1
|
Pourmasoumi P, Moradi A, Bayat M. BRCA1/2 Mutations and Breast/Ovarian Cancer Risk: A New Insights Review. Reprod Sci 2024; 31:3624-3634. [PMID: 39107554 DOI: 10.1007/s43032-024-01666-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024]
Abstract
Breast and ovarian cancers are significant global health concerns, and understanding their genetic underpinnings is essential for effective prevention and cure. This narrative review provides a comprehensive analysis of studies conducted between 1994 and June 2024, focusing on the link between specific mutations in the breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) and the associated risks of both breast and ovarian cancers. It encompasses the findings of various works, including observational studies and molecular profiling analyses. Conducted on large international cohorts, these studies present compelling evidence of the relationship between different BRCA1 and BRCA2 mutations and the varying risks of breast and ovarian cancer. Furthermore, this review highlights the significance of nonsense-mediated decay mutations and their impact on cancer risk, particularly concerning the age of breast cancer onset. The implications of these findings are far-reaching, offering valuable information for risk assessment and decision-making in managing individuals who carry BRCA1 or BRCA2 mutations. The molecular subtyping profile BluePrint is discussed as a potential tool for enhancing clinical care by aiding the selection of appropriate treatment options, such as endocrine therapy or chemotherapy, based on the tumor's molecular characteristics. In conclusion, we establish a robust link between specific BRCA1 and BRCA2 gene mutations and increased susceptibility to breast and ovarian cancers. These mutations impact cancer onset age and severity, underscoring the need for targeted testing and screening. The current study enhances cancer detection, prevention, and cure strategies.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
3
|
Innella G, Ferrari S, Miccoli S, Luppi E, Fortuno C, Parsons MT, Spurdle AB, Turchetti D. Clinical implications of VUS reclassification in a single-centre series from application of ACMG/AMP classification rules specified for BRCA1/2. J Med Genet 2024; 61:483-489. [PMID: 38160042 DOI: 10.1136/jmg-2023-109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND BRCA1/2 testing is crucial to guide clinical decisions in patients with hereditary breast/ovarian cancer, but detection of variants of uncertain significance (VUSs) prevents proper management of carriers. The ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) BRCA1/2 Variant Curation Expert Panel (VCEP) has recently developed BRCA1/2 variant classification guidelines consistent with ClinGen processes, specified against the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular-Pathology) classification framework. METHODS The ClinGen-approved BRCA1/2-specified ACMG/AMP classification guidelines were applied to BRCA1/2 VUSs identified from 2011 to 2022 in a series of patients, retrieving information from the VCEP documentation, public databases, literature and ENIGMA unpublished data. Then, we critically re-evaluated carrier families based on new results and checked consistency of updated classification with main sources for clinical interpretation of BRCA1/2 variants. RESULTS Among 166 VUSs detected in 231 index cases, 135 (81.3%) found in 197 index cases were classified by applying BRCA1/2-specified ACMG/AMP criteria: 128 (94.8%) as Benign/Likely Benign and 7 (5.2%) as Pathogenic/Likely Pathogenic. The average time from the first report as 'VUS' to classification using this approach was 49.4 months. Considering that 15 of these variants found in 64 families had already been internally reclassified prior to this work, this study provided 121 new reclassifications among the 151 (80.1%) remaining VUSs, relevant to 133/167 (79.6%) families. CONCLUSIONS These results demonstrated the effectiveness of new BRCA1/2 ACMG/AMP classification guidelines for VUS classification within a clinical cohort, and their important clinical impact. Furthermore, they suggested a cadence of no more than 3 years for regular review of VUSs, which however requires time, expertise and resources.
Collapse
Affiliation(s)
- Giovanni Innella
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Ferrari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Miccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elena Luppi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Fortuno
- Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael T Parsons
- Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Daniela Turchetti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Familial history and prevalence of BRCA1, BRCA2 and TP53 pathogenic variants in HBOC Brazilian patients from a public healthcare service. Sci Rep 2022; 12:18629. [PMID: 36329109 PMCID: PMC9633799 DOI: 10.1038/s41598-022-23012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated the cost-effectiveness of genetic testing for surveillance and treatment of carriers of germline pathogenic variants associated with hereditary breast/ovarian cancer syndrome (HBOC). In Brazil, seventy percent of the population is assisted by the public Unified Health System (SUS), where genetic testing is still unavailable. And few studies were performed regarding the prevalence of HBOC pathogenic variants in this context. Here, we estimated the prevalence of germline pathogenic variants in BRCA1, BRCA2 and TP53 genes in Brazilian patients suspected of HBOC and referred to public healthcare service. Predictive power of risk prediction models for detecting mutation carriers was also evaluated. We found that 41 out of 257 tested patients (15.9%) were carriers of pathogenic variants in the analyzed genes. Most frequent pathogenic variant was the founder Brazilian mutation TP53 c.1010G > A (p.Arg337His), adding to the accumulated evidence that supports inclusion of TP53 in routine testing of Brazilian HBOC patients. Surprisingly, BRCA1 c.5266dupC (p.Gln1756fs), a frequently reported pathogenic variant in Brazilian HBOC patients, was not observed. Regarding the use of predictive models, we found that familial history of cancer might be used to improve selection or prioritization of patients for genetic testing, especially in a context of limited resources.
Collapse
|
6
|
Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes. Int J Mol Sci 2022; 23:ijms23137446. [PMID: 35806449 PMCID: PMC9267136 DOI: 10.3390/ijms23137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.
Collapse
|
7
|
Rajagopal T, Seshachalam A, Jothi A, Rathnam KK, Talluri S, Venkatabalasubranian S, Dunna NR. Analysis of pathogenic variants in BRCA1 and BRCA2 genes using next-generation sequencing in women with triple negative breast cancer from South India. Mol Biol Rep 2022; 49:3025-3032. [PMID: 35020120 DOI: 10.1007/s11033-022-07129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The frequency of triple-negative breast cancer (TNBC) incidence varies among different populations suggesting the involvement of genetic components towards TNBC development. Previous studies have reported that BRCA1/2 germline mutations confer a lifetime risk of developing TNBC. However, there is hardly any information regarding the common pathogenic variants (PVs) in BRCA1/2 genes that contribute to TNBC in the Indian population. Hence, we screened for PVs in BRCA1/2 and their association with clinico-pathological features in TNBC patients. METHODS AND RESULTS The study recruited 59 TNBC patients without hereditary breast and ovarian cancer (HBOC) from South India. The entire BRCA1 and BRCA2 genes were sequenced for the 59 patients using the Illumina HiSeq X Ten sequencer. Among the 59 TNBC genomic DNA samples sequenced, BRCA mutations were identified in 8 patients (13.6%), BRCA1 mutations in 6 patients, and BRCA2 mutations in 2 patients. Among the 6 BRCA1 mutations, three were c.68_69delAG (185delAG) mutation. Remarkably, all the TNBC patients with BRCA mutations exhibited higher-grade tumors (grade 2 or 3). However, among all the BRCA mutation carriers, only one patient with a BRCA2 mutation (p.Glu1879Lys) developed metastasis. CONCLUSION Our data advocates that South Indian women with higher grade TNBC tumors and without HBOC could be considered for BRCA mutation screening, thereby enabling enhanced decision-making and preventive therapy.
Collapse
Affiliation(s)
- Taruna Rajagopal
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India
| | - Arun Seshachalam
- Department of Medical and Paediatric Oncology, Dr.G.V.N Cancer Institute, Singarathope, Trichy, 620 008, India
| | - Arunachalam Jothi
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India
| | - Krishna Kumar Rathnam
- Department of Hemato Oncology - Medical Oncology and Bone Marrow Transplantation, Meenakshi Mission Hospital & Research Centre, Madurai, 625 107, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Sivaramakrishnan Venkatabalasubranian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, Tamil Nadu, 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur, 613 401, India.
| |
Collapse
|
8
|
D A, Y L, R S, H D, E B, Rm W, I V, L C, N.J D. Background splicing as a predictor of aberrant splicing in genetic disease. RNA Biol 2021; 19:256-265. [PMID: 35188075 PMCID: PMC8865296 DOI: 10.1080/15476286.2021.2024031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
Mutations of splice sites, auxiliary splicing elements and the splicing machinery cause a wide range of genetic disease. Here we report that many of the complex effects of splicing mutations can be predicted from background splicing information, with emphasis on BRCA1, BRCA2 and DMD. Background splicing arises from very low level splicing between rarely used background splice sites and from low-level exon skipping between intron splice sites. We show how this information can be downloaded from the Snaptron database of spliced RNA, which we then compared with databases of human splice site mutations. We report that inactivating mutations of intron splice sites typically caused the non-mutated partner splice site to splice to a known background splice site in over 90% of cases and to the strongest background splice site in the large majority of cases. Consequently, background splicing information can usefully predict the effects of splice site mutations, which include cryptic splice activation and single or multiple exon skipping. In addition, de novo splice sites and splice sites involved in pseudoexon formation, recursive splicing and aberrant splicing in cancer show a 90% match to background splice sites, so establishing that the enhancement of background splicing causes a wide range of splicing aberrations. We also discuss how background splicing information can identify cryptic splice sites that might be usefully targeted by antisense oligonucleotides (ASOs) and how it might indicate possible multiple exon skipping side effects of ASOs designed to induce single exon skipping.
