. TamR cells have low nuclear p21(Cip1) expression compared to MCF-7 cells and inhibition of STAT3 increased the expression of nuclear p21(Cip1) in TamR cells. CONCLUSIONS The EGFR and Src-mediated STAT3 signalling pathway is activated in TamR cells, and inhibition of STAT3 may be a potential target in tamoxifen-resistant breast cancer. An increase in nuclear p21(Cip1) may be a key step in STAT3 inhibitor-induced cell death in TamR cells.
Collapse
Affiliation(s)
- Seo Yun Moon
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heejin Lee
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seoree Kim
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Yeon Lee
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Republic of Korea
| | - Ho Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Sung Won
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271 Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea.
| | - Yoon Ho Ko
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-gu, Seoul, 03312, Republic of Korea.
| |
Collapse
|
9
|
Jimura N, Fujii K, Qiao Z, Tsuchiya R, Yoshimatsu Y, Kondo T, Kanekura T. Kinome profiling analysis identified Src pathway as a novel therapeutic target in combination with histone deacetylase inhibitors for cutaneous T-cell lymphoma. J Dermatol Sci 2021; 101:194-201. [PMID: 33531202 DOI: 10.1016/j.jdermsci.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/26/2020] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) are used to treat patients with cutaneous T-cell lymphoma (CTCL), but they show limited efficacy. Hence, combination therapies should be explored to enhance the effectiveness of HDACis. OBJECTIVE This study was conducted to identify novel therapeutic targets that can be combined with HDACis for treating CTCL. METHODS We performed a global kinome profiling assay of three CTCL cell lines (HH, MJ, and Hut78) with three HDACis (romidepsin, vorinostat, and belinostat) using the PamChip® microarray. The three cell lines were co-treated with romidepsin and an inhibitor against the tyrosine kinase pathway. RESULTS Principal component analysis revealed that kinome expression patterns were mainly related to the cell origin and were not affected by the drugs. Few kinases were commonly activated by the HDACis. Most identified kinases were Src-associated molecules, such as annexin A2, embryonal Fyn-associated substrate, and progesterone receptor. Phosphorylated Src was not observed in any untreated cell lines, whereas Src phosphorylation was detected in two of the three cell lines after HDACi treatment. Ponatinib, a Src inhibitor, significantly enhanced romidepsin-induced apoptosis not only in HH, MJ, and Hut78 cells, but also in Myla and SeAx CTCL cell lines. CONCLUSION The Src pathway is a possible target for combination therapy involving HDACis for CTCL.
Collapse
Affiliation(s)
- Nozomi Jimura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuyasu Fujii
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan.
| | - Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan; Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
10
|
Chen J, Liu C, Cen J, Liang T, Xue J, Zeng H, Zhang Z, Xu G, Yu C, Lu Z, Wang Z, Jiang J, Zhan X, Zeng J. KEGG-expressed genes and pathways in triple negative breast cancer: Protocol for a systematic review and data mining. Medicine (Baltimore) 2020; 99:e19986. [PMID: 32358373 PMCID: PMC7440132 DOI: 10.1097/md.0000000000019986] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The incidence of triple negative breast cancer (TNBC) is at a relatively high level, and our study aimed to identify differentially expressed genes (DEGs) in TNBC and explore the key pathways and genes of TNBC. METHODS The gene expression profiling (GSE86945, GSE86946 and GSE102088) data were obtained from Gene Expression Omnibus Datasets, DEGs were identified by using R software, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) tools, and the protein-protein interaction (PPI) network of the DEGs was constructed by the STRING database and visualized by Cytoscape software. Finally, the survival value of hub DEGs in breast cancer patients were performed by the Kaplan-Meier plotter online tool. RESULTS A total of 2998 DEGs were identified between TNBC and health breast tissue, including 411 up-regulated DEGs and 2587 down-regulated DEGs. GO analysis results showed that down-regulated DEGs were enriched in gene expression (BP), extracellular exosome (CC), and nucleic acid binding, and up-regulated were enriched in chromatin assembly (BP), nucleosome (CC), and DNA binding (MF). KEGG pathway results showed that DEGs were mainly enriched in Pathways in cancer and Systemic lupus erythematosus and so on. Top 10 hub genes were picked out from PPI network by connective degree, and 7 of top 10 hub genes were significantly related with adverse overall survival in breast cancer patients (P < .05). Further analysis found that only EGFR had a significant association with the prognosis of triple-negative breast cancer (P < .05). CONCLUSIONS Our study showed that DEGs were enriched in pathways in cancer, top 10 DEGs belong to up-regulated DEGs, and 7 gene connected with poor prognosis in breast cancer, including HSP90AA1, SRC, HSPA8, ESR1, ACTB, PPP2CA, and RPL4. These can provide some guidance for our research on the diagnosis and prognosis of TNBC, and further research is needed to evaluate their value in the targeted therapy of TNBC.
Collapse
Affiliation(s)
| | - Chong Liu
- Department of Spine and Osteopathy Ward
| | | | - Tuo Liang
- Department of Spine and Osteopathy Ward
| | - Jiang Xue
- Department of Spine and Osteopathy Ward
| | | | | | | | | | | | | | - Jie Jiang
- Department of Spine and Osteopathy Ward
| | | | - Jian Zeng
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
11
|
Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:198-209. [PMID: 31815253 PMCID: PMC6897388 DOI: 10.20517/cdr.2019.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The translational research strategy of targeting estrogen receptor α (ERα) positive breast cancer and then using long term anti-hormone adjuvant therapy (5-10 years) has reduced recurrences and mortality. However, resistance continues to occur and improvements are required to build on the success of tamoxifen and aromatase inhibitors (AIs) established over the past 40 years. Further translational research has described the evolution of acquired resistance of breast cancer cell lines to long term estrogen deprivation that parallels clinical experience over years. Additionally, recent reports have identified mutations in the ERα obtained from the recurrences of AI treated patients. These mutations allow the ERα to activate without ligands and auto stimulate metastatic tumor growth. Furthermore, the new biology of estrogen-induced apoptosis in acquired resistant models in vitro and in vivo has been interrogated and applied to clinical trials. Inflammation and stress are emerging concepts occurring in the process of acquired resistance and estrogen-induced apoptosis with different mechanisms. In this review, we will present progress in the understanding of acquired resistance, focus on stress and inflammatory responses in the development of acquired resistance, and consider approaches to create new treatments to improve the treatment of breast cancer with endocrine resistance.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Xiong J, Wu JS, Mao SS, Yu XN, Huang XX. Effect of saracatinib on pulmonary metastases from hepatocellular carcinoma. Oncol Rep 2016; 36:1483-90. [PMID: 27460949 DOI: 10.3892/or.2016.4968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Src is involved in multiple processes of cancer metastasis; however, its significance in HCC is not well defined. In the present study, overexpression of Src phosphorylation (Y416) was observed in the highly metastatic MHCC97H cell line; additionally, through inhibition of Src kinase activation, HCC cell proliferation, migration, invasion and colony formation were significantly reduced in vitro. Tumour growth was not affected in the orthotopic xenograft HCC model, but the metastasic potential was inhibited as revealed by reduced lung metastasic foci after administration of saracatinib. Phosphorylation level of Src pathway signalling molecules, such as Src, FAK and Stat3, were also reduced in vitro and in vivo, as a result of the anti-metastasic effects caused by saracatinib treatment. In conclusion, we demonstrated the pro-metastasic role of Src in HCC, and further experiments suggest the use of the Src inhibitor in combination with cytotoxic agents and other anticancer treatments to improve HCC prognosis.
