1
|
Ido M, Fujii K, Mishima H, Kubo A, Saito M, Banno H, Ito Y, Goto M, Ando T, Mouri Y, Kousaka J, Imai T, Nakano S. Comprehensive genomic evaluation of advanced and recurrent breast cancer patients for tailored precision treatments. BMC Cancer 2024; 24:85. [PMID: 38229073 DOI: 10.1186/s12885-023-11442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 01/18/2024] Open
Abstract
AIM The aim of this study was to investigate genetic alterations within breast cancer in the setting of recurrent or de novo stage IV disease. PATIENTS AND METHODS This study included 22 patients with recurrent breast cancer (n = 19) and inoperable de novo stage IV breast cancer (n = 3). For next generation sequencing, FoundationOneCDx (F1CDx) (Foundation Medicine Inc., Cambridge, MA, USA) was performed in 21 patients and FoundationOneLiquid CDx was performed in 1 patient. RESULTS Median age was 62.9 years (range, 33.4-82.1). Pathological diagnoses of specimens included invasive ductal carcinoma (n = 19), invasive lobular carcinoma (n = 2), and invasive micropapillary carcinoma (n = 1). F1CDx detected a median of 4.5 variants (range, 1-11). The most commonly altered gene were PIK3CA (n = 9), followed by TP53 (n = 7), MYC (n = 4), PTEN (n = 3), and CDH1 (n = 3). For hormone receptor-positive patients with PIK3CA mutations, hormonal treatment plus a phosphoinositide 3-kinase inhibitor was recommended as the treatment of choice. Patients in the hormone receptor-negative and no human epidermal growth factor receptor 2 expression group had significantly higher tumor mutational burden than patients in the hormone receptor-positive group. A BRCA2 reversion mutation was revealed by F1CDx in a patient with a deleterious germline BRCA2 mutation during poly ADP ribose polymerase inhibitor treatment. CONCLUSION Guidance on tailored precision therapy with consideration of genomic mutations was possible for some patients with information provided by F1CDx. Clinicians should consider using F1CDx at turning points in the course of the disease.
Collapse
Affiliation(s)
- Mirai Ido
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Kimihito Fujii
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan.
| | - Hideyuki Mishima
- Cancer Center, Aichi Medical University Hospital, Nagakute city, Japan
| | - Akihito Kubo
- Cancer Center, Aichi Medical University Hospital, Nagakute city, Japan
| | - Masayuki Saito
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Hirona Banno
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Yukie Ito
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Manami Goto
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Takahito Ando
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Yukako Mouri
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Junko Kousaka
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Tsuneo Imai
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| | - Shogo Nakano
- Department of Surgery, Division of Breast and Endocrine Surgery, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute city, 480-1195, Japan
| |
Collapse
|
2
|
Vitale SR, Ruigrok-Ritstier K, Timmermans AM, Foekens R, Trapman-Jansen AMAC, Beaufort CM, Vigneri P, Sleijfer S, Martens JWM, Sieuwerts AM, Jansen MPHM. The prognostic and predictive value of ESR1 fusion gene transcripts in primary breast cancer. BMC Cancer 2022; 22:165. [PMID: 35151276 PMCID: PMC8840267 DOI: 10.1186/s12885-022-09265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background In breast cancer (BC), recurrent fusion genes of estrogen receptor alpha (ESR1) and AKAP12, ARMT1 and CCDC170 have been reported. In these gene fusions the ligand binding domain of ESR1 has been replaced by the transactivation domain of the fusion partner constitutively activating the receptor. As a result, these gene fusions can drive tumor growth hormone independently as been shown in preclinical models, but the clinical value of these fusions have not been reported. Here, we studied the prognostic and predictive value of different frequently reported ESR1 fusion transcripts in primary BC. Methods We evaluated 732 patients with primary BC (131 ESR1-negative and 601 ESR1-positive cases), including two ER-positive BC patient cohorts: one cohort of 322 patients with advanced disease who received first-line endocrine therapy (ET) (predictive cohort), and a second cohort of 279 patients with lymph node negative disease (LNN) who received no adjuvant systemic treatment (prognostic cohort). Fusion gene transcript levels were measured by reverse transcriptase quantitative PCR. The presence of the different fusion transcripts was associated, in uni- and multivariable Cox regression analysis taking along current clinico-pathological characteristics, to progression free survival (PFS) during first-line endocrine therapy in the predictive cohort, and disease- free survival (DFS) and overall survival (OS) in the prognostic cohort. Results The ESR1-CCDC170 fusion transcript was present in 27.6% of the ESR1-positive BC subjects and in 2.3% of the ESR1-negative cases. In the predictive cohort, none of the fusion transcripts were associated with response to first-line ET. In the prognostic cohort, the median DFS and OS were respectively 37 and 93 months for patients with an ESR1-CCDC170 exon 8 gene fusion transcript and respectively 91 and 212 months for patients without this fusion transcript. In a multivariable analysis, this ESR1-CCDC170 fusion transcript was an independent prognostic factor for DFS (HR) (95% confidence interval (CI): 1.8 (1.2–2.8), P = 0.005) and OS (HR (95% CI: 1.7 (1.1–2.7), P = 0.023). Conclusions Our study shows that in primary BC only ESR1-CCDC170 exon 8 gene fusion transcript carries prognostic value. None of the ESR1 fusion transcripts, which are considered to have constitutive ER activity, was predictive for outcome in BC with advanced disease treated with endocrine treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09265-1.
Collapse
|
3
|
Reinhardt K, Stückrath K, Hartung C, Kaufhold S, Uleer C, Hanf V, Lantzsch T, Peschel S, John J, Pöhler M, Bauer M, Bürrig FK, Weigert E, Buchmann J, Kantelhardt EJ, Thomssen C, Vetter M. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat 2022; 196:483-493. [PMID: 36279023 PMCID: PMC9633529 DOI: 10.1007/s10549-022-06637-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/14/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Phosphatidylinositide-3-kinase (PI3K) regulates proliferation and apoptosis; somatic PIK3CA-mutations may activate these processes. Aim of this study was to determine the prevalence of PIK3CA-mutations in a cohort of early stage breast cancer patients and the association to the course of disease. PATIENTS AND METHODS From an unselected cohort of 1270 breast cancer patients (PiA, Prognostic Assessment in routine application, NCT01592825) 1123 tumours were tested for the three PIK3CA hotspot-mutations H1047R, E545K, and E542K by qPCR. Primary objectives were the prevalence of somatic PIK3CA-mutations and their association to tumour characteristics. Secondary objective was the association of PIK3CA-mutations to recurrence-free interval (RFI) and overall survival. RESULTS PIK3CA-mutation rate was 26.7% (300 of 1123). PIK3CA-mutations were significantly more frequent in steroid hormone-receptor (SHR)-positive HER2-negative (31.4%), and G1 and G2 tumours (32.8%). Overall, we did not observe a significant association of PIK3CA-mutations to RFI. In SHR-positive BCs with PIK3CA-mutations, a strong trend for impaired RFI was observed (adjusted HR 1.64, 95% CI 0.958-2.807), whilst in SHR-negative BCs PIK3CA-mutations were insignificantly associated with improved RFI (adjusted HR 0.49; 95% CI 0.152-1.597). Of note, we observed a significantly detrimental prognostic impact of PIK3CA-mutations on RFI in SHR-positive, HER2-negative BCs if only aromatase inhibitors were administered as adjuvant therapy (adjusted HR 4.44, 95% CI 1.385-13.920), whilst no impact was observed in tamoxifen treated patients. CONCLUSION This cohort study speficies the overall mutation rate of PIK3CA in early breast cancer. The impact of PIK3CA-mutations on RFI and OS was heterogeneous. Our results suggest that estrogen deprivation failes to be active in case of PIK3CA-mutation.