Collapse
Affiliation(s)
- Alexieva D
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Long Y
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Sarkar R
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Dhayan H
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Bruet E
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Winston Rm
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Vorechovsky I
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Castellano L
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (Ictem), London, UK
- School of Life Sciences, University of Sussex, Falmer, UK
| | - Dibb N.J
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| |
Collapse
|
9
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
10
|
Nicolussi A, Belardinilli F, Ottini L, Petroni M, Capalbo C, Giannini G, Coppa A. A novel BRCA2 splice variant identified in a young woman. Mol Genet Genomic Med 2020; 8:e1513. [PMID: 33159495 PMCID: PMC7767566 DOI: 10.1002/mgg3.1513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
Background BRCA1/2 VUSs represent an important clinical issue in risk assessment for the breast/ovarian cancer families (HBOC) families. Among them, some occurring within the intron‐exon boundary may lead to aberrant splicing process by altering or creating de novo splicing regulatory elements or unmasking cryptic splice site. Defining the impact of these potential splice variants at functional level is important to establish their pathogenic role. Methods Genomic DNA was extracted from peripheral blood sample of a young woman affected with breast cancer belonging to a HBOC family and the entire coding regions of the BRCA1 and BRCA2 genes were amplified using the Ion AmpliSeq BRCA1 and BRCA2 Panel. The BRCA2 c.682‐2delA variant has been characterized by RT‐PCR analysis performed on mRNA extracted from blood and lymphoblastoid cell line. Results We demonstrated that a novel BRCA2 c.682‐2delA variant at the highly conserved splice consensus site in intron 8 disrupts the canonical splice acceptor site generating a truncated protein as predicted by several bioinformatics tools. Segregations analysis in the family and LOH performed on proband breast cancer tissue further confirmed its classification as pathogenic variant. Conclusion Combining different methodologies, we characterized this new BRCA2 variant and provided findings of clinical utility for its classification as pathogenic variant.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental MedicineUniversity of Roma “La Sapienza”RomaItaly
| | | | - Laura Ottini
- Department of Molecular MedicineUniversity of Roma “La Sapienza”RomaItaly
| | - Marialaura Petroni
- Department of Molecular MedicineUniversity of Roma “La Sapienza”RomaItaly
| | - Carlo Capalbo
- Department of Molecular MedicineUniversity of Roma “La Sapienza”RomaItaly
| | - Giuseppe Giannini
- Department of Molecular MedicineUniversity of Roma “La Sapienza”RomaItaly
- Istituto Pasteur‐Fondazione Cenci BolognettiRomaItaly
| | - Anna Coppa
- Department of Experimental MedicineUniversity of Roma “La Sapienza”RomaItaly
| |
Collapse
|
11
|
Lyra PCM, Nepomuceno TC, de Souza MLM, Machado GF, Veloso MF, Henriques TB, Dos Santos DZ, Ribeiro IG, Ribeiro RS, Rangel LBA, Richardson M, Iversen ES, Goldgar D, Couch FJ, Carvalho MA, Monteiro ANA. Integration of functional assay data results provides strong evidence for classification of hundreds of BRCA1 variants of uncertain significance. Genet Med 2020; 23:306-315. [PMID: 33087888 PMCID: PMC7862071 DOI: 10.1038/s41436-020-00991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose BRCA1 pathogenic variant heterozygotes are at a substantially increased risk for breast and ovarian cancer. The widespread uptake of testing has led to a significant increase in the detection of missense variants in BRCA1, the vast majority of which are variants of uncertain clinical significance (VUS), posing a challenge to genetic counseling. Here, we harness a wealth of functional data for thousands of variants to aid in variant classification. Methods We have collected, curated, and harmonized functional data for 2701 missense variants representing 24.5% of possible missense variants in BRCA1. Results were harmonized across studies by converting data into binary categorical variables (functional impact versus no functional impact). Using a panel of reference variants we identified a subset of assays with high sensitivity and specificity (≥80%) and apply the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines to assign evidence criteria for classification. Results Integration of data from validated assays provided ACMG/AMP evidence criteria in favor of pathogenicity for 297 variants or against pathogenicity for 2058 representing 96.2% of current VUS functionally assessed. We also explore discordant results and identify limitations in the approach. Conclusion High quality functional data are available for BRCA1 missense variants and provide evidence for classification of 2355 VUS according to their pathogenicity.
Collapse
Affiliation(s)
- Paulo C M Lyra
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Thales C Nepomuceno
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marcele L M de Souza
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Géssica F Machado
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Mariana F Veloso
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Taciane B Henriques
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Diandra Z Dos Santos
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Iuly G Ribeiro
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Roberto S Ribeiro
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Leticia B A Rangel
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - David Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro, Brazil
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
12
|
Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. Transposon clusters as substrates for aberrant splice-site activation. RNA Biol 2020; 18:354-367. [PMID: 32965162 PMCID: PMC7951965 DOI: 10.1080/15476286.2020.1805909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5ʹ splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5ʹ splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.
Collapse
Affiliation(s)
| | - Martin Chivers
- School of Medicine, University of Southampton, Southampton, UK
| | - Ivana Borovska
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | - Steven Monger
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Kralovicova
- School of Medicine, University of Southampton, Southampton, UK.,Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | | |
Collapse
|
13
|
Sylvester B, Brindopke F, Suzuki A, Giron M, Auslander A, Maas RL, Tsai B, Gao H, Magee W, Cox TC, Sanchez-Lara PA. A Synonymous Exonic Splice Silencer Variant in IRF6 as a Novel and Cryptic Cause of Non-Syndromic Cleft Lip and Palate. Genes (Basel) 2020; 11:genes11080903. [PMID: 32784565 PMCID: PMC7465030 DOI: 10.3390/genes11080903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Missense, nonsense, splice site and regulatory region variants in interferon regulatory factor 6 (IRF6) have been shown to contribute to both syndromic and non-syndromic forms of cleft lip and/or palate (CL/P). We report the diagnostic evaluation of a complex multigeneration family of Honduran ancestry with a pedigree structure consistent with autosomal-dominant inheritance with both incomplete penetrance and variable expressivity. The proband's grandmother bore children with two partners and CL/P segregates on both sides of each lineage. Through whole-exome sequencing of five members of the family, we identified a single shared synonymous variant, located in the middle of exon 7 of IRF6 (p.Ser307Ser; g.209963979 G>A; c.921C>T). The variant was shown to segregate in the seven affected individuals and through three unaffected obligate carriers, spanning both sides of this pedigree. This variant is very rare, only being found in three (all of Latino ancestry) of 251,352 alleles in the gnomAD database. While the variant did not create a splice acceptor/donor site, in silico analysis predicted it to impact an exonic splice silencer element and the binding of major splice regulatory factors. In vitro splice assays supported this by revealing multiple abnormal splicing events, estimated to impact >60% of allelic transcripts. Sequencing of the alternate splice products demonstrated the unmasking of a cryptic splice site six nucleotides 5' of the variant, as well as variable utilization of cryptic splice sites in intron 6. The ectopic expression of different splice regulatory proteins altered the proportion of abnormal splicing events seen in the splice assay, although the alteration was dependent on the splice factor. Importantly, each alternatively spliced mRNA is predicted to result in a frame shift and prematurely truncated IRF6 protein. This is the first study to identify a synonymous variant as a likely cause of NS-CL/P and highlights the care that should be taken by laboratories when considering and interpreting variants.
Collapse
Affiliation(s)
- Beau Sylvester
- Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (B.S.); (A.A.); (W.M.III)
| | | | - Akiko Suzuki
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO 64108, USA; (A.S.); (T.C.C.)
| | - Melissa Giron
- Operación Sonrisa Honduras, Tegucigalpa 11101, Honduras;
| | - Allyn Auslander
- Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (B.S.); (A.A.); (W.M.III)
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Becky Tsai
- Fulgent Genetics, Temple City, CA 91780, USA; (B.T.); (H.G.)
| | - Hanlin Gao
- Fulgent Genetics, Temple City, CA 91780, USA; (B.T.); (H.G.)
| | - William Magee
- Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (B.S.); (A.A.); (W.M.III)
| | - Timothy C. Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO 64108, USA; (A.S.); (T.C.C.)
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Pedro A. Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-(310)-423-4461
| |
Collapse
|
14
|
Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, Hauchard J, Castelain G, Fiévet A, Meulemans L, Révillion F, Léoné M, Boutry-Kryza N, Delnatte C, Guillaud-Bataille M, Cleveland L, Reid S, Southon E, Soukarieh O, Drouet A, Di Giacomo D, Vezain M, Bonnet-Dorion F, Bourdon V, Larbre H, Muller D, Pujol P, Vaz F, Audebert-Bellanger S, Colas C, Venat-Bouvet L, Solano AR, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Gaildrat P, Sharan SK, Martins A. Calibration of Pathogenicity Due to Variant-Induced Leaky Splicing Defects by Using BRCA2 Exon 3 as a Model System. Cancer Res 2020; 80:3593-3605. [PMID: 32641407 DOI: 10.1158/0008-5472.can-20-0895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Julie Rondeaux
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Krieger
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France - Normandie University, UNICAEN, Caen, France
| | | | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Gaia Castelain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alice Fiévet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Laëtitia Meulemans
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | | | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Daniela Di Giacomo
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Myriam Vezain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Larbre
- Laboratoire d'Oncogénétique Moléculaire, Institut Godinot, Reims, France
| | - Danièle Muller
- Unité d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Pascal Pujol
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Fátima Vaz
- Breast Cancer Risk Evaluation Clinic, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | | | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | | | - Angela R Solano
- Genotipificacion y Cancer Hereditario, Departmento de Analisis Clinicos, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC), Ciudad Autonoma de Buenos Aires, Argentina
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
15
|
Bouwman P, van der Heijden I, van der Gulden H, de Bruijn R, Braspenning ME, Moghadasi S, Wessels LFA, Vreeswijk MPG, Jonkers J. Functional Categorization of BRCA1 Variants of Uncertain Clinical Significance in Homologous Recombination Repair Complementation Assays. Clin Cancer Res 2020; 26:4559-4568. [PMID: 32546644 DOI: 10.1158/1078-0432.ccr-20-0255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Because BRCA1 is a high-risk breast/ovarian cancer susceptibility gene, BRCA1 sequence variants of uncertain clinical significance (VUS) complicate genetic counseling. As most VUS are rare, reliable classification based on clinical and genetic data is often impossible. However, all pathogenic BRCA1 variants analyzed result in defective homologous recombination DNA repair (HRR). Thus, BRCA1 VUS may be categorized based on their functional impact on this pathway. EXPERIMENTAL DESIGN Two hundred thirty-eight BRCA1 VUS-comprising most BRCA1 VUS known in the Netherlands and Belgium-were tested for their ability to complement Brca1-deficient mouse embryonic stem cells in HRR, using cisplatin and olaparib sensitivity assays and a direct repeat GFP (DR-GFP) HRR assay. Assays were validated using 25 known benign and 25 known pathogenic BRCA1 variants. For assessment of pathogenicity by a multifactorial likelihood analysis method, we collected clinical and genetic data for functionally deleterious VUS and VUS occurring in three or more families. RESULTS All three assays showed 100% sensitivity and specificity (95% confidence interval, 83%-100%). Out of 238 VUS, 45 showed functional defects, 26 of which were deleterious in all three assays. For 13 of these 26 variants, we could calculate the probability of pathogenicity using clinical and genetic data, resulting in the identification of 7 (likely) pathogenic variants. CONCLUSIONS We have functionally categorized 238 BRCA1 VUS using three different HRR-related assays. Classification based on clinical and genetic data alone for a subset of these variants confirmed the high sensitivity and specificity of our functional assays.