Collapse
Affiliation(s)
- Ju Xiong
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P.R. China
| | - Jin-Sheng Wu
- Department of Oncology, Hainan Nonken Nada Hospital, Danzhou, Hainan 571700, P.R. China
| | - Shan-Shan Mao
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| | - Xiang-Nan Yu
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| | - Xiao-Xi Huang
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| |
Collapse
|
13
|
|
14
|
Hojjat-Farsangi M. Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances. J Drug Target 2015. [DOI: 10.3109/1061186x.2015.1068319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden and
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
15
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
16
|
Gee JMW, Nicholson RI, Barrow D, Dutkowski CM, Goddard L, Jordan NJ, McClelland RA, Knowlden JM, Francies HE, Hiscox SE, Hutcheson IR. Antihormone induced compensatory signalling in breast cancer: an adverse event in the development of endocrine resistance. Horm Mol Biol Clin Investig 2015; 5:67-77. [PMID: 25961242 DOI: 10.1515/hmbci.2011.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 12/16/2022]
Abstract
Using MCF7 breast cancer cells, it has been shown that antihormones promote expression/activity of oestrogen-repressed tyrosine kinases, notably EGFR, HER2 and Src. These inductive events confer responsiveness to targeted inhibitors (e.g., gefitinib, trastuzumab, saracatinib). We observed that these antihormone-induced phenomena are common to ER+HER2- and ER+HER2+ breast cancer models in vitro, where targeting of EGFR, HER2 or Src alongside antihormone improves antitumour response and delays/prevents endocrine resistance. Such targeted inhibitors also subvert acquired endocrine resistant cells which retain increased EGFR, HER2 and Src (e.g., TAMR and FASR models derived after 6-12 months of tamoxifen or Faslodex treatment). Thus, antihormone-induced tyrosine kinases comprise "compensatory signalling" crucial in limiting maximal initial antihormone response and subsequently driving acquired resistance in vitro. However, despite such convincing preclinical findings from our group and others, clinical trials examining equivalent antigrowth factor strategies have proved relatively disappointing. Our new studies deciphering underlying causes reveal that further antihormone-promoted events could be pivotal in vivo. Firstly, Faslodex induces HER3 and HER4 which sensitise ER+ cells to heregulin, a paracrine growth factor that overcomes endocrine response and diminishes antitumour effect of agents targeting EGFR, HER2 or Src alongside antihormone. Secondly, extended antihormone exposure (experienced by ER+ cells prior to adjuvant clinical relapse) can "reprogramme" the compensatory kinase profile in vitro, hindering candidate antigrowth factor targeting of endocrine resistance. Faslodex resistant cells maintained with this antihormone for 3 years in vitro lose EGFR/HER2 dependency, gaining alternative mitogenic/invasion kinases. Deciphering these previously unrecognised antihormone-induced events could provide superior treatments to control endocrine relapse in the clinic.
Collapse
|
17
|
SRC drives growth of antiestrogen resistant breast cancer cell lines and is a marker for reduced benefit of tamoxifen treatment. PLoS One 2015; 10:e0118346. [PMID: 25706943 PMCID: PMC4338193 DOI: 10.1371/journal.pone.0118346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023] Open
Abstract
The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen.
Collapse
|
18
|
Schwarz LJ, Fox EM, Balko JM, Garrett JT, Kuba MG, Estrada MV, González-Angulo AM, Mills GB, Red-Brewer M, Mayer IA, Abramson V, Rizzo M, Kelley MC, Meszoely IM, Arteaga CL. LYN-activating mutations mediate antiestrogen resistance in estrogen receptor-positive breast cancer. J Clin Invest 2014; 124:5490-502. [PMID: 25401474 DOI: 10.1172/jci72573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/16/2014] [Indexed: 12/17/2022] Open
Abstract
Estrogen receptor-positive (ER(+)) breast cancers adapt to hormone deprivation and become resistant to antiestrogen therapy. Here, we performed deep sequencing on ER(+) tumors that remained highly proliferative after treatment with the aromatase inhibitor letrozole and identified a D189Y mutation in the inhibitory SH2 domain of the SRC family kinase (SFK) LYN. Evaluation of 463 breast tumors in The Cancer Genome Atlas revealed four LYN mutations, two of which affected the SH2 domain. In addition, LYN was upregulated in multiple ER(+) breast cancer lines resistant to long-term estrogen deprivation (LTED). An RNAi-based kinome screen revealed that LYN is required for growth of ER(+) LTED breast cancer cells. Kinase assays and immunoblot analyses of SRC substrates in transfected cells indicated that LYN(D189Y) has higher catalytic activity than WT protein. Further, LYN(D189Y) exhibited reduced phosphorylation at the inhibitory Y507 site compared with LYN(WT). Other SH2 domain LYN mutants, E159K and K209N, also exhibited higher catalytic activity and reduced inhibitory site phosphorylation. LYN(D189Y) overexpression abrogated growth inhibition by fulvestrant and/or the PI3K inhibitor BKM120 in 3 ER(+) breast cancer cell lines. The SFK inhibitor dasatinib enhanced the antitumor effect of BKM120 and fulvestrant against estrogen-deprived ER(+) xenografts but not LYN(D189Y)-expressing xenografts. These results suggest that LYN mutations mediate escape from antiestrogens in a subset of ER(+) breast cancers.
Collapse
MESH Headings
- Amino Acid Substitution
- Aminopyridines/agonists
- Aminopyridines/pharmacology
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Dasatinib
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Estrogen Receptor Modulators/pharmacology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Mice
- Mice, Nude
- Morpholines/agonists
- Morpholines/pharmacology
- Mutation, Missense
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Phosphorylation/genetics
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/agonists
- Pyrimidines/pharmacology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Thiazoles/agonists
- Thiazoles/pharmacology
- Xenograft Model Antitumor Assays
- src Homology Domains
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
|
19
|
Fan P, Agboke FA, Cunliffe HE, Ramos P, Jordan VC. A molecular model for the mechanism of acquired tamoxifen resistance in breast cancer. Eur J Cancer 2014; 50:2866-76. [PMID: 25204804 PMCID: PMC4194144 DOI: 10.1016/j.ejca.2014.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/22/2014] [Accepted: 08/07/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Oestrogen (E2)-stimulated growth re-emerges after a c-Src inhibitor blocking E2-induced apoptosis. A resulting cell line, MCF-7:PF, is selected with features of functional oestrogen receptor (ER) and over-expression of insulin-like growth factor-1 receptor beta (IGF-1Rβ). We addressed the question of whether the selective ER modulator (SERM), 4-hydroxytamoxifen (4-OHT) or other SERMs could target ER to prevent E2-stimulated growth in MCF-7:PF cells. METHODS Protein levels of receptors and signalling pathways were examined by immunoblotting. Expression of mRNA was measured through real-time RT-PCR. Recruitment of ER or nuclear receptor coactivator 3 (SRC3) to the promoter of ER-target gene was detected by chromatin-immunoprecipitation (ChIP). RESULTS 4-OHT and other SERMs stimulated cell growth in an ER-dependent manner. However, unlike E2, 4-OHT suppressed classical ER-target genes as does the pure antioestrogen ICI 182,780 (ICI). ChIP assay indicated that 4-OHT did not recruit ER or SRC3 to the promoter of ER-target gene, pS2. Paradoxically, 4-OHT reduced total IGF-1Rβ but increased phosphorylation of IGF-1Rβ. Mechanistic studies revealed that 4-OHT functioned as an agonist to enhance the non-genomic activity of ER and activate focal adhesion molecules to further increase phosphorylation of IGF-1Rβ. Disruption of membrane-associated signalling, IGF-1R and focal adhesion kinase (FAK), completely abolished 4-OHT-stimulated cell growth. CONCLUSIONS This study is the first to recapitulate a cellular model in vitro of acquired tamoxifen resistance developed in athymic mice in vivo. Importantly, it provides a rationale that membrane-associated pathways may be valuable therapeutic targets for tamoxifen resistant patients in clinic.