Collapse
Affiliation(s)
- Kristin Reinhardt
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Kathrin Stückrath
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Carolin Hartung
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Sandy Kaufhold
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | | | - Volker Hanf
- Department of Gynaecology, Nathanstift, Hospital Fuerth, Fürth, Germany
| | - Tillmann Lantzsch
- Department of Gynaecology, Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany
| | - Susanne Peschel
- Department of Gynaecology, St. Bernward Hospital, Hildesheim, Germany
| | - Jutta John
- Department of Gynaecology, Helios Hospital Hildesheim, Hildesheim, Germany
| | - Marleen Pöhler
- Department of Gynaecology, Asklepios Hospital Goslar, Goslar, Germany ,Present Address: Department of Gynaecology and Obstretrics, Hospital Wolfenbüttel, Wolfenbüttel, Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Edith Weigert
- Institute of Pathology, Hospital Fürth, Fürth, Germany ,Present Address: Gemeinschaftspraxis Pathologie Amberg, Amberg, Germany
| | - Jörg Buchmann
- Institute of Pathology, Hospital Martha-Maria, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany ,Institute of Epidemiology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Thomssen
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Martina Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Schaduangrat N, Malik AA, Nantasenamat C. ERpred: a web server for the prediction of subtype-specific estrogen receptor antagonists. PeerJ 2021; 9:e11716. [PMID: 34285834 PMCID: PMC8274494 DOI: 10.7717/peerj.11716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptors alpha and beta (ERα and ERβ) are responsible for breast cancer metastasis through their involvement of clinical outcomes. Estradiol and hormone replacement therapy targets both ERs, but this often leads to an increased risk of breast and endometrial cancers as well as thromboembolism. A major challenge is posed for the development of compounds possessing ER subtype specificity. Herein, we present a large-scale classification structure-activity relationship (CSAR) study of inhibitors from the ChEMBL database which consisted of an initial set of 11,618 compounds for ERα and 7,810 compounds for ERβ. The IC50 was selected as the bioactivity unit for further investigation and after the data curation process, this led to a final data set of 1,593 and 1,281 compounds for ERα and ERβ, respectively. We employed the random forest (RF) algorithm for model building and of the 12 fingerprint types, models built using the PubChem fingerprint was the most robust (Ac of 94.65% and 92.25% and Matthews correlation coefficient (MCC) of 89% and 76% for ERα and ERβ, respectively) and therefore selected for feature interpretation. Results indicated the importance of features pertaining to aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. Finally, the model was deployed as the publicly available web server called ERpred at http://codes.bio/erpred where users can submit SMILES notation as the input query for prediction of the bioactivity against ERα and ERβ.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Dong C, Wu J, Chen Y, Nie J, Chen C. Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol 2021; 12:628690. [PMID: 33790792 PMCID: PMC8005514 DOI: 10.3389/fphar.2021.628690] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Although chemotherapy, targeted therapy and endocrine therapy decrease rate of disease recurrence in most breast cancer patients, many patients exhibit acquired resistance. Hyperactivation of the PI3K/AKT/mTOR pathway is associated with drug resistance and cancer progression. Currently, a number of drugs targeting PI3K/AKT/mTOR are being investigated in clinical trials by combining them with standard therapies to overcome acquired resistance in breast cancer. In this review, we summarize the critical role of the PI3K/AKT/mTOR pathway in drug resistance, the development of PI3K/AKT/mTOR inhibitors, and strategies to overcome acquired resistance to standard therapies in breast cancer.
Collapse
Affiliation(s)
- Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Yin Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jianyun Nie
- Department of the Third Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Nakai M, Yamada T, Sekiya K, Sato A, Hankyo M, Kuriyama S, Takahashi G, Kurita T, Yanagihara K, Yoshida H, Ohashi R, Takei H. PIK3CA mutation detected by liquid biopsy in patients with metastatic breast cancer. J NIPPON MED SCH 2021; 89:66-71. [PMID: 33692304 DOI: 10.1272/jnms.jnms.2022_89-107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND PIK3CA is associated with tumor progression, and the prevalence of its mutation is high in breast cancer. Liquid biopsy offers convenient, non-invasive, and real-time insight into genetic alternation. In this study, we attempted to detect PIK3CA mutations in breast cancer patients through liquid biopsy. METHODS We recruited patients with histologically confirmed breast cancer with distant metastases between April 2020 and September 2020. Circulating DNA was extracted from plasma (ctDNA) and exosomes (exoDNA). PIK3CA mutations (exons 9 and 20) were analyzed by droplet digital PCR. RESULTS Of a total of 52 patients recruited, 16 had PIK3CA mutations in their tumor tissue or blood, which comprised 9 with exon 9 mutations (E542K and E545K) and 8 with exon 20 mutations (H1047L and H1047R). In 8 (15%) of the 52 patients, PIK3CA mutations were detected by liquid biopsies using ctDNA in 5 (9%), exoDNA in 6 (11%), and both ctDNA and exoDNA in 3 (6%). Of the 8 patients with PIK3CA mutations detected by liquid biopsies, 3 had no PIK3CA mutations in the primary tumors. CONCLUSIONS PIK3CA mutations can be detected using liquid biopsy even in patients with no PIK3CA mutations in their primary tumors; thus, combination analysis using tissue and liquid biopsies can provide clinically useful information for patients with breast cancer.
Collapse
Affiliation(s)
- Maki Nakai
- Department of Breast Surgery and Oncology, Nippon Medical School
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Kenta Sekiya
- Department of Breast Surgery and Oncology, Nippon Medical School
| | - Ai Sato
- Department of Breast Surgery and Oncology, Nippon Medical School
| | - Meishi Hankyo
- Department of Breast Surgery and Oncology, Nippon Medical School
| | - Sho Kuriyama
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Goro Takahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Tomoko Kurita
- Department of Breast Surgery and Oncology, Nippon Medical School
| | - Keiko Yanagihara
- Department of Surgery, Nippon Medical School Tamanagayama Hospital
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School
| | - Hiroyuki Takei
- Department of Breast Surgery and Oncology, Nippon Medical School
| |
Collapse
|
7
|
Mavratzas A, Marmé F. Alpelisib in the treatment of metastatic HR+ breast cancer with PIK3CA mutations. Future Oncol 2021; 17:13-36. [DOI: 10.2217/fon-2020-0464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the US FDA approval of everolimus/exemestane in July 2012, and of the first CDK 4/6 inhibitor, palbociclib, combined with endocrine treatment in February 2015, a third class of therapeutic compounds, the PI3K inhibitors, has been introduced to the arsenal of targeted therapies overcoming endocrine resistance in hormone receptor-positive metastatic breast cancer. Alpelisib (PIQRAY®) is the first of these novel agents yielding promising clinical results, giving an impetus to further development of tailored endocrine anticancer treatments. Herein, we review its pharmacodynamic and pharmacokinetic properties, safety and efficacy data, as well as Phase III SOLAR-1 trial, prompting FDA approval of alpelisib in hormone receptor-positive metastatic breast cancer harboring PIK3CA mutations. Furthermore, implications for clinical use and current research will also be discussed.