Collapse
Affiliation(s)
- Peter Bouwman
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Ingrid van der Heijden
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hanneke van der Gulden
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute and Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Merel E Braspenning
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute and Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos Jonkers
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Monteiro AN, Bouwman P, Kousholt AN, Eccles DM, Millot GA, Masson JY, Schmidt MK, Sharan SK, Scully R, Wiesmüller L, Couch F, Vreeswijk MPG. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet 2020; 57:509-518. [PMID: 32152249 DOI: 10.1136/jmedgenet-2019-106368] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alvaro N Monteiro
- Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Peter Bouwman
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arne N Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diana M Eccles
- Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Gael A Millot
- Hub-DBC, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shyam K Sharan
- National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Ralph Scully
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
17
|
Montalban G, Bonache S, Moles-Fernández A, Gadea N, Tenés A, Torres-Esquius S, Carrasco E, Balmaña J, Diez O, Gutiérrez-Enríquez S. Incorporation of semi-quantitative analysis of splicing alterations for the clinical interpretation of variants in BRCA1 and BRCA2 genes. Hum Mutat 2019; 40:2296-2317. [PMID: 31343793 DOI: 10.1002/humu.23882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
BRCA1 and BRCA2 (BRCA1/2) genetic variants that disrupt messenger RNA splicing are commonly associated with increased risks of developing breast/ovarian cancer. The majority of splicing studies published to date rely on qualitative methodologies (i.e., Sanger sequencing), but it is necessary to incorporate semi-quantitative or quantitative approaches to accurately interpret the clinical significance of spliceogenic variants. Here, we characterize the splicing impact of 31 BRCA1/2 variants using semi-quantitative capillary electrophoresis of fluorescent amplicons (CE), Sanger sequencing and allele-specific assays. A total of 14 variants were found to disrupt splicing. Allelic-specific assays could be performed for BRCA1 c.302-1G>A and BRCA2 c.516+2T>A, c.1909+1G>A, c.8332-13T>G, c.8332-2A>G, c.8954-2A>T variants, showing a monoallelic contribution to full-length transcript expression that was concordant with semi-quantitative data. The splicing fraction of alternative and aberrant transcripts was also measured by CE, facilitating variant interpretation. Following Evidence-based Network for the Interpretation of Germline Mutant Alleles criteria, we successfully classified eight variants as pathogenic (Class 5), five variants as likely pathogenic (Class 4), and 14 variants as benign (Class 1). We also provide splicing data for four variants classified as uncertain (Class 3), which produced a "leaky" splicing effect or introduced a missense change in the protein sequence, that will require further assessment to determine their clinical significance.
Collapse
Affiliation(s)
- Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Neus Gadea
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Sara Torres-Esquius
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Estela Carrasco
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Medical Oncology Department, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
18
|
Wangensteen T, Felde CN, Ahmed D, Mæhle L, Ariansen SL. Diagnostic mRNA splicing assay for variants in BRCA1 and BRCA2 identified two novel pathogenic splicing aberrations. Hered Cancer Clin Pract 2019; 17:14. [PMID: 31143303 PMCID: PMC6532242 DOI: 10.1186/s13053-019-0113-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Pathogenic variants in BRCA1 and BRCA2 cause hereditary breast and ovarian cancer. Screening of these genes has become easily accessible in diagnostic laboratories. Sequencing and copy number analyses are used to detect pathogenic variants, but also lead to identification of variants of unknown clinical significance (VUS). If the effect of a VUS can be clarified, it has direct consequence for the clinical management of the patient and family members. A splicing assay is one of several tools that might help in the classification of VUS. We therefore established mRNA analyses for BRCA1 and BRCA2 in the diagnostic laboratory in 2015. We hereby report the results of mRNA analysis variants in BRCA1 and BRCA2 after three years. Methods Variants predicted to alter splicing and variants within the canonical splice sites were selected for splicing analyses. Splicing assays were performed by reverse transcription-PCR of patient RNA. A biallalic expression analysis was carried out whenever possible. Results Twenty-five variants in BRCA1 and BRCA2 were analyzed by splicing assays; nine showed altered transcripts and 16 showed normal splicing patterns. The two novel pathogenic variants in BRCA1 c.4484 + 3 A > C and c.5407–10G > A were characterized. Conclusions We conclude that mRNA analyses are useful in characterization of variants that may affect splicing. The results can guide classification of variants from unknown clinical significance to pathogenic or benign in a diagnostic laboratory, and thus be of direct clinical importance.
Collapse
Affiliation(s)
| | | | - Deeqa Ahmed
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lovise Mæhle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
19
|
Li D, Harlan-Williams LM, Kumaraswamy E, Jensen RA. BRCA1-No Matter How You Splice It. Cancer Res 2019; 79:2091-2098. [PMID: 30992324 PMCID: PMC6497576 DOI: 10.1158/0008-5472.can-18-3190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/09/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
BRCA1 (breast cancer 1, early onset), a well-known breast cancer susceptibility gene, is a highly alternatively spliced gene. BRCA1 alternative splicing may serve as an alternative regulatory mechanism for the inactivation of the BRCA1 gene in both hereditary and sporadic breast cancers, and other BRCA1-associated cancers. The alternative transcripts of BRCA1 can mimic known functions, possess unique functions compared with the full-length BRCA1 transcript, and in some cases, appear to function in opposition to full-length BRCA1 In this review, we will summarize the functional "naturally occurring" alternative splicing transcripts of BRCA1 and then discuss the latest next-generation sequencing-based detection methods and techniques to detect alternative BRCA1 splicing patterns and their potential use in cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dan Li
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Lisa M Harlan-Williams
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Easwari Kumaraswamy
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Roy A Jensen
- The University of Kansas Cancer Center, Kansas City, Kansas.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
20
|
Wang X, Liu H, Maimaitiaili A, Zhao G, Li S, Lv Z, Wu D, Shi A, Guan X, Jia H, Li M, Song D, Kang L, Han B, Fu T, Yang M, Zhu Z, Du Y, Song Y, Hong J, Fan Z. Prevalence of BRCA1 and BRCA2 gene mutations in Chinese patients with high-risk breast cancer. Mol Genet Genomic Med 2019; 7:e677. [PMID: 30968603 PMCID: PMC6565549 DOI: 10.1002/mgg3.677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer is the most common cancer among women worldwide. Here, we report the prevalence of BRCA1/2 mutations in patients with high‐risk breast cancer from Inner Mongolia and Jilin, China, which was a part of a nationwide project on the detection of BRCA1/2 mutations in Chinese patients with hereditary breast cancer. Methods According to the criteria, index patients from a total of 245 independent families were initially recruited. All 49 exons of BRCA1 and BRCA2 and adjacent noncoding regions were screened for mutations based on next‐generation sequencing from collected saliva. Results We detected 17 BRCA1/2 variants in 18 of 216 (8.3%) index patients with high‐risk breast cancer. Among these, seven mutations were novel, including four BRCA1 mutations (c.123_124delCAinsAT, c.5093_5096delCTAA, c.5396‐2A>G, and c.2054delinsGAAGAGTAACAAGTAAGAAGAGTAACAAGAAG), and three BRCA2 mutations (c.304A>T, c.7552_7553insT, and c.9548_9549insA). The BRCA1/2 variants were identified in 14% (8/57) of the patients with triple‐negative breast cancer and in 6.3% (10/159) of the patients with non‐triple‐negative breast cancer. There was no significant difference between the two groups (p = 0.07). A higher frequency for BRCA1 mutations was observed in patients with triple‐negative breast cancer than in those with non‐triple‐negative breast cancer (12.3% vs. 2.5%, p = 0.004). The frequencies of the BRCA2 mutations were not significantly different between patients with triple‐negative breast cancer and those with non‐triple‐negative breast cancer (1.8% vs. 3.8%, p = 0.46). Conclusion We found that patients with triple‐negative breast cancer had a higher frequency of BRCA1 mutations than those with non‐triple‐negative breast cancer. In this study, no significant associations between the BRCA1/2 mutation status and age, family history of breast cancer, ovarian cancer, pancreatic cancer and prostate cancer, number of primary lesions, tumor size, or lymph node metastasis were observed.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haimeng Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Amina Maimaitiaili
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zheng Lv
- Cancer Center of the First Hospital of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Di Wu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin Guan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Menghan Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lihua Kang
- Cancer Center of the First Hospital of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Bing Han
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tong Fu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhu Zhu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yanqiu Song
- Cancer Center of the First Hospital of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Usefulness and Limitations of Comprehensive Characterization of mRNA Splicing Profiles in the Definition of the Clinical Relevance of BRCA1/2 Variants of Uncertain Significance. Cancers (Basel) 2019; 11:cancers11030295. [PMID: 30832263 PMCID: PMC6468917 DOI: 10.3390/cancers11030295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Highly penetrant variants of BRCA1/2 genes are involved in hereditary predisposition to breast and ovarian cancer. The detection of pathogenic BRCA variants has a considerable clinical impact, allowing appropriate cancer-risk management. However, a major drawback is represented by the identification of variants of uncertain significance (VUS). Many VUS potentially affect mRNA splicing, making transcript analysis an essential step for the definition of their pathogenicity. Here, we characterize the impact on splicing of ten BRCA1/2 variants. Aberrant splicing patterns were demonstrated for eight variants whose alternative transcripts were fully characterized. Different events were observed, including exon skipping, intron retention, and usage of de novo and cryptic splice sites. Transcripts with premature stop codons or in-frame loss of functionally important residues were generated. Partial/complete splicing effect and quantitative contribution of different isoforms were assessed, leading to variant classification according to Evidence-based Network for the Interpretation of Mutant Alleles (ENIGMA) consortium guidelines. Two variants could be classified as pathogenic and two as likely benign, while due to a partial splicing effect, six variants remained of uncertain significance. The association with an undefined tumor risk justifies caution in recommending aggressive risk-reduction treatments, but prevents the possibility of receiving personalized therapies with potential beneficial effect. This indicates the need for applying additional approaches for the analysis of variants resistant to classification by gene transcript analyses.