Collapse
Affiliation(s)
- Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - Fadeke A Agboke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - Heather E Cunliffe
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, United States
| | - Pilar Ramos
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, United States
| | - V Craig Jordan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States.
| |
Collapse
|
20
|
|
21
|
HUANG OU, XIE ZUOQUAN, ZHANG WEILI, LOU YING, MAO YAN, LIU HONGCHUN, JIANG MIN, SHEN KUNWEI. A771726, an anti-inflammatory drug, exerts an anticancer effect and reverses tamoxifen resistance in endocrine-resistant breast cancer cells. Oncol Rep 2014; 32:627-34. [DOI: 10.3892/or.2014.3249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/21/2014] [Indexed: 11/06/2022] Open
|
22
|
T47D breast cancer cells switch from ER/HER to HER/c-Src signaling upon acquiring resistance to the antiestrogen fulvestrant. Cancer Lett 2014; 344:90-100. [DOI: 10.1016/j.canlet.2013.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 11/21/2022]
|
23
|
Fan P, Agboke FA, McDaniel RE, Sweeney EE, Zou X, Creswell K, Jordan VC. Inhibition of c-Src blocks oestrogen-induced apoptosis and restores oestrogen-stimulated growth in long-term oestrogen-deprived breast cancer cells. Eur J Cancer 2014; 50:457-68. [PMID: 24183378 PMCID: PMC3947251 DOI: 10.1016/j.ejca.2013.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023]
Abstract
PURPOSE Our publications demonstrate that physiological concentrations of oestrogen (E2) induce endoplasmic reticulum and oxidative stress which finally result in apoptosis in E2-deprived breast cancer cells, MCF-7:5C. c-Src is involved in the process of E2-induced stress. To mimic the clinical administration of c-Src inhibitors, we treated cells with either E2, a c-Src inhibitor PP2, or the combination for 8 weeks to further explore the apoptotic potential of the c-Src inhibitor and E2 on MCF-7:5C cells. METHODS Protein levels of receptors and signalling pathways were examined by immunoblotting. Expression of mRNA was detected through real-time polymerase chain reaction (PCR). Cell cycles were analysed by flow cytometry. RESULTS Long-term treatment with PP2 alone or E2 alone decreased cell growth. In contrast, a combination of PP2 and E2 blocked apoptosis and the resulting cell line (MCF-7:PF) was unique, as they grew vigorously in culture with physiological levels of E2, which could be blocked by the pure antioestrogen ICI182,780. One major change was that PP2 collaborated with E2 to increase the level of insulin-like growth factor-1 receptor beta (IGF-1Rβ). Blockade of IGF-1Rβ completely abolished E2-stimulated growth in MCF-7:PF cells. Furthermore, combination treatment up-regulated transcription factors, Twist1 and Snail, and repressed E-cadherin expression which made MCF-7:PF cells display a characteristic phenotype of epithelial-mesenchymal transition (EMT). CONCLUSIONS These data illustrate the role of the c-Src inhibitor to block E2-induced apoptosis and enhance E2-stimulated growth. Caution must be exercised when considering c-Src inhibitors in clinical trials following the development of acquired resistance to aromatase inhibitors, especially in the presence of the patient's own oestrogen.
Collapse
Affiliation(s)
- Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Fadeke A Agboke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Russell E McDaniel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Elizabeth E Sweeney
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xiaojun Zou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Karen Creswell
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - V Craig Jordan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
24
|
Strategies to overcome endocrine therapy resistance in hormone receptor-positive advanced breast cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.13.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Anti-estrogens and selective estrogen-receptor modulators. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Abstract
Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarize what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.
Collapse
Affiliation(s)
- Thomas W Owens
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney Sydney, NSW, Australia
| | | |
Collapse
|
27
|
Fan P, Griffith OL, Agboke FA, Anur P, Zou X, McDaniel RE, Creswell K, Kim SH, Katzenellenbogen JA, Gray JW, Jordan VC. c-Src modulates estrogen-induced stress and apoptosis in estrogen-deprived breast cancer cells. Cancer Res 2013; 73:4510-20. [PMID: 23704208 DOI: 10.1158/0008-5472.can-12-4152] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emergence of anti-estrogen resistance in breast cancer is an important clinical phenomenon affecting long-term survival in this disease. Identifying factors that convey cell survival in this setting may guide improvements in treatment. Estrogen (E2) can induce apoptosis in breast cancer cells that have been selected for survival after E2 deprivation for long periods (MCF-7:5C cells), but the mechanisms underlying E2-induced stress in this setting have not been elucidated. Here, we report that the c-Src kinase functions as a key adapter protein for the estrogen receptor (ER, ESR1) in its activation of stress responses induced by E2 in MCF-7:5C cells. E2 elevated phosphorylation of c-Src, which was blocked by 4-hydroxytamoxifen (4-OHT), suggesting that E2 activated c-Src through the ER. We found that E2 activated the sensors of the unfolded protein response (UPR), IRE1α (ERN1) and PERK kinase (EIF2AK3), the latter of which phosphorylates eukaryotic translation initiation factor-2α (eIF2α). E2 also dramatically increased reactive oxygen species production and upregulated expression of heme oxygenase HO-1 (HMOX1), an indicator of oxidative stress, along with the central energy sensor kinase AMPK (PRKAA2). Pharmacologic or RNA interference-mediated inhibition of c-Src abolished the phosphorylation of eIF2α and AMPK, blocked E2-induced ROS production, and inhibited E2-induced apoptosis. Together, our results establish that c-Src kinase mediates stresses generated by E2 in long-term E2-deprived cells that trigger apoptosis. This work offers a mechanistic rationale for a new approach in the treatment of endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garbar C, Mascaux C, Curé H, Bensussan A. Muc1/Cd227 immunohistochemistry in routine practice is a useful biomarker in breast cancers. J Immunoassay Immunochem 2013; 34:232-45. [PMID: 23656244 DOI: 10.1080/15321819.2012.699491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over-expression of MUC1/CD227 is observed in 90% of breast tumors. Classical morphologic description and semi-quantitative digital measurement of MUC1 were performed from immunohistochemical stained slides of 123 routine histological samples. Measures of MUC1 expression showed statistical differences between non tumoral (NT) breast tissue and Ductal Carcinoma In Situ (DCIS) or infiltrating carcinoma (IC), p < 0.0001. Loss of MUC1 was correlated with high Ki67 index (p = 0.001) and loss of hormonal receptors (p = 0.03), whereas no correlations were found with HER2 expression. High-grade DCIS or IC showed increasing loss of apical polarised and cytoplasmic expression of MUC1.