Collapse
Affiliation(s)
- Athanasios Mavratzas
- Department of Obstetrics & Gynecology Mannheim, Section of Conservative Gynecologic Oncology, Experimental & Translational Gynecologic Oncology, Medical Faculty Mannheim of University Heidelberg University Hospital, Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Frederik Marmé
- Department of Obstetrics & Gynecology Mannheim, Section of Conservative Gynecologic Oncology, Experimental & Translational Gynecologic Oncology, Medical Faculty Mannheim of University Heidelberg University Hospital, Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
8
|
Liu Y, Du Q, Sun D, Han R, Teng M, Chen S, You H, Dong Y. Clinical applications of circulating tumor DNA in monitoring breast cancer drug resistance. Future Oncol 2020; 16:2863-2878. [PMID: 32976028 DOI: 10.2217/fon-2019-0760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. Unfortunately, treatments often fail because of the development of drug resistance, the underlying mechanisms of which remain unclear. Circulating tumor DNA (ctDNA) is free DNA released into the blood by necrosis, apoptosis or direct secretion by tumor cells. In contrast to repeated, highly invasive tumor biopsies, ctDNA reflects all molecular alterations of tumors dynamically and captures both spatial and temporal tumor heterogeneity. Highly sensitive technologies, including personalized digital PCR and deep sequencing, make it possible to monitor response to therapies, predict drug resistance and tailor treatment regimens by identifying the genomic alteration profile of ctDNA, thereby achieving precision medicine. This review focuses on the current status of ctDNA biology, the technologies used to detect ctDNA and the potential clinical applications of identifying drug resistance mechanisms by detecting tumor-specific genomic alterations in breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ruiying Han
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Haisheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| |
Collapse
|
9
|
Batalini F, Moulder SL, Winer EP, Rugo HS, Lin NU, Wulf GM. Response of Brain Metastases From PIK3CA-Mutant Breast Cancer to Alpelisib. JCO Precis Oncol 2020; 4:1900403. [PMID: 32923889 PMCID: PMC7446424 DOI: 10.1200/po.19.00403] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | | | - Hope S Rugo
- University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
10
|
M. Sieuwerts A, A. Inda M, Smid M, van Ooijen H, van de Stolpe A, Martens JWM, Verhaegh WFJ. ER and PI3K Pathway Activity in Primary ER Positive Breast Cancer Is Associated with Progression-Free Survival of Metastatic Patients under First-Line Tamoxifen. Cancers (Basel) 2020; 12:E802. [PMID: 32230714 PMCID: PMC7226576 DOI: 10.3390/cancers12040802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
: Estrogen receptor positive (ER+) breast cancer patients are eligible for hormonal treatment, but only around half respond. A test with higher specificity for prediction of endocrine therapy response is needed to avoid hormonal overtreatment and to enable selection of alternative treatments. A novel testing method was reported before that enables measurement of functional signal transduction pathway activity in individual cancer tissue samples, using mRNA levels of target genes of the respective pathway-specific transcription factor. Using this method, 130 primary breast cancer samples were analyzed from non-metastatic ER+ patients, treated with surgery without adjuvant hormonal therapy, who subsequently developed metastatic disease that was treated with first-line tamoxifen. Quantitative activity levels were measured of androgen and estrogen receptor (AR and ER), PI3K-FOXO, Hedgehog (HH), NFκB, TGFβ, and Wnt pathways. Based on samples with known pathway activity, thresholds were set to distinguish low from high activity. Subsequently, pathway activity levels were correlated with the tamoxifen treatment response and progression-free survival. High ER pathway activity was measured in 41% of the primary tumors and was associated with longer time to progression (PFS) of metastases during first-line tamoxifen treatment. In contrast, high PI3K, HH, and androgen receptor pathway activity was associated with shorter PFS, and high PI3K and TGFβ pathway activity with worse treatment response. Potential clinical utility of assessment of ER pathway activity lies in predicting response to hormonal therapy, while activity of PI3K, HH, TGFβ, and AR pathways may indicate failure to respond, but also opens new avenues for alternative or complementary targeted treatments.
Collapse
Affiliation(s)
- Anieta M. Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Márcia A. Inda
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Henk van Ooijen
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Anja van de Stolpe
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wim F. J. Verhaegh
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
11
|
Tang Y, Li J, Xie N, Yang X, Liu L, Wu H, Tian C, He Y, Wang X, He Q, Hu ZY, Ouyang Q. PIK3CA gene mutations in the helical domain correlate with high tumor mutation burden and poor prognosis in metastatic breast carcinomas with late-line therapies. Aging (Albany NY) 2020; 12:1577-1590. [PMID: 31980592 PMCID: PMC7053638 DOI: 10.18632/aging.102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022]
Abstract
Nearly half of metastatic breast cancers (MBC) have genetic aberrations in the PI3K/AKT pathway. To investigate the distinct effect of these aberrations on MBC, 193 MBC patients who progressed after the early line (≤2) salvage treatment voluntarily received next generation sequencing (NGS) for a panel of 1,021 genes. 93 (48%) patients had genetic aberrations in the PI3K/AKT pathway. The number of patients with PIK3CA mutations in kinase domain (KD), helical domain (HD) and other domain (OD), were 36 (18.7%), 26 (13.5%), 10 (5.2%), respectively. 21 (10.9%) patients had mutations in PI3K/AKT pathway genes other than PIK3CA (P/A). Compared to PI3K/AKT-wild type (WT) patients, PIK3CA-HD patients had a significantly shorter progression-free survival (PFS) (Logrank p-value < 0.0001). PIK3CA-KD, PIK3CA-OD and other P/A mutations showed similar PFS to WT patients (Logrank p-value = 0.63). PIK3CA-HD patients had a distinct ctDNA mutation profile to patients with other PI3K/AKT mutations. PIK3CA-HD patients had a higher rate of FGFR and NF1 aberrations. In addition, more PIK3CA-HD carriers were TMB-high. Cox regression analyses suggested that PIK3CA-HD mutations, FGFR aberrations and high TMB were all significant risk factors for poor PFS. In conclusion, future research needs to focus more on the treatment strategies targeting PIK3CA-HD mutations.