Collapse
|
22
|
Abstract
Hereditary breast and ovarian cancer is an inherited syndrome associated with BRCA1/2 germline defects. The identified mutations are classified as missense, large deletion, insertion, nonsense and splice-site variants with a deleterious impact on BRCA1/2 function. Part of these forms the well-documented truncating mutations, and missense variants represent a clinical dilemma as the pathogenic role is yet to be clearly shown. In this systematic review, we collected these missense variations with a documented deleterious function. We focused on English language articles from MEDLINE. This study included all BRCA1/2 germline missense mutations identified in breast and ovarian cancer patients. The method of this study followed the 'PRISMA statement for reporting systematic reviews and meta-analyses'. A total of 61 BRCA1/2 germline and pathogenic missense mutations were identified: 70.5% affected BRCA1 and 29.5% BRCA2, respectively. In BRCA1, the majority of mutations were located in the BRCA C-terminus (48.8%), leading to a disruption of function. Conversely, no specific associations were verified between mutations and the BRCA2 gene. The European population was the most affected by BRCA1 and the Asian population by BRCA2 mutant patterns. The identification of novel BRCA1/2 missense mutations requires specific genetic tests to assess pathogenicity. With this systematic review, we are, to the best of our knowledge, the first to collect the overall amount of data on these pathogenic mutants with the aim of improving the management of carriers and their kindred.
Collapse
|
23
|
Minucci A, Lalle M, De Leo R, Mazzuccato G, Scambia G, Urbani A, Fagotti A, Concolino P, Capoluongo E. Additional molecular and clinical evidence open the way to definitive IARC classification of the BRCA1 c.5332G > A (p.Asp1778Asn) variant. Clin Biochem 2018; 63:54-58. [PMID: 30315757 DOI: 10.1016/j.clinbiochem.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES In silico splicing analysis, a mini-gene assay and splicing data, obtained using RNA from blood samples, have shown that the BRCA1 c.5332G > A variant induces exon 21 skipping. However, despite these evidences, up to date, this variant is unclassified. The aim of this study is to provide further molecular and clinical evidence for the BRCA1 c.5332G > A variant in a patient with high grade serous ovarian carcinoma (HGSOC) to allow a definitive classification of this variant. DESIGN AND METHOD The effect of the BRCA1 c.5332G > A variant on RNA splicing was evaluated by amplifying regions of BRCA1 from the cDNA of the patient. Loss of heterozygosity (LOH) in tumor tissue was also investigated. RESULTS The c.5332G > A allele causes significantly aberrant splicing of the BRCA1 exon 21. Evaluation of the c.5332A allele in tumor tissue highlights a possible loss of heterozygosity, supporting her pathogenic effect. CONCLUSIONS Our results regarding the c.5332G > A variant confirm that it contributed to predisposition and onset of ovarian carcinoma in the patient. We propose to classify this variant as 'likely-pathogenic' (class IV).
Collapse
Affiliation(s)
- Angelo Minucci
- Dipartimento di Diagnostica di Laboratorio, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Maurizio Lalle
- UOC Oncologia, Azienda Ospedaliera S. Giovanni - Addolorata, Roma, Italy
| | - Rossella De Leo
- Dipartimento di Ostetricia e Ginecologia, Divisione di Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giorgia Mazzuccato
- Dipartimento di Diagnostica di Laboratorio, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Dipartimento di Ostetricia e Ginecologia, Divisione di Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Urbani
- Dipartimento di Diagnostica di Laboratorio, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Fagotti
- Dipartimento di Ostetricia e Ginecologia, Divisione di Ginecologia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Paola Concolino
- Dipartimento di Diagnostica di Laboratorio, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Ettore Capoluongo
- Dipartimento di Diagnostica di Laboratorio, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
24
|
Farber-Katz S, Hsuan V, Wu S, Landrith T, Vuong H, Xu D, Li B, Hoo J, Lam S, Nashed S, Toppmeyer D, Gray P, Haynes G, Lu HM, Elliott A, Tippin Davis B, Karam R. Quantitative Analysis of BRCA1 and BRCA2 Germline Splicing Variants Using a Novel RNA-Massively Parallel Sequencing Assay. Front Oncol 2018; 8:286. [PMID: 30101128 PMCID: PMC6072868 DOI: 10.3389/fonc.2018.00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Clinical genetic testing for hereditary breast and ovarian cancer (HBOC) is becoming widespread. However, the interpretation of variants of unknown significance (VUS) in HBOC genes, such as the clinically actionable genes BRCA1 and BRCA2, remain a challenge. Among the variants that are frequently classified as VUS are those with unclear effects on splicing. In order to address this issue we developed a high-throughput RNA-massively parallel sequencing assay—CloneSeq—capable to perform quantitative and qualitative analysis of transcripts in cell lines and HBOC patients. This assay is based on cloning of RT-PCR products followed by massive parallel sequencing of the cloned transcripts. To validate this assay we compared it to the RNA splicing assays recommended by members of the ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium. This comparison was performed using well-characterized lymphoblastoid cell lines (LCLs) generated from carriers of the BRCA1 or BRCA2 germline variants that have been previously described to be associated with splicing defects. CloneSeq was able to replicate the ENIGMA results, in addition to providing quantitative characterization of BRCA1 and BRCA2 germline splicing alterations in a high-throughput fashion. Furthermore, CloneSeq was used to analyze blood samples obtained from carriers of BRCA1 or BRCA2 germline sequence variants, including the novel uncharacterized alteration BRCA1 c.5152+5G>T, which was identified in a HBOC family. CloneSeq provided a high-resolution picture of all the transcripts induced by BRCA1 c.5152+5G>T, indicating it results in significant levels of exon skipping. This analysis proved to be important for the classification of BRCA1 c.5152+5G>T as a clinically actionable likely pathogenic variant. Reclassifications such as these are fundamental in order to offer preventive measures, targeted treatment, and pre-symptomatic screening to the correct individuals.
Collapse
Affiliation(s)
- Suzette Farber-Katz
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Vickie Hsuan
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Sitao Wu
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Tyler Landrith
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Huy Vuong
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Dong Xu
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Bing Li
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Jayne Hoo
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Stephanie Lam
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Sarah Nashed
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Deborah Toppmeyer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Phillip Gray
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Ginger Haynes
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Hsiao-Mei Lu
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Aaron Elliott
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Brigette Tippin Davis
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Rachid Karam
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| |
Collapse
|
25
|
Caputo SM, Léone M, Damiola F, Ehlen A, Carreira A, Gaidrat P, Martins A, Brandão RD, Peixoto A, Vega A, Houdayer C, Delnatte C, Bronner M, Muller D, Castera L, Guillaud-Bataille M, Søkilde I, Uhrhammer N, Demontety S, Tubeuf H, Castelain G, Jensen UB, Petitalot A, Krieger S, Lefol C, Moncoutier V, Boutry-Kryza N, Nielsen HR, Sinilnikova O, Stoppa-Lyonnet D, Spurdle AB, Teixeira MR, Coulet F, Thomassen M, Rouleau E. Full in-frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer. Oncotarget 2018; 9:17334-17348. [PMID: 29707112 PMCID: PMC5915120 DOI: 10.18632/oncotarget.24671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022] Open
Abstract
Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.
Collapse
Affiliation(s)
| | - Mélanie Léone
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Asa Ehlen
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Pascaline Gaidrat
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Ana Vega
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Claude Houdayer
- Institut Curie, Service de Génétique, Paris, France.,Université Paris Descartes, Paris, France
| | | | | | - Danièle Muller
- Laboratoire d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Laurent Castera
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | - Inge Søkilde
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Nancy Uhrhammer
- Laboratoire de Biologie Médicale, CLCC Jean Perrin, Clermont-Ferrand, France
| | | | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Gaïa Castelain
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sophie Krieger
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | | | - Nadia Boutry-Kryza
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Olga Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Amanda B Spurdle
- Genetics and Comp utational Biology Division, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.,Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Florence Coulet
- Laboratoire d'Oncogénétique et d'Angiogénétique Moléculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
26
|
Ernst C, Hahnen E, Engel C, Nothnagel M, Weber J, Schmutzler RK, Hauke J. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med Genomics 2018; 11:35. [PMID: 29580235 PMCID: PMC5870501 DOI: 10.1186/s12920-018-0353-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
Background The use of next-generation sequencing approaches in clinical diagnostics has led to a tremendous increase in data and a vast number of variants of uncertain significance that require interpretation. Therefore, prediction of the effects of missense mutations using in silico tools has become a frequently used approach. Aim of this study was to assess the reliability of in silico prediction as a basis for clinical decision making in the context of hereditary breast and/or ovarian cancer. Methods We tested the performance of four prediction tools (Align-GVGD, SIFT, PolyPhen-2, MutationTaster2) using a set of 236 BRCA1/2 missense variants that had previously been classified by expert committees. However, a major pitfall in the creation of a reliable evaluation set for our purpose is the generally accepted classification of BRCA1/2 missense variants using the multifactorial likelihood model, which is partially based on Align-GVGD results. To overcome this drawback we identified 161 variants whose classification is independent of any previous in silico prediction. In addition to the performance as stand-alone tools we examined the sensitivity, specificity, accuracy and Matthews correlation coefficient (MCC) of combined approaches. Results PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy (0.67) and MCC (0.39). Align-GVGD achieved the highest values of specificity (0.92), accuracy (0.92) and MCC (0.73), but was outperformed regarding its sensitivity (0.90) by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities, resulting in an unacceptable proportion of false positive results in a clinical setting. This shortcoming could not be bypassed by combination of these tools. In the best case scenario, 138 families would be affected by the misclassification of neutral variants within the cohort of patients of the German Consortium for Hereditary Breast and Ovarian Cancer. Conclusion We show that due to low specificities state-of-the-art in silico prediction tools are not suitable to predict pathogenicity of variants of uncertain significance in BRCA1/2. Thus, clinical consequences should never be based solely on in silico forecasts. However, our data suggests that SIFT and MutationTaster2 could be suitable to predict benignity, as both tools did not result in false negative predictions in our analysis. Electronic supplementary material The online version of this article (10.1186/s12920-018-0353-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital Cologne, Kerpener Straße 34, Cologne, 50931, Germany
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital Cologne, Kerpener Straße 34, Cologne, 50931, Germany
| | - Christoph Engel
- Institute of Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Jonas Weber
- Center for Familial Breast and Ovarian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital Cologne, Kerpener Straße 34, Cologne, 50931, Germany
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital Cologne, Kerpener Straße 34, Cologne, 50931, Germany
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital Cologne, Kerpener Straße 34, Cologne, 50931, Germany.
| |
Collapse
|
27
|
Dutil J, Godoy L, Rivera-Lugo R, Arroyo N, Albino E, Negrón L, Monteiro AN, Matta JL, Echenique M. No Evidence for the Pathogenicity of the BRCA2 c.6937 + 594T>G Deep Intronic Variant: A Case-Control Analysis. Genet Test Mol Biomarkers 2018; 22:85-89. [PMID: 29356578 DOI: 10.1089/gtmb.2017.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The role of deep intronic variants in hereditary cancer susceptibility has been largely understudied. Previously, the BRCA2 c.6937 + 594T>G variant has been shown to preferentially promote the inclusion of a 95 nucleotide cryptic exon and to introduce a premature termination codon. Our objective was to further assess the pathogenicity of the BRCA2 c.6937 + 594T>G deep intronic variant. PATIENTS AND METHODS We examined the association between BRCA2 c.6937 + 594T>G and breast cancer (BC) risk in 464 BC cases and 497 noncancer controls from Puerto Rico. RESULTS The overall frequency of the G allele was 2.1% in this population. There was no association between the TG/GG genotypes and BC risk in the uncorrected model and after correcting for confounders. There was only one carrier of the GG genotype. This individual did not have personal or family history of cancer and did not meet the National Comprehensive Cancer Network criteria for hereditary cancer genetic testing. CONCLUSIONS Although previous work has demonstrated that the BRCA2 c.6937 + 594T>G variant affects splicing, this association study does not support a pathogenic role for the BRCA2 c.6937 + 594T>G intronic variant in breast and ovarian cancer syndrome susceptibility. Furthermore, it emphasizes the need to take into account multiple diverse populations in association studies for the assessment of variant pathogenicity.