Collapse
|
29
|
Somlo G, Atzori F, Strauss LC, Geese WJ, Specht JM, Gradishar WJ, Rybicki A, Sy O, Vahdat LT, Cortes J. Dasatinib plus capecitabine for advanced breast cancer: safety and efficacy in phase I study CA180004. Clin Cancer Res 2013; 19:1884-93. [PMID: 23403636 DOI: 10.1158/1078-0432.ccr-12-0652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Dasatinib is an Src family kinase inhibitor with modest activity in advanced breast cancer. We aimed to assess toxicity and maximum tolerated dose (MTD) for dasatinib plus capecitabine, estimate efficacy, and explore effects on angiogenesis. EXPERIMENTAL DESIGN Dose levels (DL) were dasatinib 50 mg twice daily (DL1), 70 mg twice daily (DL2 and DL3), or 100 mg daily (DL3a); plus capecitabine on days 1 to 14 of a 21-day cycle, at 825 mg/m(2) twice daily (DL1 and DL2) or 1,000 mg/m(2) twice daily [DL3 and DL3a (MTD)]. DL3a was expanded to evaluate safety/efficacy. Plasma samples were collected for biomarker analysis. RESULTS Thirty-one and 21 patients were treated in the escalation and expansion phases. Sixty percent of tumors were hormone receptor-positive. Most common adverse events (AE) were any grade nausea (58%), hand-foot syndrome (44%), diarrhea (33%), fatigue (33%), vomiting (31%), and asthenia (31%). Most common grade 3/4 AEs were hand-foot syndrome (12%), diarrhea (8%), fatigue (8%), pleural effusion (8%), and vomiting (6%). The MTD was defined at DL3a (capecitabine 1,000 mg/m(2) twice daily and dasatinib 100 mg daily). Of 25 response-evaluable patients treated at DL3a, confirmed partial response was noted in 24% and stable disease in an additional 32%; median progression-free survival was 14.4 weeks. Significant decreases in plasma VEGF-A and increases in VEGFR-2 and collagen-IV were observed. CONCLUSIONS Dasatinib 100 mg once daily plus capecitabine 1,000 mg/m(2) twice daily were tolerable and were associated with clinical benefit in 56% of response-evaluable patients. Biomarker changes were consistent with an antiangiogenic effect.
Collapse
Affiliation(s)
- George Somlo
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang M, Huang O, Zhang X, Xie Z, Shen A, Liu H, Geng M, Shen K. Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules 2013; 18:701-20. [PMID: 23299550 PMCID: PMC6269686 DOI: 10.3390/molecules18010701] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 01/07/2023] Open
Abstract
Curcumin, a principal component of turmeric (Curcuma longa), has potential therapeutic activities against breast cancer through multiple signaling pathways. Increasing evidence indicates that curcumin reverses chemo-resistance and sensitizes cancer cells to chemotherapy and targeted therapy in breast cancer. To date, few studies have explored its potential antiproliferation effects and resistance reversal in antiestrogen-resistant breast cancer. In this study, we therefore investigated the efficacy of curcumin alone and in combination with tamoxifen in the established antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. We discovered that curcumin treatment displayed anti-proliferative and pro-apoptotic activities and induced cell cycle arrest at G2/M phase. Of note, the combination of curcumin and tamoxifen resulted in a synergistic survival inhibition in MCF-7/LCC2 and MCF-7/LCC9 cells. Moreover, we found that curcumin targeted multiple signals involved in growth maintenance and resistance acquisition in endocrine resistant cells. In our cell models, curcumin could suppress expression of pro-growth and anti-apoptosis molecules, induce inactivation of NF-κB, Src and Akt/mTOR pathways and downregulate the key epigenetic modifier EZH2. The above findings suggested that curcumin alone and combinations of curcumin with endocrine therapy may be of therapeutic benefit for endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Min Jiang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (M.J.); (O.H.); (X.Z.)
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (M.J.); (O.H.); (X.Z.)
| | - Xi Zhang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (M.J.); (O.H.); (X.Z.)
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (Z.X.); (A.S.); (H.L.)
| | - Aijun Shen
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (Z.X.); (A.S.); (H.L.)
| | - Hongchun Liu
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (Z.X.); (A.S.); (H.L.)
| | - Meiyu Geng
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; E-Mails: (Z.X.); (A.S.); (H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (M.G.); (K.S.); Tel.: +86-21-6437-0045 (K.S.); Fax: +86-21-6415-6886 (K.S.)
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-Mails: (M.J.); (O.H.); (X.Z.)
- Authors to whom correspondence should be addressed; E-Mails: (M.G.); (K.S.); Tel.: +86-21-6437-0045 (K.S.); Fax: +86-21-6415-6886 (K.S.)
| |
Collapse
|
31
|
Xu Y, Sun Q. Headway in resistance to endocrine therapy in breast cancer. J Thorac Dis 2012; 2:171-7. [PMID: 22263039 DOI: 10.3978/j.issn.2072-1439.2010.02.03.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/14/2010] [Indexed: 12/13/2022]
Abstract
Resistance to endocrine therapy is the major problem for ERα(+) breast cancer patients. Research in endocrine resistance, mainly based on breast cancer cell lines and transplantation animal models, has indicated that phosphorylation of estrogen receptors, high expression of SRC and high activation of ErbB/MAPK pathway are the 3 main mechanisms for occurrence of endocrine resistance. Restoration of ER expression and exploration of inhibitors to various biological targets are the 2 promising ways to solve this problem. Further research is needed to deeply explore relevant mechanisms and resolvents so as to guide clinical practice.
Collapse
Affiliation(s)
- Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | | |
Collapse
|
32
|
Abstract
c-Src and Bcr-Abl are two cytoplasmatic tyrosine kinases (TKs) involved in the development of malignancies. In particular, Bcr-Abl is the etiologic agent of chronic myeloid leukemia, where Src is also involved; the latter is hyperactivated in several solid tumors. Because of the structural homology between Src and Abl, several compounds originally synthesized as Src inhibitors have also been shown to be Abl inhibitors, useful in overcoming the onset of some types of chronic myeloid leukemia resistances, which frequently appear in the advanced phases of pathology. In recent years, the development of such compounds has been promoted by both excellent preclinical and clinical results, and by the theory that dual or multi-targeted inhibitors might be more effective than selective inhibitors. This review is an update on the most important dual inhibitors already in clinical trials and includes information regarding compounds that have appeared in the literature in recent years.
Collapse
|
33
|
Roop RP, Ma CX. Endocrine resistance in breast cancer: molecular pathways and rational development of targeted therapies. Future Oncol 2012; 8:273-92. [PMID: 22409464 DOI: 10.2217/fon.12.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocrine resistance presents a major challenge in the management of estrogen receptor (ER)-positive breast cancer and is an area under intense investigation. Although the underlying mechanism is still poorly understood, many studies point towards the 'cross-talk' between ER and growth factor receptor signaling pathways as the key in the development of estrogen-independent growth in breast cancer. This review aims to provide the reader our current understanding of various molecular pathways that mediate endocrine resistance and that are being evaluated as therapeutic targets for ER-positive breast cancer. While most of the agents that target these pathways have only been tested in Phase I or small Phase II trials, some have shown encouraging results. A critical issue that remains is the development of research strategies and clinical trials that take into account the molecular heterogeneity of ER-positive breast cancer.