Collapse
Affiliation(s)
- Yu Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Jing Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Ning Xie
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Xiaohong Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Liping Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Hui Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Can Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Ying He
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,The 2nd Department of Breast Cancer Surgical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | | | - Qiongzhi He
- Beijing Geneplus Institute, Beijing 102200, China
| | - Zhe-Yu Hu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| | - Quchang Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410000, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha 410000, China
| |
Collapse
|
12
|
PIK3CA mutations early persistence in cell-free tumor DNA as a negative prognostic factor in metastatic breast cancer patients treated with hormonal therapy. Breast Cancer Res Treat 2019; 177:659-667. [PMID: 31297647 DOI: 10.1007/s10549-019-05349-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE The identification of biomarkers of hormonal therapy (HT) failure would allow tailored monitoring in metastatic breast cancer (mBC) patients. PIK3CA gene mutation is one of the most frequent events in mBC and is associated with HT resistance. We evaluated the early prognostic value of cell-free DNA (cfDNA) PIK3CA detection in first-line HT-treated mBC patients. METHODS Between June 2012 and January 2014, 39 patients were prospectively included in a dedicated clinical trial (NCT01612871). Blood sampling was performed before (M0) and 4 weeks (M1), 3 months (M3) and 6 months (M6) after HT initiation, and at tumor progression. Patients were followed until progression or until the end of the study (2 years). Mutation detection was performed using droplet-based digital PCR (ddPCR). Progression-free survival (PFS) was used as primary endpoint. RESULTS Median age at inclusion was 63 years (range 40-86). Most patients (34/39) received an aromatase inhibitor and presented a non-measurable disease (71.8%). PIK3CA mutations were reported in 10 (27.8%) and 5 (14.3%) cases at M0 and M1, respectively. The persistence of a detectable circulating mutation at M1 was highly correlated with a worse progression-free survival (PFS), rate at 1 year: 40% versus 76.7%; p = 0.0053). CONCLUSIONS Four-week persistence of cfDNA PIK3CA mutation appears highly correlated with PFS. TRIAL REGISTRATION NCT01612871, registered on June 6th, 2012; https://clinicaltrials.gov/ct2/show/NCT01612871 .
Collapse
|
13
|
Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer 2017; 25:392-401. [PMID: 29086897 DOI: 10.1007/s12282-017-0812-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
Endocrine therapy is a crucial treatment for estrogen receptor-positive (ER+) breast cancer, with proven clinical benefits. However, adaptive mechanisms emerge in the tumor, causing resistance to endocrine therapy. A better understanding of resistance mechanisms is needed to overcome this problem and to develop new, precise treatment strategies. Accumulating genetic and cancer biological studies demonstrate the importance of understanding the PI3K/Akt/mTOR and CDK4/6/RB pathways in ER+ HER2- breast cancer. PIK3CA (which encodes phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit α) is frequently mutated in breast cancer, and 30% of advanced ER+ HER2- breast cancers have an activating PIK3CA mutation. AKT1 mutations (E17K) have been found in 1.4-8% of breast cancer patients. ER+ breast cancer patients preferentially demonstrate gain of CCND1 (cyclin D1; 58% in luminal B vs. 29% in luminal A) and CDK4 (25% in luminal B vs. 14% in luminal A) and loss of CDKN2A (p16) and CDKN2C (p18), which are negatively regulated with the cell cycle and are correlated with the CDK4/6/RB pathway. Abnormalities in PI3K/Akt/mTOR and CDK4/6/RB pathways due to genetic alterations result in deregulated kinase activity and malignant transformation. This review focuses on the recent reports of the essential role of PI3K/Akt/mTOR and CDK4/6/RB pathways in ER+ HER2- breast cancer.
Collapse
Affiliation(s)
- Kazuhiro Araki
- Division of Breast and Endocrine, Department of Surgery, Cancer Center, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yasuo Miyoshi
- Division of Breast and Endocrine, Department of Surgery, Cancer Center, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
14
|
Ramirez-Ardila D, Timmermans AM, Helmijr JA, Martens JWM, Berns EMJJ, Jansen MPHM. Increased MAPK1/3 Phosphorylation in Luminal Breast Cancer Related with PIK3CA Hotspot Mutations and Prognosis. Transl Oncol 2017; 10:854-866. [PMID: 28886403 PMCID: PMC5591392 DOI: 10.1016/j.tranon.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION: While mutations in PIK3CA are most frequently (45%) detected in luminal breast cancer, downstream PI3K/AKT/mTOR pathway activation is predominantly observed in the basal subtype. The aim was to identify proteins activated in PIK3CA mutated luminal breast cancer and the clinical relevance of such a protein in breast cancer patients. MATERIALS AND METHODS: Expression levels of 171 signaling pathway (phospho-)proteins established by The Cancer Genome Atlas (TCGA) using reverse phase protein arrays (RPPA) were in silico examined in 361 breast cancers for their relation with PIK3CA status. MAPK1/3 phosphorylation was evaluated with immunohistochemistry on tissue microarrays (TMA) containing 721 primary breast cancer core biopsies to explore the relationship with metastasis-free survival. RESULTS: In silico analyses revealed increased phosphorylation of MAPK1/3, p38 and YAP, and decreased expression of p70S6K and 4E–BP1 in PIK3CA mutated compared to wild-type luminal breast cancer. Augmented MAPK1/3 phosphorylation was most significant, i.e. in luminal A for both PIK3CA exon 9 and 20 mutations and in luminal B for exon 9 mutations. In 290 adjuvant systemic therapy naïve lymph node negative (LNN) breast cancer patients with luminal cancer, high MAPK phosphorylation in nuclei (HR = 0.49; 95% CI, 0.25–0.95; P = .036) and in tumor cells (HR = 0.37; 95% CI, 0.18–0.79; P = .010) was related with favorable metastasis-free survival in multivariate analyses including traditional prognostic factors. CONCLUSION: Enhanced MAPK1/3 phosphorylation in luminal breast cancer is related to PIK3CA exon-specific mutations and correlated with favorable prognosis especially when located in the nuclei of tumor cells.
Collapse
Affiliation(s)
- Diana Ramirez-Ardila
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - A Mieke Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Jean A Helmijr
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Els M J J Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Maurice P H M Jansen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Moynahan ME, Chen D, He W, Sung P, Samoila A, You D, Bhatt T, Patel P, Ringeisen F, Hortobagyi GN, Baselga J, Chandarlapaty S. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR +, HER2 - advanced breast cancer: results from BOLERO-2. Br J Cancer 2017; 116:726-730. [PMID: 28183140 PMCID: PMC5355930 DOI: 10.1038/bjc.2017.25] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background: The current analysis was performed to evaluate the impact of PIK3CA hotspot mutations on everolimus efficacy in BOLERO-2 participants, using cell-free DNA (cfDNA) from plasma samples collected at the time of patient randomisation. Methods: PIK3CA H1047R, E545K, and E542K mutations in plasma-derived cfDNA were analysed by droplet digital PCR (ddPCR). Median PFS was estimated for patient subgroups defined by PIK3CA mutations in each treatment arm. Results: Among 550 patients included in cfDNA analysis, median PFS in everolimus vs placebo arms was similar in patients with tumours that had wild-type or mutant PIK3CA (hazard ratio (HR), 0.43 and 0.37, respectively). Everolimus also prolonged median PFS in patients with PIK3CA H1047R (HR, 0.37) and E545K/E542K mutations (HR=0.30) with a similar magnitude. Conclusions: Mutation analysis of plasma-derived cfDNA by ddPCR suggests that PFS benefit of everolimus was maintained irrespective of PIK3CA genotypes, consistent with the previous analysis of archival tumour DNA by next-generation sequencing.