Collapse
Affiliation(s)
- Julie Dutil
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Lenin Godoy
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Rafael Rivera-Lugo
- 2 Department of Biology, University of Puerto Rico in Ponce , Ponce, Puerto Rico
| | - Nelly Arroyo
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Elinette Albino
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Luis Negrón
- 3 Hematology-Oncology Program, VA Caribbean Healthcare System , San Juan, Puerto Rico
| | - Alvaro N Monteiro
- 4 Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Jaime L Matta
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | | |
Collapse
|
28
|
Yang H, Jaeger M, Walker A, Wei D, Leiker K, Weitao T. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. J Cancer 2018; 9:219-231. [PMID: 29344267 PMCID: PMC5771328 DOI: 10.7150/jca.22554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.
Collapse
Affiliation(s)
- Haitao Yang
- Laboratory for Cancer Genome Editing, Zhuhai Lifecode Medical Technologies. Inc. Department of Prenatal Diagnosis, Huizhou 2nd Hospital for Children and Women, #101 University Road, Tangjiawan, Zhuhai, 518900, Guangdong, China
| | - MariaLynn Jaeger
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Averi Walker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Daniel Wei
- University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Katie Leiker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| |
Collapse
|
29
|
Davy G, Rousselin A, Goardon N, Castéra L, Harter V, Legros A, Muller E, Fouillet R, Brault B, Smirnova AS, Lemoine F, de la Grange P, Guillaud-Bataille M, Caux-Moncoutier V, Houdayer C, Bonnet F, Blanc-Fournier C, Gaildrat P, Frebourg T, Martins A, Vaur D, Krieger S. Detecting splicing patterns in genes involved in hereditary breast and ovarian cancer. Eur J Hum Genet 2017; 25:1147-1154. [PMID: 28905878 DOI: 10.1038/ejhg.2017.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Interpretation of variants of unknown significance (VUS) is a major challenge for laboratories performing molecular diagnosis of hereditary breast and ovarian cancer (HBOC), especially considering that many genes are now known to be involved in this syndrome. One important way these VUS can have a functional impact is through their effects on RNA splicing. Here we present a custom RNA-Seq assay plus bioinformatics and biostatistics pipeline to analyse specifically alternative and abnormal splicing junctions in 11 targeted HBOC genes. Our pipeline identified 14 new alternative splices in BRCA1 and BRCA2 in addition to detecting the majority of known alternative spliced transcripts therein. We provide here the first global splicing pattern analysis for the other nine genes, which will enable a comprehensive interpretation of splicing defects caused by VUS in HBOC. Previously known splicing alterations were consistently detected, occasionally with a more complex splicing pattern than expected. We also found that splicing in the 11 genes is similar in blood and breast tissue, supporting the utility and simplicity of blood splicing assays. Our pipeline is ready to be integrated into standard molecular diagnosis for HBOC, but it could equally be adapted for an integrative analysis of any multigene disorder.
Collapse
Affiliation(s)
- Grégoire Davy
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Antoine Rousselin
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Nicolas Goardon
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Laurent Castéra
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Valentin Harter
- Cancéropôle Nord-Ouest Data Processing Centre, CLCC François Baclesse, Caen, France
| | - Angelina Legros
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France
| | - Etienne Muller
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Robin Fouillet
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France
| | - Baptiste Brault
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Anna S Smirnova
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Fréderic Lemoine
- GenoSplice Technology, iPEPS-ICM, Pitié-Salpétrière Hospital, Paris, France
| | | | | | | | - Claude Houdayer
- Department of Genetics, Institut Curie, Paris, France.,Inserm U830, Paris, France.,Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Françoise Bonnet
- Laboratory of Molecular Genetics, Institut Bergonié, Bordeaux, France
| | - Cécile Blanc-Fournier
- Department of Pathology, CLCC François Baclesse, Caen, France.,Tumorothèque de Caen Basse-Normandie, Caen, France
| | - Pascaline Gaildrat
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Thierry Frebourg
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Dominique Vaur
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Sophie Krieger
- Department of Cancer Biology and Genetics, CLCC François Baclesse, Normandy Centre for Genomic and Personalized Medicine, Caen, France.,Inserm U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France.,University of Caen Normandy, Caen, France
| |
Collapse
|
30
|
Wang Y, Bernhardy AJ, Cruz C, Krais JJ, Nacson J, Nicolas E, Peri S, van der Gulden H, van der Heijden I, O'Brien SW, Zhang Y, Harrell MI, Johnson SF, Candido Dos Reis FJ, Pharoah PDP, Karlan B, Gourley C, Lambrechts D, Chenevix-Trench G, Olsson H, Benitez JJ, Greene MH, Gore M, Nussbaum R, Sadetzki S, Gayther SA, Kjaer SK, D'Andrea AD, Shapiro GI, Wiest DL, Connolly DC, Daly MB, Swisher EM, Bouwman P, Jonkers J, Balmaña J, Serra V, Johnson N. The BRCA1-Δ11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin. Cancer Res 2017; 76:2778-90. [PMID: 27197267 DOI: 10.1158/0008-5472.can-16-0186] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but acquired resistance limits clinical impact. In this study, we investigated the impact of mutations on BRCA1 isoform expression and therapeutic response. Cancer cell lines and tumors harboring mutations in exon 11 of BRCA1 express a BRCA1-Δ11q splice variant lacking the majority of exon 11. The introduction of frameshift mutations to exon 11 resulted in nonsense-mediated mRNA decay of full-length, but not the BRCA1-Δ11q isoform. CRISPR/Cas9 gene editing as well as overexpression experiments revealed that the BRCA1-Δ11q protein was capable of promoting partial PARPi and cisplatin resistance relative to full-length BRCA1, both in vitro and in vivo Furthermore, spliceosome inhibitors reduced BRCA1-Δ11q levels and sensitized cells carrying exon 11 mutations to PARPi treatment. Taken together, our results provided evidence that cancer cells employ a strategy to remove deleterious germline BRCA1 mutations through alternative mRNA splicing, giving rise to isoforms that retain residual activity and contribute to therapeutic resistance. Cancer Res; 76(9); 2778-90. ©2016 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Cristina Cruz
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain. Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph Nacson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yong Zhang
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maribel I Harrell
- Department of Obstetrics and Gynecology and Medicine, University of Washington, Seattle, Washington
| | - Shawn F Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Beth Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Charlie Gourley
- University of Edinburgh Cancer Research UK Centre, MRC IGMM, Edinburgh, United Kingdom
| | | | | | - Håkan Olsson
- Departments of Cancer Epidemiology and Oncology, Lund University, Lund, Sweden
| | - Javier J Benitez
- Human Genetics Group and Human Genotyping Unit Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Martin Gore
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Robert Nussbaum
- University of California San Francisco, Cancer Risk Program, San Francisco, California
| | - Siegal Sadetzki
- Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David L Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mary B Daly
- Risk Assessment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology and Medicine, University of Washington, Seattle, Washington
| | - Peter Bouwman
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Judith Balmaña
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Gradishar W, Johnson K, Brown K, Mundt E, Manley S. Clinical Variant Classification: A Comparison of Public Databases and a Commercial Testing Laboratory. Oncologist 2017; 22:797-803. [PMID: 28408614 PMCID: PMC5507641 DOI: 10.1634/theoncologist.2016-0431] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There is a growing move to consult public databases following receipt of a genetic test result from a clinical laboratory; however, the well-documented limitations of these databases call into question how often clinicians will encounter discordant variant classifications that may introduce uncertainty into patient management. Here, we evaluate discordance in BRCA1 and BRCA2 variant classifications between a single commercial testing laboratory and a public database commonly consulted in clinical practice. MATERIALS AND METHODS BRCA1 and BRCA2 variant classifications were obtained from ClinVar and compared with the classifications from a reference laboratory. Full concordance and discordance were determined for variants whose ClinVar entries were of the same pathogenicity (pathogenic, benign, or uncertain). Variants with conflicting ClinVar classifications were considered partially concordant if ≥1 of the listed classifications agreed with the reference laboratory classification. RESULTS Four thousand two hundred and fifty unique BRCA1 and BRCA2 variants were available for analysis. Overall, 73.2% of classifications were fully concordant and 12.3% were partially concordant. The remaining 14.5% of variants had discordant classifications, most of which had a definitive classification (pathogenic or benign) from the reference laboratory compared with an uncertain classification in ClinVar (14.0%). CONCLUSION Here, we show that discrepant classifications between a public database and single reference laboratory potentially account for 26.7% of variants in BRCA1 and BRCA2. The time and expertise required of clinicians to research these discordant classifications call into question the practicality of checking all test results against a database and suggest that discordant classifications should be interpreted with these limitations in mind. IMPLICATIONS FOR PRACTICE With the increasing use of clinical genetic testing for hereditary cancer risk, accurate variant classification is vital to ensuring appropriate medical management. There is a growing move to consult public databases following receipt of a genetic test result from a clinical laboratory; however, we show that up to 26.7% of variants in BRCA1 and BRCA2 have discordant classifications between ClinVar and a reference laboratory. The findings presented in this paper serve as a note of caution regarding the utility of database consultation.