Collapse
Affiliation(s)
- Ryan P Roop
- Washington University School of Medicine in Saint Louis, Department of Medicine, Divisions of Hematology & Oncology, St Louis, MO, USA
| | | |
Collapse
|
34
|
O'Brien CS, Farnie G, Howell SJ, Clarke RB. Breast cancer stem cells and their role in resistance to endocrine therapy. Discov Oncol 2011; 2:91-103. [PMID: 21761332 DOI: 10.1007/s12672-011-0066-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Developmentally, tumours can be viewed as aberrant versions of normal tissues. For example, tumours often retain differentiation markers of their tissue of origin. In addition, there is evidence that they contain cancer stem-like cells (CSCs) that drive tumourigenesis. In this review, we summarise current evidence that breast CSCs may partially explain endocrine resistance in breast cancer. In normal breast, the stem cells are known to possess a basal phenotype and to be mainly oestrogen receptor-α-negative (ER-). If the hierarchy in breast cancer reflects this, the breast CSC may be endocrine resistant because it expresses very little ER and can only respond to treatment by virtue of paracrine signalling from neighbouring, differentiated ER+ tumour cells. Normal breast epithelial stem cells are regulated by the epidermal growth factor receptor and other growth factor receptor signals. The observed increase in growth factor receptor expression in endocrine-resistant breast cancers may reflect a bigger proportion of CSCs selected by endocrine therapies. There is evidence from a number of studies that breast CSCs are ER- and EGR+/HER2+, which would support this view. It is reported that CSCs express mesenchymal genes, which are suppressed by ER expression, further indicating the mutual exclusion between ER+ cells and the CSCs. As we learn more about CSCs, differentiation and the expression and functional activity of the ER in these cells in diverse breast tumour sub-types, it is hoped that our understanding will lead to new modalities to overcome the problem of endocrine resistance in the clinic.
Collapse
Affiliation(s)
- Ciara S O'Brien
- School of Cancer and Imaging Sciences, Paterson Institute for Cancer Research, University of Manchester, Manchester, M20 4BX, UK
| | | | | | | |
Collapse
|
35
|
Gucalp A, Sparano JA, Caravelli J, Santamauro J, Patil S, Abbruzzi A, Pellegrino C, Bromberg J, Dang C, Theodoulou M, Massague J, Norton L, Hudis C, Traina TA. Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin Breast Cancer 2011; 11:306-11. [PMID: 21729667 PMCID: PMC3222913 DOI: 10.1016/j.clbc.2011.03.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/07/2011] [Accepted: 03/18/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND SRC activation is associated with cell migration, proliferation, and metastasis. Saracatinib is an oral tyrosine kinase inhibitor (TKI) selective for SRC. We performed this trial to evaluate the efficacy and safety of saracatinib monotherapy in patients with estrogen receptor (ER)(-) and progesterone receptor (PR)(-) metastatic breast cancer (MBC). PATIENTS AND METHODS Patients who had undergone ≤ 1 previous chemotherapy regimen for measurable ER(-) and PR(-) MBC received saracatinib 175 mg orally daily. The primary endpoint was disease control defined as complete response (CR) + partial response (PR) + stable disease (SD) > 6 months. Secondary endpoints included toxicity and progression-free survival (PFS). Levels of circulating tumor cells (CTCs) in response to therapy were measured over time. RESULTS Nine patients were treated on study. After a median of 2 cycles (range 1-3), no patient had achieved CR, PR, or SD >6 months. The median time to treatment failure was 82 days (12-109 days).The majority (89%) of patients discontinued saracatinib because of disease progression. One patient acquired potentially treatment-related grade 4 hypoxia with interstitial infiltrates and was removed from the study. Common adverse events included fatigue, elevated liver enzymes, nausea, hyponatremia, dyspnea, cough, and adrenal insufficiency. CONCLUSIONS These efficacy results were not sufficiently promising to justify continued accrual to this study. Based on this series, saracatinib does not appear to have significant single-agent activity for the treatment of patients with ER(-)/PR(-) MBC.
Collapse
Affiliation(s)
- Ayca Gucalp
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - James Caravelli
- Departments of Radiology Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jean Santamauro
- Pulmonary Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sujata Patil
- Departments of Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alyson Abbruzzi
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Jackie Bromberg
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Chau Dang
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Maria Theodoulou
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joan Massague
- Cancer Biology and Genetics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Larry Norton
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Clifford Hudis
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Tiffany A. Traina
- Breast Cancer Medicine Service Memorial Sloan-Kettering Cancer Center, New York, NY
- Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
36
|
Mayer EL, Baurain JF, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A. A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 2011; 17:6897-904. [PMID: 21903773 DOI: 10.1158/1078-0432.ccr-11-0070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE SRC-family kinases (SFK) are involved in numerous oncogenic signaling pathways. A phase 2 trial of dasatinib, a potent oral tyrosine kinase inhibitor of SFKs, was carried out in patients with human epidermal growth factor receptor 2-positive (HER2+) and/or hormone receptor-positive (HR+) advanced breast cancer. EXPERIMENTAL DESIGN Patients with measurable tumors and progression after chemotherapy and HER2 and/or HR-targeted agents in adjuvant or metastatic settings (maximum of two prior metastatic setting regimens) received twice daily dasatinib. Primary endpoint was Response Evaluation Criteria in Solid Tumors-defined response rate. Secondary endpoints included toxicity and limited pharmacokinetics. RESULTS Seventy patients (55 years median age) were treated, 83% of HER2+ patients had received prior HER2-directed therapy, and 61% of HR+ patients had received prior endocrine therapy in the advanced setting. Dasatinib starting dose was reduced from 100 to 70 mg twice daily to limit toxicity. Median therapy duration was 1.8 months in both dose groups and most discontinuations were due to progression. Of 69 evaluable patients, three had confirmed partial responses and six had stable disease for 16 weeks or more (disease control rate = 13.0%); all nine of these tumors were HR+ (two were also HER2+). The most common drug-related toxicities were gastrointestinal complaints, headache, asthenia, and pleural effusion. Grade 3-4 toxicity occurred in 37% of patients and was comparable between doses; drug-related serious adverse events were less frequent with 70 mg twice daily than 100 mg twice daily. CONCLUSION Limited single-agent activity was observed with dasatinib in patients with advanced HR+ breast cancer.