Collapse
Affiliation(s)
- Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Chen
- Oncology Precision Medicine, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Wei He
- Oncology Precision Medicine, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Patricia Sung
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aliaksandra Samoila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daoqi You
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Trusha Bhatt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Parul Patel
- Oncology Precision Medicine, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | | | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jose Baselga
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
16
|
Flågeng MH, Larionov A, Geisler J, Knappskog S, Prestvik WS, Bjørkøy G, Lilleng PK, Dixon JM, Miller WR, Lønning PE, Mellgren G. Treatment with aromatase inhibitors stimulates the expression of epidermal growth factor receptor-1 and neuregulin 1 in ER positive/HER-2/neu non-amplified primary breast cancers. J Steroid Biochem Mol Biol 2017; 165:228-235. [PMID: 27343990 DOI: 10.1016/j.jsbmb.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
While estrogens have been shown to modulate EGFR/HER-1 and HER-2/neu expression in experimental systems, the effects of estrogen deprivation on expression levels of the HER-receptors and the neuregulin (NRG)1 ligand in breast cancers remain unknown. Here, we measured EGFR/HER-1-4 and NRG1 mRNA in ER positive tumors from 85 postmenopausal breast cancer patients before and after two weeks (n=64) and three months (n=85) of primary treatment with an aromatase inhibitor (AI). In tumors lacking HER-2/neu amplification, quantitative real-time PCR analyses revealed EGFR/HER-1 and NRG1 to vary significantly between the three time points (before therapy, after 2 weeks and after 3 months on treatment; P≤0.001 for both). Pair-wise comparison revealed a significant increase in EGFR/HER-1 already during the first two weeks of treatment (P=0.049) with a further increase for both EGFR/HER-1 and NRG1 after 3 months on treatment (P≤0.001 and P=0.001 for both comparing values at 3 months to values at baseline and 2 weeks respectively). No difference between tumors responding versus non-responders was recorded. Further, no significant change in any parameter was observed among HER-2/neu amplified tumors. Analyzing components of the HER-2/neu PI3K/Akt downstream pathway, the PIK3CA H1047R mutation was associated with treatment response (P=0.035); however no association between either AKT phosphorylation status or PIK3CA gene mutations and EGFR/HER-1 or NRG1 expression levels were observed. Our results indicate primary AI treatment to modulate expression of HER-family members and the growth factor NRG1 in HER-2/neu non-amplified breast cancers in vivo. Potential implications to long term sensitivity warrants further investigations.
Collapse
Affiliation(s)
- Marianne Hauglid Flågeng
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Alexey Larionov
- University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom; Department of Medical Genetics, Cambridge University, Cambridge, United Kingdom.
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Wenche S Prestvik
- Department of Technology, University College of Sør-Trøndelag, 7491 Trondheim, Norway.
| | - Geir Bjørkøy
- Department of Technology, University College of Sør-Trøndelag, 7491 Trondheim, Norway.
| | - Peer Kåre Lilleng
- The Gades Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - J Michael Dixon
- University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | - William R Miller
- University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | - Per Eystein Lønning
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
17
|
Azizi Tabesh G, Izadi P, Fereidooni F, Emami Razavi AN, Tavakkoly Bazzaz J. The High Frequency of PIK3CA Mutations in Iranian Breast Cancer Patients. Cancer Invest 2016; 35:36-42. [DOI: 10.1080/07357907.2016.1247455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ghasem Azizi Tabesh
- Medical Genetics Department, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Medical Genetics Department, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Forouzandeh Fereidooni
- Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Medical Genetics Department, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Thirumal Kumar D, George Priya Doss C. Role of E542 and E545 missense mutations of PIK3CA in breast cancer: a comparative computational approach. J Biomol Struct Dyn 2016; 35:2745-2757. [DOI: 10.1080/07391102.2016.1231082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D. Thirumal Kumar
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - C. George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
19
|
LRG1 mRNA expression in breast cancer associates with PIK3CA genotype and with aromatase inhibitor therapy outcome. Mol Oncol 2016; 10:1363-73. [PMID: 27491861 DOI: 10.1016/j.molonc.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND PIK3CA is the most frequent somatic mutated oncogene in estrogen receptor (ER) positive breast cancer. We previously observed an association between PIK3CA genotype and aromatase inhibitors (AI) treatment outcome. This study now evaluates whether expression of mRNAs and miRs are linked to PIK3CA genotype and are independently related to AI therapy response in order to define potential expressed biomarkers for treatment outcome. MATERIALS AND METHODS The miR and mRNA expression levels were evaluated for their relationship with the PIK3CA genotype in two breast tumor datasets, i.e. 286 luminal cancers from the TCGA consortium and our set of 84 ER positive primary tumors of metastatic breast cancer patients who received first line AI. BRB Array tools class comparison was performed to define miRs and mRNAs whose expression associate with PIK3CA exon 9 and 20 status. Spearman correlations established miR-mRNA pairs and mRNAs with related expression. Next, a third dataset of 25 breast cancer patients receiving neo-adjuvant letrozole was evaluated, to compare expression levels of identified miRs and mRNAs in biopsies before and after treatment. Finally, to identify potential biomarkers miR and mRNA levels were related with overall survival (OS) and progression free survival (PFS) after first-line AI therapy. RESULTS Expression of 3 miRs (miR-449a, miR-205-5p, miR-301a-3p) and 9 mRNAs (CCNO, FAM81B, LRG1, NEK10, PLCL1, PGR, SERPINA3, SORBS2, VTCN1) was related to the PIK3CA status in both datasets. All except miR-301a-3p had an increased expression in tumors with PIK3CA mutations. Validation in a publicly available dataset showed that LRG1, PGR, and SERPINA3 levels were decreased after neo-adjuvant AI-treatment. Six miR-mRNA pairs correlated significantly and stepdown analysis of all 12 factors revealed 3 mRNAs (PLCL1, LRG1, FAM81B) related to PFS. Further analyses showed LRG1 and PLCL1 expression to be unrelated with luminal subtype and to associate with OS and with PFS, the latter independent from traditional predictive factors. CONCLUSION We showed in two datasets of ER positive and luminal breast tumors that the expression of 3 miRs and 9 mRNAs associate with the PIK3CA status. Expression of LRG1 is independent of luminal (A or B) subtype, decreased after neo-adjuvant AI-treatment, and is proposed as potential biomarker for AI therapy outcome.
Collapse
|
20
|
Defining the Prognostic and Predictive Role of PIK3CA Mutations: Sifting Through the Conflicting Data. CURRENT BREAST CANCER REPORTS 2016. [DOI: 10.1007/s12609-016-0215-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Yang SX, Polley E, Lipkowitz S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev 2016; 45:87-96. [PMID: 26995633 PMCID: PMC7436195 DOI: 10.1016/j.ctrv.2016.03.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/03/2023]
Abstract
PI3K/AKT signaling pathway plays an important role in tumorigenesis and regulates critical cellular functions including survival, proliferation and metabolism. PIK3CA mutations and AKT activation by phosphorylation (pAKT) are often detected in many cancers and especially at high frequencies in breast cancer. Mounting data suggest that PIK3CA mutations or pAKT are mostly associated with better or insignificant outcomes in estrogen receptor-positive (ER+) early stage breast cancer and tend to be with worse prognosis in ER- disease. pAKT expression has been identified to predict paclitaxel chemotherapy benefit in node-positive breast cancer. Preclinical and neoadjuvant trial data suggest that PIK3CA alterations confer resistance to HER2-targeted therapy and are associated with lower pathological complete response (pCR) rate in HER2-positive breast cancer. However, recent results from randomized clinical trials of adjuvant and metastatic settings show that patients with mutant and wildtype PIK3CA tumors derived similar benefit from anti-HER2 therapy. This article, with our new insights, aims to decipher the mixed data and discusses the influence of the potential confounding factors in the assessments. We also share our views for validation of PI3K/AKT alterations in relation to clinical outcome in the context of specific breast cancer subtypes and treatment modalities towards further advance of the precision medicine for breast cancer treatment.