Collapse
Affiliation(s)
- William Gradishar
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Myriad Genetic Laboratories, Inc., Salt Lake City, Utah, USA
| | - KariAnne Johnson
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Myriad Genetic Laboratories, Inc., Salt Lake City, Utah, USA
| | - Krystal Brown
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Myriad Genetic Laboratories, Inc., Salt Lake City, Utah, USA
| | - Erin Mundt
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Myriad Genetic Laboratories, Inc., Salt Lake City, Utah, USA
| | - Susan Manley
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Myriad Genetic Laboratories, Inc., Salt Lake City, Utah, USA
| |
Collapse
|
32
|
Molecular characterization and clinical interpretation of BRCA1/BRCA2 variants in families from Murcia (south-eastern Spain) with hereditary breast and ovarian cancer: clinical–pathological features in BRCA carriers and non-carriers. Fam Cancer 2017; 16:477-489. [DOI: 10.1007/s10689-017-9985-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Vallée MP, Di Sera TL, Nix DA, Paquette AM, Parsons MT, Bell R, Hoffman A, Hogervorst FBL, Goldgar DE, Spurdle AB, Tavtigian SV. Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants. Hum Mutat 2016; 37:627-39. [PMID: 26913838 PMCID: PMC4907813 DOI: 10.1002/humu.22973] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023]
Abstract
Clinical mutation screening of the cancer susceptibility genes BRCA1 and BRCA2 generates many unclassified variants (UVs). Most of these UVs are either rare missense substitutions or nucleotide substitutions near the splice junctions of the protein coding exons. Previously, we developed a quantitative method for evaluation of BRCA gene UVs—the “integrated evaluation”—that combines a sequence analysis‐based prior probability of pathogenicity with patient and/or tumor observational data to arrive at a posterior probability of pathogenicity. One limitation of the sequence analysis‐based prior has been that it evaluates UVs from the perspective of missense substitution severity but not probability to disrupt normal mRNA splicing. Here, we calibrated output from the splice‐site fitness program MaxEntScan to generate spliceogenicity‐based prior probabilities of pathogenicity for BRCA gene variants; these range from 0.97 for variants with high probability to damage a donor or acceptor to 0.02 for exonic variants that do not impact a splice junction and are unlikely to create a de novo donor. We created a database http://priors.hci.utah.edu/PRIORS/ that provides the combined missense substitution severity and spliceogenicity‐based probability of pathogenicity for BRCA gene single‐nucleotide substitutions. We also updated the BRCA gene Ex‐UV LOVD, available at http://hci‐exlovd.hci.utah.edu, with 77 re‐evaluable variants.
Collapse
Affiliation(s)
- Maxime P Vallée
- Department of Molecular Medicine, CHUQ Research Center, Quebec City, Canada
| | - Tonya L Di Sera
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - David A Nix
- ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew M Paquette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Russel Bell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrea Hoffman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
34
|
Fackenthal JD, Yoshimatsu T, Zhang B, de Garibay GR, Colombo M, De Vecchi G, Ayoub SC, Lal K, Olopade OI, Vega A, Santamariña M, Blanco A, Wappenschmidt B, Becker A, Houdayer C, Walker LC, López-Perolio I, Thomassen M, Parsons M, Whiley P, Blok MJ, Brandão RD, Tserpelis D, Baralle D, Montalban G, Gutiérrez-Enríquez S, Díez O, Lazaro C, Spurdle AB, Radice P, de la Hoya M. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples. J Med Genet 2016; 53:548-58. [PMID: 27060066 DOI: 10.1136/jmedgenet-2015-103570] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation or defects in gene function. To understand which novel splicing events are associated with splicing mutations and which are part of the normal BRCA2 splicing repertoire, a study was undertaken by members of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary or agarose gel electrophoresis, followed by sequencing. RESULTS We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS These naturally occurring alternate-splicing events contribute to the array of cDNA fragments that may be seen in assays for mutation-associated splicing defects. Caution must be observed in assigning alternate-splicing events to potential splicing mutations.
Collapse
Affiliation(s)
| | - Toshio Yoshimatsu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Bifeng Zhang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Samantha C Ayoub
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kumar Lal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Blanco
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Barbara Wappenschmidt
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Alexandra Becker
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Claude Houdayer
- Service de Génétique and INSERM U830, Institut Curie and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Logan C Walker
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Irene López-Perolio
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Michael Parsons
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Phillip Whiley
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rita D Brandão
- Maastricht Science Programme, Faculty of Humanities and Sciences, Maastricht University, Maastricht, The Netherlands
| | - Demis Tserpelis
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diana Baralle
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain Clinical and Molecular Genetics Area, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | | | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
35
|
New concepts on BARD1: Regulator of BRCA pathways and beyond. Int J Biochem Cell Biol 2016; 72:1-17. [DOI: 10.1016/j.biocel.2015.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
|
36
|
Jønson L, Ahlborn LB, Steffensen AY, Djursby M, Ejlertsen B, Timshel S, Nielsen FC, Gerdes AM, Hansen TVO. Identification of six pathogenic RAD51C mutations via mutational screening of 1228 Danish individuals with increased risk of hereditary breast and/or ovarian cancer. Breast Cancer Res Treat 2016; 155:215-22. [PMID: 26740214 DOI: 10.1007/s10549-015-3674-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Germ-line mutations in the RAD51C gene have recently been identified in families with breast and ovarian cancer and have been associated with an increased risk of ovarian cancer. In this study, we describe the frequency of pathogenic RAD51C mutations identified in Danish breast and/or ovarian cancer families. We screened the RAD51C gene in 1228 Danish hereditary breast and/or ovarian cancer families by next-generation sequencing analysis. The frequency of the identified variants was examined in the exome sequencing project database and in data from 2000 Danish exomes and the presumed significance of missense and intronic variants was predicted by in silico analysis. We identified six families with a pathogenic mutation in RAD51C, including three frameshift mutations, one nonsense mutation, and 2 missense mutations. Overall, pathogenic RAD51C mutations were identified in 0.5 % of Danish families with increased risk of hereditary breast and/or ovarian cancer. Moreover, we identified 24 additional RAD51C variants of which 14 have not been previously reported in the literature. In this study, we determine the prevalence of RAD51C mutations in Danish breast and/or ovarian cancer families. We identified six pathogenic RAD51C mutations as well as 23 variants of uncertain clinical significance and one benign variant. Together, the study extends our knowledge of the RAD51C mutation spectrum and supports that RAD51C should be included in gene panel testing of individuals with high risk of breast and ovarian cancer.
Collapse
Affiliation(s)
- Lars Jønson
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lise B Ahlborn
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ane Y Steffensen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Bent Ejlertsen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Susanne Timshel
- Kennedy Center, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
37
|
Acedo A, Hernández-Moro C, Curiel-García Á, Díez-Gómez B, Velasco EA. Functional classification of BRCA2 DNA variants by splicing assays in a large minigene with 9 exons. Hum Mutat 2015; 36:210-21. [PMID: 25382762 PMCID: PMC4371643 DOI: 10.1002/humu.22725] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Numerous pathogenic DNA variants impair the splicing mechanism in human genetic diseases. Minigenes are optimal approaches to test variants under the splicing viewpoint without the need of patient samples. We aimed to design a robust minigene construct of the breast cancer gene BRCA2 in order to investigate the impact of variants on splicing. BRCA2 exons 19-27 (MGBR2_ex19-27) were cloned in the new vector pSAD. It produced a large transcript of the expected size (2,174 nucleotides) and exon structure (V1-ex19-27-V2). Splicing assays showed that 18 (17 splice-site and 1 silencer variants) out of 40 candidate DNA variants induced aberrant patterns. Twenty-four anomalous transcripts were accurately detected by fluorescent-RT-PCR that were generated by exon-skipping, alternative site usage, and intron-retention events. Fourteen variants induced major anomalies and were predicted to disrupt protein function so they could be classified as pathogenic. Furthermore, minigene mimicked previously reported patient RNA outcomes of seven variants supporting the reproducibility of minigene assays. Therefore, a relevant fraction of variants are involved in breast cancer through splicing alterations. MGBR2_ex19-27 is the largest reported BRCA2 minigene and constitutes a valuable tool for the functional and clinical classification of sequence variations.
Collapse
Affiliation(s)
- Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | | | | | | | | |
Collapse
|
38
|
Ahlborn LB, Dandanell M, Steffensen AY, Jønson L, Nielsen FC, Hansen TVO. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic. Breast Cancer Res Treat 2015; 150:289-98. [PMID: 25724305 PMCID: PMC4368840 DOI: 10.1007/s10549-015-3313-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/15/2015] [Indexed: 01/23/2023]
Abstract
Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c.5074G>C/p.Asp1692His, c.5074G>A/p.Asp1692Asn, c.5074G>T/p.Asp1692Tyr, c.5332G>A/p.Asp1778Asn, c.5332G>T/p.Asp1778Tyr, and c.5408G>C/p.Gly1803Ala), whereas five BRCA1 variants had no effect on splicing (c.4985T>C/p.Phe1662Ser, c.5072C>A/p.Thr1691Lys, c.5153G>C/p.Trp1718Ser, c.5154G>T/p.Trp1718Cys, and c.5333A>G/p.Asp1778Gly). Eight of the variants having an effect on splicing (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5074G>C/p.Asp1692His, c.5074G>A/p.Asp1692Asn, c.5074G>T/p.Asp1692Tyr, c.5332G>A/p.Asp1778Asn, c.5332G>T/p.Asp1778Tyr, and c.5408G>C/p.Gly1803Ala) were previously determined to have no or an uncertain effect on the protein level, whereas one variant (c.5072C>T/p.Thr1691Ile) were shown to have a strong effect on the protein level as well. In conclusion, our study emphasizes that in silico splicing prediction and mini-gene splicing analysis are important for the classification of BRCA1 missense variants located close to exon/intron boundaries.