Collapse
Affiliation(s)
- Erica L Mayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bernier AJ, Zhang J, Lillehoj E, Shaw ARE, Gunasekara N, Hugh JC. Non-cysteine linked MUC1 cytoplasmic dimers are required for Src recruitment and ICAM-1 binding induced cell invasion. Mol Cancer 2011; 10:93. [PMID: 21798038 PMCID: PMC3161956 DOI: 10.1186/1476-4598-10-93] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/28/2011] [Indexed: 12/26/2022] Open
Abstract
Background The mucin MUC1, a type I transmembrane glycoprotein, is overexpressed in breast cancer and has been correlated with increased metastasis. We were the first to report binding between MUC1 and Intercellular adhesion molecule-1 (ICAM-1), which is expressed on stromal and endothelial cells throughout the migratory tract of a metastasizing breast cancer cell. Subsequently, we found that MUC1/ICAM-1 binding results in pro-migratory calcium oscillations, cytoskeletal reorganization, and simulated transendothelial migration. These events were found to involve Src kinase, a non-receptor tyrosine kinase also implicated in breast cancer initiation and progression. Here, we further investigated the mechanism of MUC1/ICAM-1 signalling, focusing on the role of MUC1 dimerization in Src recruitment and pro-metastatic signalling. Methods To assay MUC1 dimerization, we used a chemical crosslinker which allowed for the detection of dimers on SDS-PAGE. We then generated MUC1 constructs containing an engineered domain which allowed for manipulation of dimerization status through the addition of ligands to the engineered domain. Following manipulation of dimerization, we immunoprecipitated MUC1 to investigate recruitment of Src, or assayed for our previously observed ICAM-1 binding induced events. To investigate the nature of MUC1 dimers, we used both non-reducing SDS-PAGE and generated a mutant construct lacking cysteine residues. Results We first demonstrate that the previously observed MUC1/ICAM-1signalling events are dependent on the activity of Src kinase. We then report that MUC1 forms constitutive cytoplasmic domain dimers which are necessary for Src recruitment, ICAM-1 induced calcium oscillations and simulated transendothelial migration. The dimers are not covalently linked constitutively or following ICAM-1 binding. In contrast to previously published reports, we found that membrane proximal cysteine residues were not involved in dimerization or ICAM-1 induced signalling. Conclusions Our data implicates non-cysteine linked MUC1 dimerization in cell signalling pathways required for cancer cell migration.
Collapse
Affiliation(s)
- Ashlyn J Bernier
- Department of Laboratory Medicine and Pathology, 3-70 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Hiscox S, Nicholson RI. Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer. Expert Rev Endocrinol Metab 2011; 6:423-435. [PMID: 30754115 DOI: 10.1586/eem.11.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular kinase, Src, interacts with a diverse array of signaling elements, including the estrogen receptor to regulate breast cancer progression. Recent evidence has also implicated Src in mediating the response of breast cancer to endocrine agents and in the acquisition of antihormone resistance, a significant limiting factor to the clinical effectiveness of systemic endocrine therapy. A number of pharmacological inhibitors of Src kinase have been developed that are effective at suppressing breast cancer growth and invasion in vitro and inhibiting disease spread in vivo. Significantly, there appears to be added benefit when these agents are given in combination with anti-estrogens in endocrine-sensitive and -resistant models. These new findings suggest that Src inhibitors might have therapeutic value in breast cancer patients to improve endocrine response and circumvent resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
- b
| | - Robert I Nicholson
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
39
|
KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor α positive breast cancer. Breast Cancer Res Treat 2011; 132:391-409. [PMID: 21509526 DOI: 10.1007/s10549-011-1513-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
KX-01 is the first clinical Src inhibitor of the novel peptidomimetic class that targets the peptide substrate site of Src providing more specificity toward Src kinase. The present study was designed to evaluate the effects of KX-01 as a single agent and in combination with tamoxifen (TAM) on cell growth and apoptosis of ERα positive breast cancer in vitro and in vivo. Flow cytometry demonstrated that KX-01 induced cell cycle arrest in G2/M phase. Immunofluorescent staining for mitotic phase markers and TUNEL staining indicated that cells had arrested in the mitotic phase and mitotic arrested cells were undergoing apoptosis. KX-01 induced nuclear accumulation of cyclin B1, and activation of CDK1, MPM2, and Cdc25C that is required for progression past the G2/M checkpoint. Apoptosis resulted from activation of caspases 6, 7, 8, and 9. Combinational index analysis revealed that combinations of KX-01 with TAM resulted in synergistic growth inhibition of breast cancer cell lines. KX-01 combined with TAM resulted in decreased ERα phosphorylation at Src-regulated phosphorylation sites serines 118 and 167 that were associated with reduced ERα transcriptional activity. Orally administered KX-01 resulted in a dose dependent growth inhibition of MCF-7 tumor xenografts, and in combination with TAM exhibited synergistic growth inhibition. Immunohistochemical analysis revealed that combinational treatment reduced angiogenesis, and ERα signaling in tumors compared to either drug alone that may underlie the synergistic tumor growth inhibition. Combinations of KX-01 with endocrine therapy present a promising new strategy for clinical management of ERα positive breast cancer.
Collapse
|
40
|
Mayer EL, Krop IE. Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin Cancer Res 2010; 16:3526-32. [PMID: 20634194 DOI: 10.1158/1078-0432.ccr-09-1834] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Src, a membrane-associated nonreceptor tyrosine kinase, plays a crucial role in the coordination and facilitation of cell-signaling pathways controlling a wide range of cellular functions, including growth, survival, invasion, adhesion, and migration. Deregulation and increased activity of Src has been observed in multiple human malignancies, prompting the development of specific inhibitors of Src. In preclinical studies, Src inhibitors show antitumor effects in multiple solid tumor types. Recently completed early-phase trials using the inhibitors dasatinib and bosutinib have suggested modest activity as monotherapy in breast and prostate cancer, with potentially greater activity in combination regimens. Given the interaction between Src and the estrogen receptor, ongoing trials are exploring combinations with endocrine therapy. The relationship between Src and the vascular endothelial growth factor receptor also justifies investigation of combinations with angiogenesis inhibitors. Future trials will continue to explore the contribution of Src inhibition with both chemotherapy and targeted agents.
Collapse
Affiliation(s)
- Erica L Mayer
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
41
|
Schenone S, Brullo C, Musumeci F, Botta M. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 2010; 19:931-45. [PMID: 20557276 DOI: 10.1517/13543784.2010.499898] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD c-Src and Bcr-Abl are two non-receptor or cytoplasmic tyrosine kinases (TKs) that play important roles in the development of solid and hematological malignancies. Indeed, Src is overexpressed or hyperactivated in a variety of solid tumors, while Bcr-Abl is the causative agent of chronic myeloid leukemia (CML), where Src is also involved. The two enzymes share significant sequence homology and remarkable structural resemblance. AREAS COVERED IN THIS REVIEW ATP-competitive compounds originally developed as Src inhibitors, showed to be also potent Abl inhibitors. Dasatinib, the first dual Src/Abl inhibitor approved by the US FDA in 2006 for the treatment of imatinib-resistant CML, is currently being tested in several clinical trials for the treatment of different solid tumors. SKI-606 and AZD0530 are two other important dual Src/Abl inhibitors extensively tested in animal models and in clinical trials, but not entered into therapy yet. WHAT THE READER WILL GAIN In this review we will report the latest results regarding dasatinib, SKI-606 and AZD0530, but also the knowledge on new compounds that have appeared in the literature in the last few years, including AP24163, AP24534, XL228, DC2036. We will focus on the most recent clinical trials or on preclinical studies that are in progress on these small-molecule TK inhibitors that represent a targeted therapy with high potential against cancer. TAKE HOME MESSAGE Molecularly targeted therapies, including the inhibition of specific TKs hyperactivated or overexpressed in many human cancers, could be less toxic than the classical non-specific cytotoxic chemotherapeutic agents; they could offer important therapeutic effects, especially if used in association with other agents such as monoclonal antibodies.