Collapse
Affiliation(s)
- Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Eric Polley
- Biometrics Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Dirican E, Akkiprik M, Özer A. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Tumour Biol 2016; 37:7033-45. [PMID: 26921096 DOI: 10.1007/s13277-016-4924-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BCa) is the most common cancer and the second cause of death among women. Phosphoinositide 3-kinase (PI3K) signaling pathway has a crucial role in the cellular processes such as cell survival, growth, division, and motility. Moreover, oncogenic mutations in the PI3K pathway generally involve the activation phosphatidylinositol-4,5-bisphosphate 3-kinase-catalytic subunit alpha (PIK3CA) mutation which has been identified in numerous BCa subtypes. In this review, correlations between PIK3CA mutations and their clinicopathological parameters on BCa will be described. It is reported that PIK3CA mutations which have been localized mostly on exon 9 and 20 hot spots are detected 25-40 % in BCa. This relatively high frequency can offer an advantage for choosing the best treatment options for BCa. PIK3CA mutations may be used as biomarkers and have been major focus of drug development in cancer with the first clinical trials of PI3K pathway inhibitors currently in progress. Screening of PIK3CA gene mutations might be useful genetic tests for targeted therapeutics or diagnosis. Increasing data about PIK3CA mutations and its clinical correlations with BCa will help to introduce new clinical applications in the near future.
Collapse
Affiliation(s)
- Ebubekir Dirican
- Department of Medical Biology, School of Medicine, Marmara University, Başıbüyük Mah., Maltepe Başıbüyük Yolu Sok., No: 9/1, 34854, Maltepe, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, Başıbüyük Mah., Maltepe Başıbüyük Yolu Sok., No: 9/1, 34854, Maltepe, Istanbul, Turkey.
| | - Ayşe Özer
- Department of Medical Biology, School of Medicine, Marmara University, Başıbüyük Mah., Maltepe Başıbüyük Yolu Sok., No: 9/1, 34854, Maltepe, Istanbul, Turkey
| |
Collapse
|
23
|
Clinically advanced and metastatic pure mucinous carcinoma of the breast: a comprehensive genomic profiling study. Breast Cancer Res Treat 2016; 155:405-13. [PMID: 26762307 DOI: 10.1007/s10549-016-3682-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Pure mucinous breast carcinoma (pmucBC) is a distinctive variant of breast cancer (BC) featuring an excellent overall prognosis. However, on rare occasions, pmucBC pursues an aggressive clinical course. We queried whether comprehensive genomic profiling (CGP) would uncover clinically relevant genomic alterations (CRGA) that could lead to targeted therapy treatment for patients with an advanced and metastatic form of pmucBC. METHODS From a series of 51,238 total cancer samples, which included 5605 cases of clinically advanced BC and 22 cases of stage IV pmucBC, DNA was extracted from 40 microns of FFPE sections. Comprehensive genomic profiling was performed using a hybrid-capture, adaptor ligation-based next generation sequencing assay to a mean coverage depth of 564X. The results were analyzed for all classes of genomic alterations (GA) including base substitutions, insertions and deletions, select rearrangements, and copy number changes. Clinically relevant genomic alterations were defined as those indicating possible treatment with anti-cancer drugs on the market or in registered clinical trials. RESULTS Samples were obtained from breast (11), lymph nodes (3), chest wall (2), liver (2), soft tissue (2), bone (1), and pleura (1). The median age of the 22 pmucBC patients was 57 years (range 32-79 years). Three pmucBCs were grade 1, 17 were grade 2, and 2 were grade 3. Twenty-one (95 %) pmucBC were ER+, 18 (82 %) were PR+, and 3 (14 %) were HER2+ by IHC and/or FISH. A total of 132 GA were identified (6.0 GA per tumor), including 53 CRGA, for a mean of 2.4 GA per tumor. Amplification of FGFR1 or ZNF703, located within the same amplicon, was found in 8 of 22 cases (36 %). This enrichment of FGFR1 amplification in 36 % of pmucBC versus 11 % of non-mucinous ER+ BC (601 cases) was significant (p < 0.005). Other frequently altered genes of interest in pmucBC were CCND1 and the FGF3/FGF4/FGF19 amplicon (27 %), often co-amplified together. ERBB2/HER2 alterations were identified in 5 pmucBC (23 %): ERBB2 amplification was found in 3 of 3 cases (100 %) that were HER2+ by IHC and/or FISH; 1 pmucBC was negative for HER2 overexpression by IHC, but positive for amplification by CGP; and 2 pmucBC harbored the ERBB2 substitutions D769Y and V777L (one sample also featured ERBB2 amplification). The enrichment of ERBB2 GA in metastatic pmucBC versus non-metastatic primary pmucBC was significant (p = 0.03). CRGA were also found in 20 additional genes including PIK3CA (5), BRCA1 (1), TSC2 (1), STK11 (1), AKT3 (1), and ESR1 (1). CONCLUSIONS Metastatic pmucBC is a distinct form of breast cancer that features a relatively high frequency of CRGA, including a significant enrichment of FGFR1 alterations and a high frequency of ERBB2 alterations when compared with non-metastatic pmucBC. These findings suggest that CGP can identify a variety of known and emerging therapy targets that have the potential to improve outcomes for patients with clinically advanced and metastatic forms of this disease.