Collapse
Affiliation(s)
- Lise B. Ahlborn
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Mette Dandanell
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ane Y. Steffensen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Thomas v. O. Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
39
|
Lynch H, Synder C, Wang SM. Considerations for Comprehensive Assessment of Genetic Predisposition in Familial Breast Cancer. Breast J 2014; 21:67-75. [DOI: 10.1111/tbj.12358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Henry Lynch
- Hereditary Cancer Center; Department of Preventive Medicine; Creighton University; Omaha Nebraska
| | - Carrie Synder
- Hereditary Cancer Center; Department of Preventive Medicine; Creighton University; Omaha Nebraska
| | - San Ming Wang
- Department of Genetics, Cell Biology and Anatomy; University of Nebraska Medical Center; Omaha Nebraska
| |
Collapse
|
40
|
Functional characterization of BRCA1 gene variants by mini-gene splicing assay. Eur J Hum Genet 2014; 22:1362-8. [PMID: 24667779 PMCID: PMC4231409 DOI: 10.1038/ejhg.2014.40] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 02/06/2023] Open
Abstract
Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense, silent, and intron variants, which are classified as variants of unknown clinical significance owing to the lack of causal evidence. Variants of unknown clinical significance can potentially have an impact on splicing and therefore functional examinations are warranted to classify whether these variants are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13 BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213-1G>A, c.670+1delG, c.4185+1G>A, and c.5075-1G>C), whereas six BRCA1 variants were classified as neutral (c.-19-22_-19-21dupAT, c.302-15C>G, c.547+14delG, c.4676-20A>G, c.4987-21G>T, and c.5278-14C>G) and one BRCA1 variant remained unclassified (c.670+16G>A). In conclusion, our study emphasizes that in silico analysis and mini-gene splicing assays are important for the classification of variants, especially if no RNA is available from the patient. This knowledge is crucial for proper genetic counseling of patients and their family members.
Collapse
|
41
|
Guidugli L, Carreira A, Caputo SM, Ehlen A, Galli A, Monteiro ANA, Neuhausen SL, Hansen TVO, Couch FJ, Vreeswijk MPG. Functional assays for analysis of variants of uncertain significance in BRCA2. Hum Mutat 2013; 35:151-64. [PMID: 24323938 DOI: 10.1002/humu.22478] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/28/2013] [Indexed: 01/11/2023]
Abstract
Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may help establish a direct correlation with cancer predisposition. Therefore, alternative ways of predicting the pathogenicity of these variants are urgently needed. Since BRCA2 is a protein involved in important cellular mechanisms such as DNA repair, replication, and cell cycle control, functional assays have been developed that exploit these cellular activities to explore the impact of the variants on protein function. In this review, we summarize assays developed and currently utilized for studying missense variants in BRCA2. We specifically depict details of each assay, including variants of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant on cancer risk.
Collapse
Affiliation(s)
- Lucia Guidugli
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Parsons MT, Whiley PJ, Beesley J, Drost M, de Wind N, Thompson BA, Marquart L, Hopper JL, Jenkins MA, Brown MA, Tucker K, Warwick L, Buchanan DD, Spurdle AB. Consequences of germline variation disrupting the constitutional translational initiation codon start sites of MLH1 and BRCA2: Use of potential alternative start sites and implications for predicting variant pathogenicity. Mol Carcinog 2013; 54:513-22. [PMID: 24302565 DOI: 10.1002/mc.22116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
Variants that disrupt the translation initiation sequences in cancer predisposition genes are generally assumed to be deleterious. However, few studies have validated these assumptions with functional and clinical data. Two cancer syndrome gene variants likely to affect native translation initiation were identified by clinical genetic testing: MLH1:c.1A>G p.(Met1?) and BRCA2:c.67+3A>G. In vitro GFP-reporter assays were conducted to assess the consequences of translation initiation disruption on alternative downstream initiation codon usage. Analysis of MLH1:c.1A>G p.(Met1?) showed that translation was mostly initiated at an in-frame position 103 nucleotides downstream, but also at two ATG sequences downstream. The protein product encoded by the in-frame transcript initiating from position c.103 showed loss of in vitro mismatch repair activity comparable to known pathogenic mutations. BRCA2:c.67+3A>G was shown by mRNA analysis to result in an aberrantly spliced transcript deleting exon 2 and the consensus ATG site. In the absence of exon 2, translation initiated mostly at an out-of-frame ATG 323 nucleotides downstream, and to a lesser extent at an in-frame ATG 370 nucleotides downstream. Initiation from any of the downstream alternative sites tested in both genes would lead to loss of protein function, but further clinical data is required to confirm if these variants are associated with a high cancer risk. Importantly, our results highlight the need for caution in interpreting the functional and clinical consequences of variation that leads to disruption of the initiation codon, since translation may not necessarily occur from the first downstream alternative start site, or from a single alternative start site.
Collapse
Affiliation(s)
- Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Phillip J Whiley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark Drost
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels de Wind
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bryony A Thompson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Louise Marquart
- Department of Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - John L Hopper
- Centre for MEGA Epidemiology, School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,School of Public Health, Seoul National University, Seoul, Korea
| | - Mark A Jenkins
- Centre for MEGA Epidemiology, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | | | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kathy Tucker
- Hereditary Cancer Clinic, Prince of Wales Hospital, Randwick, Sydney, Australia
| | - Linda Warwick
- ACT Genetics Service, The Canberra Hospital, Canberra, Australia
| | - Daniel D Buchanan
- Department of Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
43
|
Whiley PJ, de la Hoya M, Thomassen M, Becker A, Brandão R, Pedersen IS, Montagna M, Menéndez M, Quiles F, Gutiérrez-Enríquez S, De Leeneer K, Tenés A, Montalban G, Tserpelis D, Yoshimatsu T, Tirapo C, Raponi M, Caldes T, Blanco A, Santamariña M, Guidugli L, de Garibay GR, Wong M, Tancredi M, Fachal L, Ding YC, Kruse T, Lattimore V, Kwong A, Chan TL, Colombo M, De Vecchi G, Caligo M, Baralle D, Lázaro C, Couch F, Radice P, Southey MC, Neuhausen S, Houdayer C, Fackenthal J, Hansen TVO, Vega A, Diez O, Blok R, Claes K, Wappenschmidt B, Walker L, Spurdle AB, Brown MA. Comparison of mRNA splicing assay protocols across multiple laboratories: recommendations for best practice in standardized clinical testing. Clin Chem 2013; 60:341-52. [PMID: 24212087 DOI: 10.1373/clinchem.2013.210658] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting. METHODS We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium. We compared similarities and differences in results derived from analysis of a panel of breast cancer 1, early onset (BRCA1) and breast cancer 2, early onset (BRCA2) gene variants known to alter splicing (BRCA1: c.135-1G>T, c.591C>T, c.594-2A>C, c.671-2A>G, and c.5467+5G>C and BRCA2: c.426-12_8delGTTTT, c.7988A>T, c.8632+1G>A, and c.9501+3A>T). Differences in protocols were then assessed to determine which elements were critical in reliable assay design. RESULTS PCR primer design strategies, PCR conditions, and product detection methods, combined with a prior knowledge of expected alternative transcripts, were the key factors for accurate splicing assay results. For example, because of the position of primers and PCR extension times, several isoforms associated with BRCA1, c.594-2A>C and c.671-2A>G, were not detected by many sites. Variation was most evident for the detection of low-abundance transcripts (e.g., BRCA2 c.8632+1G>A Δ19,20 and BRCA1 c.135-1G>T Δ5q and Δ3). Detection of low-abundance transcripts was sometimes addressed by using more analytically sensitive detection methods (e.g., BRCA2 c.426-12_8delGTTTT ins18bp). CONCLUSIONS We provide recommendations for best practice and raise key issues to consider when designing mRNA assays for evaluation of unclassified sequence variants.
Collapse
Affiliation(s)
- Phillip J Whiley
- Genetics & Computational Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Walker LC, Whiley PJ, Houdayer C, Hansen TVO, Vega A, Santamarina M, Blanco A, Fachal L, Southey MC, Lafferty A, Colombo M, De Vecchi G, Radice P, Spurdle AB. Evaluation of a 5-Tier Scheme Proposed for Classification of Sequence Variants Using Bioinformatic and Splicing Assay Data: Inter-Reviewer Variability and Promotion of Minimum Reporting Guidelines. Hum Mutat 2013; 34:1424-31. [DOI: 10.1002/humu.22388] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/12/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Logan C. Walker
- Department of Pathology; University of Otago; Christchurch; New Zealand
| | | | - Claude Houdayer
- Service de Génétique, INSERM U830, Institut Curie et Université Paris Descartes; Sorbonne Paris Cité; Paris; France
| | - Thomas V. O. Hansen
- Center for Genomic Medicine; Copenhagen University Hospital; Rigshospitalet; Copenhagen; Denmark
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC; CIBERER, IDIS; Santiago de Compostela; Spain
| | - Marta Santamarina
- Grupo de Medicina Xenómica -USC, University of Santiago de Compostela; CIBERER; IDIS; Santiago de Compostela; Spain
| | - Ana Blanco
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC; CIBERER, IDIS; Santiago de Compostela; Spain
| | - Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC; CIBERER, IDIS; Santiago de Compostela; Spain
| | - Melissa C. Southey
- Epidemiology Laboratory, Department of Pathology; The University of Melbourne; Melbourne; Victoria; Australia
| | | | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predicted Medicine; Fondazione IRCCS Istituto Nazionale dei Tumouri (INT); Milan; Italy
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predicted Medicine; Fondazione IRCCS Istituto Nazionale dei Tumouri (INT); Milan; Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predicted Medicine; Fondazione IRCCS Istituto Nazionale dei Tumouri (INT); Milan; Italy
| | - Amanda B. Spurdle
- Molecular Cancer Epidemiology Laboratory, Genetics and Computational Biology Division; Queensland Institute of Medical Research; Herston; Queensland; Australia
| | | |
Collapse
|
45
|
Lindor NM, Goldgar DE, Tavtigian SV, Plon SE, Couch FJ. BRCA1/2 sequence variants of uncertain significance: a primer for providers to assist in discussions and in medical management. Oncologist 2013; 18:518-24. [PMID: 23615697 DOI: 10.1634/theoncologist.2012-0452] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION DNA variants of uncertain significance (VUS) are common outcomes of clinical genetic testing for susceptibility to cancer. A statistically rigorous model that provides a pathogenicity score for each variant has been developed to aid in the clinical management of patients undergoing genetic testing. METHODS The information in this article is derived from multiple publications on VUS in BRCA genes, distilled for communicating with clinicians who may encounter VUS in their practice. RESULTS The posterior probability scores for BRCA1 or BRCA2 VUS, calculated from a multifactorial likelihood model, are explained, and links for looking up specific VUS are provided. The International Agency on Cancer Research (IARC) of the World Health Organization has proposed a simple five-tier system for clinical management that is not widely known to clinicians. Classes 1 and 2 in this system are managed as neutral variants, classes 4 and 5 are managed as pathogenic variants, and class 3 variants still have insufficient evidence to move to either end of this scale and, thus, cannot be used in medical management. CONCLUSIONS Development of models that integrate multiple independent lines of evidence has allowed classification of a growing number of VUS in the BRCA1 and BRCA2 genes. The pathogenicity score that is generated by this model maps to the IARC system for clinical management, which will assist clinicians in the medical management of those patients who obtain a VUS result upon testing.