Collapse
Affiliation(s)
- Silvia Schenone
- University of Genoa, Dipartimento di Scienze Farmaceutiche, Viale Benedetto VX, Genoa, Italy.
| | | | | | | |
Collapse
|
42
|
Wander SA, Zhao D, Slingerland JM. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2010; 17:12-8. [PMID: 20966355 DOI: 10.1158/1078-0432.ccr-10-0752] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation of the cyclin-dependent kinase inhibitor p27 by upstream mitogenic signaling pathways regulates its stability, localization, and biological function. In human cancers, loss of the antiproliferative action of p27 can arise through reduced protein levels and/or cytoplasmic mislocalization, leading to increased cell proliferation and/or cell migration, respectively. Reduced p27 expression levels and p27 mislocalization have potential prognostic and therapeutic implications in various types of human cancers. This review highlights mechanisms of functional deregulation of p27 by oncogenic signaling that provide an important molecular rationale for pathway targeting in cancer treatment.
Collapse
Affiliation(s)
- Seth A Wander
- Braman Family Breast Cancer Institute, University of Miami Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
43
|
Onishi T, Hayashi N, Theriault RL, Hortobagyi GN, Ueno NT. Future directions of bone-targeted therapy for metastatic breast cancer. Nat Rev Clin Oncol 2010; 7:641-51. [PMID: 20808302 DOI: 10.1038/nrclinonc.2010.134] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone is the most common metastatic site for breast cancer, and bone metastases can cause pain as well as risk of pathological fractures. Emerging treatments for metastatic bone disease have arisen from advances in our understanding of the unique cellular and molecular mechanisms that contribute to bone metastasis. The interaction between tumor cells and the bone microenvironment results in a 'vicious cycle' that increases both bone destruction and tumor burden. The tumor secretes factors, such as parathyroid hormone-related peptide, that stimulate osteoclastogenesis. Similarly, the bone stroma produces growth factors, such as transforming growth factor β, that promote tumor growth in bone. Therapeutic targeting of these microenvironmental factors is under intensive investigation. Other attractive therapeutic targets include signaling molecules, such as receptor activator of nuclear factor κB ligand, Src kinase, and cathepsin K, all of which regulate osteoclast function, and chemokine receptor 4, which is involved in the homing of tumor cells to bone. In this Review, we describe the progress and future directions of novel bone-targeted therapies that may reduce or prevent destructive bone metastasis from breast cancer. Novel modalities for predicting and monitoring treatment response will also be described.
Collapse
Affiliation(s)
- Tomifumi Onishi
- Christus Hospital-St Elizabeth, 2830 Calder Street, Beaumont, TX 77702, USA
| | | | | | | | | |
Collapse
|
44
|
Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia 2010; 12:599-607. [PMID: 20689754 PMCID: PMC2915404 DOI: 10.1593/neo.10328] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
Abstract
The SRC family kinases are the largest family of nonreceptor tyrosine kinases and one of the best-studied targets for cancer therapy. SRC, arguably the oldest oncogene, has been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. More recently, researchers have proposed that the transforming ability of SRC is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. It has been hypothesized that blocking SRC activation may inhibit these pathways, resulting in antitumor activity. However, successfully targeting SRC in a clinical setting remains a challenge, and SRC inhibitors have only recently begun to move through clinical development. Preclinical studies have identified specific molecular "subgroups" and histologies that may be more sensitive to SRC inhibition. In addition, other studies have demonstrated synergistic interactions between SRC inhibitors and other targeted therapies and cytotoxics. In this review, we summarize SRC biology and how it has been applied to the clinical development of SRC inhibitors. The status of SRC inhibitors, including dasatinib, saracatinib, and bosutinib, which are in phase 1, 2, and 3 trials, is highlighted.
Collapse
Affiliation(s)
- Alexey Aleshin
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
45
|
Chen Y, Alvarez EA, Azzam D, Wander SA, Guggisberg N, Jordà M, Ju Z, Hennessy BT, Slingerland JM. Combined Src and ER blockade impairs human breast cancer proliferation in vitro and in vivo. Breast Cancer Res Treat 2010; 128:69-78. [PMID: 20669046 DOI: 10.1007/s10549-010-1024-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/26/2010] [Indexed: 01/10/2023]
Abstract
Antiestrogen therapies arrest susceptible estrogen receptor (ER)-positive breast cancers by increasing p27. Since Src phosphorylates p27 to promote p27 proteolysis, Src activation observed in up to 40% of ER-positive cancers may contribute to antiestrogen resistance. In this article, we show that treatment with the Src-inhibitor saracatinib (AZD0530) together with ER-blocking drugs increased breast cancer cell cycle arrest via p27. Saracatinib and fulvestrant together more effectively increased p27, reduced Ki67, and impaired MDA-MB-361 xenograft tumor growth in vivo than either of the drugs alone. In contrast, saracatinib monotherapy rapidly gave rise to drug resistance. Since combined ER and Src inhibition delays development of resistance in vivo, these data support further clinical investigation of saracatinib in combination with fulvestrant for women with ER-positive breast cancer. Proteomic analysis revealed striking bypass activation of the mTOR pathway in saracatinib-resistant tumors. mTORC1 activation also arose following long-term culture of ER-positive breast cancer lines in the presence of saracatinib. These data indicate the utility of proteomic analysis of drug-resistant tumors to identify potential means of drug resistance. The use of mTOR kinase inhibitors with saracatinib may subvert drug resistance and prove to be more effective than saracatinib alone.
Collapse
Affiliation(s)
- Yi Chen
- Braman Family Breast Cancer Institute, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bolós V, Gasent JM, López-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 2010; 3:83-97. [PMID: 20616959 PMCID: PMC2895777 DOI: 10.2147/ott.s6909] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Indexed: 12/11/2022] Open
Abstract
Focal adhesion kinase (FAK) and steroid receptor coactivator (Src) are intracellular (nonreceptor) tyrosine kinases that physically and functionally interact to promote a variety of cellular responses. Plenty of reports have already suggested an additional central role for this complex in cancer through its ability to promote proliferation and anoikis resistance in tumor cells. An important role for the FAK/Src complex in tumor angiogenesis has also been established. Furthermore, FAK and Src have been associated with solid tumor metastasis through their ability to promote the epithelial mesenchymal transition. In fact, a strong correlation between increased FAK/Src expression/phosphorylation and the invasive phenotype in human tumors has been found. Additionally, an association for FAK/Src with resistances to the current anticancer therapies has already been established. Currently, novel anticancer agents that target FAK or Src are under development in a broad variety of solid tumors. In this article we will review the normal cellular functions of the FAK/Src complex as an effector of integrin and/or tyrosine kinase receptor signaling. We will also collect data about their role in cancer and we will summarize the most recent data from the FAK and Src inhibitors under clinical and preclinical development. Furthermore, the association of both these proteins with chemotherapy and hormonal therapy resistances, as a rationale for new combined therapeutic approaches with these novel agents, to abrogate treatment associated resistances, will also be reviewed.