Collapse
|
24
|
Kumar DT, Doss CGP. Investigating the Inhibitory Effect of Wortmannin in the Hotspot Mutation at Codon 1047 of PIK3CA Kinase Domain: A Molecular Docking and Molecular Dynamics Approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:267-97. [PMID: 26827608 DOI: 10.1016/bs.apcsb.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncogenic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) are the most frequently reported in association with various forms of cancer. Several studies have reported the significance of hotspot mutations in a catalytic subunit of PIK3CA in association with breast cancer. Mutations are frequently observed in the highly conserved region of the kinase domain (797-1068 amino acids) of PIK3CA are activating or gain-of-function mutations. Mutation in codon 1047 occurs in the C-terminal region of the kinase domain with histidine (H) replaced by arginine (R), lysine (L), and tyrosine (Y). Pathogenicity and protein stability predictors PhD-SNP, Align GVGD, HANSA, iStable, and MUpro classified H1047R as highly deleterious when compared to H1047L and H1047Y. To explore the inhibitory activity of Wortmannin toward PIK3CA, the three-dimensional structure of the mutant protein was determined using homology modeling followed by molecular docking and molecular dynamics analysis. Docking studies were performed for the three mutants and native with Wortmannin to measure the differences in their binding pattern. Comparative docking study revealed that H1047R-Wortmannin complex has a higher number of hydrogen bonds as well as the best binding affinity next to the native protein. Furthermore, 100 ns molecular dynamics simulation was initiated with the docked complexes to understand the various changes induced by the mutation. Though Wortmannin was found to nullify the effect of H1047R over the protein, further studies are required for designing a better compound. As SNPs are major genetic variations observed in disease condition, personalized medicine would provide enhanced drug therapy.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
25
|
Papaxoinis G, Kotoula V, Alexopoulou Z, Kalogeras KT, Zagouri F, Timotheadou E, Gogas H, Pentheroudakis G, Christodoulou C, Koutras A, Bafaloukos D, Aravantinos G, Papakostas P, Charalambous E, Papadopoulou K, Varthalitis I, Efstratiou I, Zaramboukas T, Patsea H, Scopa CD, Skondra M, Kosmidis P, Pectasides D, Fountzilas G. Significance of PIK3CA Mutations in Patients with Early Breast Cancer Treated with Adjuvant Chemotherapy: A Hellenic Cooperative Oncology Group (HeCOG) Study. PLoS One 2015; 10:e0140293. [PMID: 26452060 PMCID: PMC4599795 DOI: 10.1371/journal.pone.0140293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022] Open
Abstract
Background The PI3K-AKT pathway is frequently activated in breast cancer. PIK3CA mutations are most frequently found in the helical (exon 9) and kinase (exon 20) domains of this protein. The aim of the present study was to examine the role of different types of PIK3CA mutations in combination with molecular biomarkers related to PI3K-AKT signaling in patients with early breast cancer. Methods Tumor tissue samples from 1008 early breast cancer patients treated with adjuvant chemotherapy in two similar randomized trials of HeCOG were examined. Tumors were subtyped with immunohistochemistry (IHC) and FISH for ER, PgR, Ki67, HER2 and androgen receptor (AR). PIK3CA mutations were analyzed by Sanger sequencing (exon 20) and qPCR (exon 9) (Sanger/qPCR mutations). In 610 cases, next generation sequencing (NGS) PIK3CA mutation data were also available. PIK3CA mutations and PTEN protein expression (IHC) were analyzed in luminal tumors (ER and/or PgR positive), molecular apocrine carcinomas (MAC; ER/PgR negative / AR positive) and hormone receptor (ER/PgR/AR) negative tumors. Results PIK3CA mutations were detected in 235/1008 tumors (23%) with Sanger/qPCR and in 149/610 tumors (24%) with NGS. Concordance between the two methods was good with a Kappa coefficient of 0.76 (95% CI 0.69–0.82). Lobular histology, low tumor grade and luminal A tumors were associated with helical domain mutations (PIK3CAhel), while luminal B with kinase domain mutations (PIK3CAkin). The overall incidence of PIK3CA mutations was higher in luminal as compared to MAC and hormone receptor negative tumors (p = 0.004). Disease-free and overall survival did not significantly differ with respect to PIK3CA mutation presence and type. However, a statistically significant interaction between PIK3CA mutation status and PTEN low protein expression with regard to prognosis was identified. Conclusions The present study did not show any prognostic significance of specific PIK3CA mutations in a large group of predominantly lymph-node positive breast cancer women treated with adjuvant chemotherapy. Further analyses in larger cohorts are warranted to investigate possible differential effect of distinct PIK3CA mutations in small subgroups of patients.
Collapse
Affiliation(s)
- George Papaxoinis
- Oncology Section, Second Department of Internal Medicine, “Hippokration” Hospital, Athens, Greece
- * E-mail:
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
| | - Zoi Alexopoulou
- Health Data Specialists Ltd, Dept of Biostatistics, Athens, Greece
| | - Konstantine T. Kalogeras
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
- Translational Research Section, Hellenic Cooperative Oncology Group, Data Office, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, “Alexandra” Hospital, University of Athens School of Medicine, Athens, Greece
| | - Eleni Timotheadou
- Department of Medical Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
| | - Helen Gogas
- First Department of Medicine, “Laiko” General Hospital, University of Athens School of Medicine, Athens, Greece
| | | | | | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, “Agii Anargiri” Cancer Hospital, Athens, Greece
| | | | - Elpida Charalambous
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Department of Pathology, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
| | | | | | - Thomas Zaramboukas
- Department of Pathology, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
| | - Helen Patsea
- Department of Pathology, IASSO General Hospital, Athens, Greece
| | - Chrisoula D. Scopa
- Department of Pathology, University Hospital, University of Patras Medical School, Patras, Greece
| | - Maria Skondra
- Oncology Section, Second Department of Internal Medicine, “Hippokration” Hospital, Athens, Greece
| | - Paris Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, “Hippokration” Hospital, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Faculty of Medicine, Thessaloniki, Greece
| |
Collapse
|
26
|
Mukohara T. PI3K mutations in breast cancer: prognostic and therapeutic implications. BREAST CANCER-TARGETS AND THERAPY 2015; 7:111-23. [PMID: 26028978 PMCID: PMC4440424 DOI: 10.2147/bctt.s60696] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The PI3K pathway is the most frequently enhanced oncogenic pathway in breast cancer. Among mechanisms of PI3K enhancement, PIK3CA mutations are most frequently (∼30%) observed, along with protein loss of PTEN. Since the first discovery of PIK3CA mutations in solid malignancies in 2004, numerous studies have revealed the prognostic and therapeutic implications of these mutations. Although many issues remain unconfirmed, some have been carved in stone by the level of consistency they have shown among studies: 1) PIK3CA mutations are most likely to be observed in ER-positive/HER2-negative tumors, and are associated with other good prognostic characters; 2) PIK3CA mutations can coexist with other PI3K-enhancing mechanisms, such as HER2 amplification and PTEN protein loss; 3) PIK3CA mutations are potentially a good prognostic marker; 4) PIK3CA may predict a poorer tumor response to trastuzumab-based therapies, but its impact on disease-free survival and overall survival is uncertain; and 5) based on reports of early clinical trials, PIK3CA mutations do not guarantee a dramatic response to PI3K inhibitors. Collectively, there is currently no sufficient evidence to recommend routine genotyping of PIK3CA in clinical practice. Given that PIK3CA-mutant breast cancer appears to have a distinct tumor biology, development of more individualized targeted therapies based on the PIK3CA genotype is awaited.
Collapse
Affiliation(s)
- Toru Mukohara
- Cancer Center and Division of Medical Oncology/Hematology, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
27
|
A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet Med 2015; 18:128-36. [DOI: 10.1038/gim.2015.47] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 02/02/2023] Open
|
28
|
PIKing the type and pattern of PI3K pathway mutations in endometrioid endometrial carcinomas. Gynecol Oncol 2015; 137:321-8. [PMID: 25701704 DOI: 10.1016/j.ygyno.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The vast majority of endometrioid endometrial carcinomas (EECs) harbor mutations in the PI3K pathway. Here we sought to determine whether the type and pattern of mutations targeting different components of the PI3K pathway are distinct between microsatellite stable (MSS) and high-level microsatellite instable (MSI-H) EECs. METHODS Whole exome massively parallel sequencing-based mutation data from EECs of The Cancer Genome Atlas (TCGA) were used to define the number, type and pattern of mutations affecting PI3K pathway-related genes, including AKT1, INPP4B, MTOR, PIK3CA, PIK3R1 and PTEN. EECs were classified as MSI-H (n=70) and MSS (n=109) based on seven MSI markers assessed by TCGA. Ultramutated cases were excluded. RESULTS Although the mutation rates and mutational signatures of MSS and MSI-H EECs were distinct, the prevalence of PI3K pathway mutations was similar between these two groups (all p>0.05), with the exception of PTEN mutations, which were more prevalent in MSI-H (61/70; 87%) than in MSS EECs (78/109; 72%; p=0.017). The PIK3CA hotspot mutations E542K, E545K, and H1047R were found to be significantly more prevalent in PIK3CA-mutant MSS (21/58, 36%) compared to PIK3CA-mutant MSI-H EECs (5/37, 13.5%; p=0.019). CONCLUSION Although the prevalence of mutations targeting PI3K pathway genes is similar between MSS and MSI-H EECs, PIK3CA hotspot mutations, which result in constitutive kinase activation, are significantly more prevalent in MSS than in MSI-H EECs. Our findings warrant further investigation of the role of different types of PIK3CA mutations and their predictive impact on distinct subtypes of EECs.