Collapse
Affiliation(s)
- Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| | | | | | | | | |
Collapse
|
46
|
Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations. PLoS One 2013; 8:e57173. [PMID: 23451180 PMCID: PMC3579815 DOI: 10.1371/journal.pone.0057173] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022] Open
Abstract
Several unclassified variants (UVs) have been identified in splicing regions of disease-associated genes and their characterization as pathogenic mutations or benign polymorphisms is crucial for the understanding of their role in disease development. In this study, 24 UVs located at BRCA1 and BRCA2 splice sites were characterized by transcripts analysis. These results were used to evaluate the ability of nine bioinformatics programs in predicting genetic variants causing aberrant splicing (spliceogenic variants) and the nature of aberrant transcripts. Eleven variants in BRCA1 and 8 in BRCA2, including 8 not previously characterized at transcript level, were ascertained to affect mRNA splicing. Of these, 16 led to the synthesis of aberrant transcripts containing premature termination codons (PTCs), 2 to the up-regulation of naturally occurring alternative transcripts containing PTCs, and one to an in-frame deletion within the region coding for the DNA binding domain of BRCA2, causing the loss of the ability to bind the partner protein DSS1 and ssDNA. For each computational program, we evaluated the rate of non-informative analyses, i.e. those that did not recognize the natural splice sites in the wild-type sequence, and the rate of false positive predictions, i.e., variants incorrectly classified as spliceogenic, as a measure of their specificity, under conditions setting sensitivity of predictions to 100%. The programs that performed better were Human Splicing Finder and Automated Splice Site Analyses, both exhibiting 100% informativeness and specificity. For 10 mutations the activation of cryptic splice sites was observed, but we were unable to derive simple criteria to select, among the different cryptic sites predicted by the bioinformatics analyses, those actually used. Consistent with previous reports, our study provides evidences that in silico tools can be used for selecting splice site variants for in vitro analyses. However, the latter remain mandatory for the characterization of the nature of aberrant transcripts.
Collapse
|
47
|
Expression of human BRCA1Δ17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell Signal 2013; 25:1186-93. [PMID: 23416467 DOI: 10.1016/j.cellsig.2013.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/08/2013] [Indexed: 11/23/2022]
Abstract
Alternative pre-mRNA splicing is a fundamental post-transcriptional regulatory mechanism. Cancer-specific misregulation of the splicing process may lead to formation of irregular alternative splicing variants (ASVs) with a potentially negative impact on cellular homeostasis. Alternative splicing of BRCA1 pre-mRNA can give rise to BRCA1 protein isoforms that possess dramatically altered biological activities compared with full-length wild-type BRCA1. During the screening of high-risk breast cancer (BC) families we ascertained numerous BRCA1 ASVs, however, their clinical significance for BC development is largely unknown. In this study, we examined the influence of the BRCA1Δ17-19 ASV, which lacks a portion of the BRCT domain, on DNA repair capacity using human MCF-7 BC cell clones with stably modified BRCA1 expression. Our results show that overexpression of BRCA1Δ17-19 impairs homologous recombination repair (sensitizes cells to mitomycin C), delays repair of ionizing radiation-induced DNA damage and dynamics of the ionizing radiation-induced foci (IRIF) formation, and undermines also the non-homologous end joining repair (NHEJ) activity. Mechanistically, BRCA1Δ17-19 cannot interact with the partner proteins Abraxas and CtIP, thus preventing interactions known to be critical for processing of DNA lesions. We propose that the observed inability of BRCA1Δ17-19 to functionally replace wtBRCA1 in repair of DNA double-strand breaks (DDSB) reflects impaired capacity to form the BRCA1-A and -C repair complexes. Our findings indicate that expression of BRCA1Δ17-19 may negatively influence genome stability by reducing the DDSB repair velocity, thereby contributing to enhanced probability of cancer development in the affected families.
Collapse
|
48
|
Spurdle AB, Whiley PJ, Thompson B, Feng B, Healey S, Brown MA, Pettigrew C, Van Asperen CJ, Ausems MGEM, Kattentidt-Mouravieva AA, van den Ouweland AMW, Lindblom A, Pigg MH, Schmutzler RK, Engel C, Meindl A, Caputo S, Sinilnikova OM, Lidereau R, Couch FJ, Guidugli L, Hansen TVO, Thomassen M, Eccles DM, Tucker K, Benitez J, Domchek SM, Toland AE, Van Rensburg EJ, Wappenschmidt B, Borg Å, Vreeswijk MPG, Goldgar DE. BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk. J Med Genet 2012; 49:525-32. [PMID: 22889855 DOI: 10.1136/jmedgenet-2012-101037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Clinical classification of rare sequence changes identified in the breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling of individuals carrying these variants. We previously showed that variant BRCA1 c.5096G>A p.Arg1699Gln in the BRCA1 transcriptional transactivation domain demonstrated equivocal results from a series of functional assays, and proposed that this variant may confer low to moderate risk of cancer. METHODS Measures of genetic risk (report of family history, segregation) were assessed for 68 BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) families recruited through family cancer clinics, comparing results with 34 families carrying the previously classified pathogenic BRCA1 c.5095C>T p.Arg1699Trp (R1699W) mutation at the same residue, and to 243 breast cancer families with no BRCA1 pathogenic mutation (BRCA-X). RESULTS Comparison of BRCA1 carrier prediction scores of probands using the BOADICEA risk prediction tool revealed that BRCA1 c.5096G>A p.Arg1699Gln variant carriers had family histories that were less 'BRCA1-like' than BRCA1 c.5095C>T p.Arg1699Trp mutation carriers (p<0.00001), but more 'BRCA1-like' than BRCA-X families (p=0.0004). Further, modified segregation analysis of the subset of 30 families with additional genotyping showed that BRCA1 c.5096G >A p.Arg1699Gln had reduced penetrance compared with the average truncating BRCA1 mutation penetrance (p=0.0002), with estimated cumulative risks to age 70 of breast or ovarian cancer of 24%. CONCLUSIONS Our results provide substantial evidence that the BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) variant, demonstrating ambiguous functional deficiency across multiple assays, is associated with intermediate risk of breast and ovarian cancer, highlighting challenges for risk modelling and clinical management of patients of this and other potential moderate-risk variants.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wappenschmidt B, Becker AA, Hauke J, Weber U, Engert S, Köhler J, Kast K, Arnold N, Rhiem K, Hahnen E, Meindl A, Schmutzler RK. Analysis of 30 putative BRCA1 splicing mutations in hereditary breast and ovarian cancer families identifies exonic splice site mutations that escape in silico prediction. PLoS One 2012; 7:e50800. [PMID: 23239986 PMCID: PMC3519833 DOI: 10.1371/journal.pone.0050800] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/25/2012] [Indexed: 12/12/2022] Open
Abstract
Screening for pathogenic mutations in breast and ovarian cancer genes such as BRCA1/2, CHEK2 and RAD51C is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of unclassified variants (UCV) in the concurrent absence of clearly cancer-predisposing mutations. Especially the presence of intronic or exonic variants within these genes that possibly affect proper pre-mRNA processing poses a challenge as their functional implications are not immediately apparent. Therefore, it appears necessary to characterize potential splicing UCV and to develop appropriate classification tools. We investigated 30 distinct BRCA1 variants, both intronic and exonic, regarding their spliceogenic potential by commonly used in silico prediction algorithms (HSF, MaxEntScan) along with in vitro transcript analyses. A total of 25 variants were identified spliceogenic, either causing/enhancing exon skipping or activation of cryptic splice sites, or both. Except from a single intronic variant causing minor effects on BRCA1 pre-mRNA processing in our analyses, 23 out of 24 intronic variants were correctly predicted by MaxEntScan, while HSF was less accurate in this cohort. Among the 6 exonic variants analyzed, 4 severely impair correct pre-mRNA processing, while the remaining two have partial effects. In contrast to the intronic alterations investigated, only half of the spliceogenic exonic variants were correctly predicted by HSF and/or MaxEntScan. These data support the idea that exonic splicing mutations are commonly disease-causing and concurrently prone to escape in silico prediction, hence necessitating experimental in vitro splicing analysis.
Collapse
Affiliation(s)
- Barbara Wappenschmidt
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexandra A. Becker
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Jan Hauke
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Ute Weber
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefanie Engert
- Department of Gynaecology and Obstetrics, Klinikum rechts der Isar at the Technical University, Munich, Germany
| | - Juliane Köhler
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Karin Kast
- Department of Gynecology and Obstetrics, Technical University of Dresden, Dresden, Germany
| | - Norbert Arnold
- Division of Oncology, Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Kerstin Rhiem
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Eric Hahnen
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alfons Meindl
- Department of Gynaecology and Obstetrics, Klinikum rechts der Isar at the Technical University, Munich, Germany
| | - Rita K. Schmutzler
- Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
50
|
Jewer M, Findlay SD, Postovit LM. Post-transcriptional regulation in cancer progression : Microenvironmental control of alternative splicing and translation. J Cell Commun Signal 2012; 6:233-48. [PMID: 23054595 DOI: 10.1007/s12079-012-0179-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/24/2012] [Indexed: 12/28/2022] Open
Abstract
The microenvironment acts as a conduit for cellular communication, delivering signals that direct development and sustain tissue homeostasis. In pathologies such as cancer, this integral function of the microenvironment is hijacked to support tumor growth and progression. Cells sense the microenvironment via signal transduction pathways culminating in altered gene expression. In addition to induced transcriptional changes, the microenvironment exerts its effect on the cell through regulation of post-transcriptional processes including alternative splicing and translational control. Here we describe how alternative splicing and protein translation are controlled by microenvironmental parameters such as oxygen availability. We also emphasize how these pathways can be utilized to support processes that are hallmarks of cancer such as angiogenesis, proliferation, and cell migration. We stress that cancer cells respond to their microenvironment through an integrated regulation of gene expression at multiple levels that collectively contribute to disease progression.
Collapse
Affiliation(s)
- Michael Jewer
- Department of Anatomy & Cell Biology, The Schulich School of Medicine and Dentistry, Western University, 438 Medical Science Building, London, ON, N6A 5C1, Canada
| | | | | |
Collapse
|