Collapse
|
47
|
Vanderlaag KE, Hudak S, Bald L, Fayadat-Dilman L, Sathe M, Grein J, Janatpour MJ. Anterior gradient-2 plays a critical role in breast cancer cell growth and survival by modulating cyclin D1, estrogen receptor-alpha and survivin. Breast Cancer Res 2010; 12:R32. [PMID: 20525379 PMCID: PMC2917027 DOI: 10.1186/bcr2586] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 05/08/2010] [Accepted: 06/04/2010] [Indexed: 11/23/2022] Open
Abstract
Introduction Anterior-gradient 2 (AGR2) is an estrogen-responsive secreted protein. Its upregulation has been well documented in a number of cancers, particularly breast cancer, for which mixed data exist on the prognostic implications of AGR2 expression. Although emerging evidence indicates that AGR2 is associated with poor prognosis, its function and impact on cancer-relevant pathways have not been elucidated in breast cancer. Methods To investigate the biologic role of AGR2 in breast cancer, AGR2 was transiently knocked down, by using siRNA, in T47 D and ZR-75-1 (estrogen receptor-α (ER)-positive) and MDA-MB-231 and SK-BR-3 (ER-negative) human breast cancer cell lines. The impact of silencing AGR2 was evaluated in both anchorage-dependent and anchorage-independent growth (soft agar, spheroid) assays. Cell-cycle profiles in ER-positive cell lines were determined with BrdU incorporation, and cell death was measured with Annexin V, JC-1, and F7-26 staining. After transiently silencing AGR2 or stimulating with recombinant AGR2, modulation of key regulators of growth and survival pathways was assessed with Western blot. Combination studies of AGR2 knockdown with the antiestrogens tamoxifen and fulvestrant were carried out and assessed at the level of anchorage-dependent growth inhibition and target modulation (cyclin D1, ER). Results AGR2 knockdown inhibited growth in anchorage-dependent and anchorage-independent assays, with a more-pronounced effect in ER-positive cell lines. Cyclin D1 levels and BrdU incorporation were reduced with AGR2 knockdown. Conversely, cyclin D1 was induced with recombinant AGR2. AGR2 knockdown induced cell death in ZR-75-1 and T47 D cells, and also downregulated survivin and c-Myc. Evidence of AGR2-ER crosstalk was demonstrated by a reduction of ER at the protein level after transiently silencing AGR2. AGR2 knockdown in combination with fulvestrant or tamoxifen did not preclude the efficacy of the antiestrogens, but enhanced it. In addition, p-Src, implicated in tamoxifen resistance, was downregulated with AGR2 knockdown. Conclusions Transiently silencing AGR2 in ER-positive breast cancer cell lines inhibited cell growth and cell-cycle progression and induced cell death. Breast cancer drivers (ER and cyclin D1) as well as cancer-signaling nodes (pSrc, c-Myc, and survivin) were demonstrated to be downstream of AGR2. Collectively, the data presented support the utility of anti-AGR2 therapy in ER-positive breast cancers because of its impact on cancer-relevant pathways.
Collapse
Affiliation(s)
- Kathryn E Vanderlaag
- Schering-Plough Biopharma, 901 South California Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Glondu-Lassis M, Dromard M, Lacroix-Triki M, Nirdé P, Puech C, Knani D, Chalbos D, Freiss G. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res 2010; 70:5116-26. [PMID: 20501847 DOI: 10.1158/0008-5472.can-09-4368] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The protein tyrosine phosphatase PTPL1/PTPN13, the activity of which is decreased through allelic loss, promoter methylation, or somatic mutations in some tumors, has been proposed as a tumor suppressor gene. Moreover, our recent clinical study identified PTPL1 expression level as an independent prognostic indicator of a favorable outcome for patients with breast cancer. However, how PTPL1 can affect tumor aggressiveness has not been characterized. Here, we first show that PTPL1 expression, assessed by immunohistochemistry, is decreased in breast cancer and metastasis specimens compared with nonmalignant tissues. Second, to evaluate whether PTPL1 plays a critical role in breast cancer progression, RNA interference experiments were performed in poorly tumorigenic MCF-7 breast cancer cells. PTPL1 inhibition drastically increased tumor growth in athymic mice and also enhanced several parameters associated with tumor progression, including cell proliferation on extracellular matrix components and cell invasion. Furthermore, the inhibition of Src kinase expression drastically blocked the effects of PTPL1 silencing on cell growth. In PTPL1 knockdown cells, the phosphorylation of Src on tyrosine 419 is increased, leading to the activation of its downstream substrates Fak and p130cas. Finally, substrate-trapping experiments revealed that Src tyrosine 419 is a direct target of the phosphatase. Thus, by identification of PTPL1 as the first phosphatase able to inhibit Src through direct dephosphorylation in intact cells, we presently describe a new mechanism by which PTPL1 inhibits breast tumor aggressiveness.
Collapse
|
49
|
Groner B, Vafaizadeh V, Brill B, Klemmt P. Stem cells of the breast and cancer therapy. ACTA ACUST UNITED AC 2010; 6:205-19. [PMID: 20187727 DOI: 10.2217/whe.10.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer remains a significant public health problem despite advances in the understanding of the molecular and cellular events that underlie the disease. Crucial pathways regulating the cell cycle, proliferation and survival of breast cancer cells have been investigated and aberrant components of these pathways have been exploited as new drug targets. However, the mortality from breast cancer is only slowly declining. Recently, a model has been proposed that might explain the heterogeneous biological features of breast cancer cell populations and their differential response to therapeutic agents, which has interesting implications for further progress in therapy. This model links the emergence of breast cancer cells to stem cells and progenitors, an observation originally made in other cancer entities. It hypothesizes that the tumors originate from a small population of undifferentiated cells. These cells can undergo self-renewal and are able to generate a large number of partially differentiated cells, which constitute the bulk of the tumor. These cancer stem cells resemble adult stem and progenitor cells found in the normal breast, but are deregulated in their patterns of proliferation and differentiation. They could originate from normal stem cells or from more differentiated progenitors and lose their normal growth restraints through a series of oncogenic mutations that deregulate a small number of central signaling pathways. If breast cancer really is a stem and progenitor cell disease, this will have important implications for the understanding of the emergence of cancer cells. A combination of the cell-type of origin, stem cells, early or late progenitors and the particular oncogenic mutations acquired could provide a new classification of the different types of breast cancer. These parameters might determine the mechanisms of cancer progression and the responsiveness of patients to drug treatment. Stem cell-specific features could possibly be exploited as innovative drug targets.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt, Germany.
| | | | | | | |
Collapse
|
50
|
Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss. Eur J Cancer 2010; 46:2187-95. [PMID: 20471823 DOI: 10.1016/j.ejca.2010.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/18/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Aromatase inhibitors have largely replaced tamoxifen as the first-line treatment for postmenopausal women with metastatic, hormone receptor-positive (HR+) breast cancer. However, many patients develop clinical resistance with prolonged treatment, and oestrogen deprivation following aromatase inhibition can result in loss of bone mineral density. Furthermore, most patients with metastatic breast cancer develop bone metastases, and the resulting adverse skeletal-related events are a significant cause of patient morbidity. Src, a non-receptor tyrosine kinase, is a component of signalling pathways that regulate breast cancer cell proliferation, invasion and metastasis as well as osteoclast-mediated bone turnover. Preclinical evidence also suggests a role for Src in acquired endocrine resistance. As such, Src inhibition represents a logical strategy for the treatment of metastatic breast cancer. In vitro, combination therapy with Src inhibitors and endocrine agents, including aromatase inhibitors, has been shown to inhibit the proliferation and metastasis of both endocrine-responsive and endocrine-resistant breast cancer cell lines more effectively than either of the therapy alone. Src inhibition has also been shown to suppress osteoclast formation and activity. Combination therapy with aromatase inhibitors and Src inhibitors therefore represents a novel approach through which the development of both acquired resistance and bone pathology could be delayed. Data from clinical trials utilising such combinations will reveal if this strategy has the potential to improve patient outcomes.
Collapse
|