Collapse
|
29
|
Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, van de Velde CJH, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, Seynaeve C, Rea DW, Bartlett JMS. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol 2015; 32:2951-8. [PMID: 25071141 DOI: 10.1200/jco.2013.53.8272] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Deregulation of key PI3K/AKT pathway genes may contribute to endocrine resistance in breast cancer (BC). PIK3CA is the most frequently mutated gene in luminal BC (35%); however, the effect of mutations in helical versus kinase domains remains controversial. We hypothesize that improved outcomes occur in patients with estrogen receptor–positive (ER positive) BC receiving endocrine therapy and possessing PIK3CA mutations. MATERIALS AND METHODS DNA was extracted from 4,540 formalin-fixed paraffin-embedded BC samples from the Exemestane Versus Tamoxifen-Exemestane pathology study. Mutational analyses were performed for 25 mutations (PIK3CAx10, AKT1x1, KRASx5, HRASx3, NRASx2 and BRAFx4). RESULTS PIK3CA mutations were frequent (39.8%), whereas RAS/RAF mutations were rare (1%). In univariable analyses PIK3CA mutations were associated with significantly improved 5-year distant relapse-free survival (DRFS; HR, 0.76; 95% CI, 0.63 to 0.91; P = .003). However, a multivariable analysis correcting for known clinical and biologic prognostic factors failed to demonstrate that PIK3CA mutation status is an independent prognostic marker for DRFS (HR, 0.92; 95% CI, 0.75 to 1.12; P = .4012). PIK3CA mutations were more frequent in low-risk luminal BCs (e.g., grade 1 nodev 3, node-negative v -positive), confounding the relationship between mutations and outcome. CONCLUSION PIK3CA mutations are present in approximately 40% of luminal BCs but are not an independent predictor of outcome in the context of endocrine therapy, whereas RAS/RAF mutations are rare inluminal BC. A complex relationship between low-risk cancers and PIK3CA mutations was identified. Although the PI3K/AKT pathway remains a viable therapeutic target as the result of ahigh mutation frequency, PIK3CA mutations do not seem to affect residual risk following treatment with endocrine therapy.
Collapse
|
30
|
Beaufort CM, Helmijr JCA, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, Murtaza M, van IJcken WFJ, Heine AAJ, Smid M, Koudijs MJ, Brenton JD, Berns EMJJ, Helleman J. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One 2014; 9:e103988. [PMID: 25230021 PMCID: PMC4167545 DOI: 10.1371/journal.pone.0103988] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/05/2014] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancer is a highly heterogeneous disease and remains the most lethal gynaecological malignancy in the Western world. Therapeutic approaches need to account for inter-patient and intra-tumoural heterogeneity and detailed characterization of in vitro models representing the different histological and molecular ovarian cancer subtypes is critical to enable reliable preclinical testing. There are approximately 100 publicly available ovarian cancer cell lines but their cellular and molecular characteristics are largely undescribed. We have characterized 39 ovarian cancer cell lines under uniform conditions for growth characteristics, mRNA/microRNA expression, exon sequencing, drug response for clinically-relevant therapeutics and collated all available information on the original clinical features and site of origin. We tested for statistical associations between the cellular and molecular features of the lines and clinical features. Of the 39 ovarian cancer cell lines, 14 were assigned as high-grade serous, four serous-type, one low-grade serous and 20 non-serous type. Three morphological subtypes: Epithelial (n = 21), Round (n = 7) and Spindle (n = 12) were identified that showed distinct biological and molecular characteristics, including overexpression of cell movement and migration-associated genes in the Spindle subtype. Comparison with the original clinical data showed association of the spindle-like tumours with metastasis, advanced stage, suboptimal debulking and poor prognosis. In addition, the expression profiles of Spindle, Round and Epithelial morphologies clustered with the previously described C1-stromal, C5-mesenchymal and C4 ovarian subtype expression profiles respectively. Comprehensive profiling of 39 ovarian cancer cell lines under controlled, uniform conditions demonstrates clinically relevant cellular and genomic characteristics. This data provides a rational basis for selecting models to develop specific treatment approaches for histological and molecular subtypes of ovarian cancer.
Collapse
Affiliation(s)
- Corine M. Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jean C. A. Helmijr
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna M. Piskorz
- Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Marlous Hoogstraat
- Department of Medical Oncology and Center for Personalized Cancer Treatment, University Medical Center Utrecht, Utrecht The Netherlands
| | | | - Nicolle Besselink
- Department of Medical Oncology and Center for Personalized Cancer Treatment, University Medical Center Utrecht, Utrecht The Netherlands
| | - Muhammed Murtaza
- Molecular and Computational Diagnostics Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Anouk A. J. Heine
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marco J. Koudijs
- Department of Medical Oncology and Center for Personalized Cancer Treatment, University Medical Center Utrecht, Utrecht The Netherlands
| | - James D. Brenton
- Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Els M. J. J. Berns
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jozien Helleman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Nevedomskaya E, Wessels L, Zwart W. Genome-wide epigenetic profiling of breast cancer tumors treated with aromatase inhibitors. GENOMICS DATA 2014; 2:195-8. [PMID: 26484094 PMCID: PMC4536071 DOI: 10.1016/j.gdata.2014.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 12/23/2022]
Abstract
Aromatase inhibitors (AI) are extensively used in the treatment of estrogen receptor-positive breast cancers, however resistance to AI treatment is commonly observed. Apart from Estrogen receptor (ERα) expression, no predictive biomarkers for response to AI treatment are clinically applied. Yet, since other therapeutic options exist in the clinic, such as tamoxifen, there is an urgent medical need for the development of treatment-selective biomarkers, enabling personalized endocrine treatment selection in breast cancer. In the described dataset, ERα chromatin binding and histone marks H3K4me3 and H3K27me3 were assessed in a genome-wide manner by Chromatin Immunoprecipitation (ChIP) combined with massive parallel sequencing (ChIP-seq). These datasets were used to develop a classifier to stratify breast cancer patients on outcome after AI treatment in the metastatic setting. Here we describe in detail the data and quality control metrics, as well as the clinical information associated with the study, published by Jansen et al. [1]. The data is publicly available through the GEO database with accession number GSE40867.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Corresponding author.
| |
Collapse
|
32
|
Dos Anjos Pultz B, da Luz FAC, de Faria PR, Oliveira APL, de Araújo RA, Silva MJB. Far beyond the usual biomarkers in breast cancer: a review. J Cancer 2014; 5:559-71. [PMID: 25057307 PMCID: PMC4107232 DOI: 10.7150/jca.8925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
Research investigating biomarkers for early detection, prognosis and the prediction of treatment responses in breast cancer is rapidly expanding. However, no validated biomarker currently exists for use in routine clinical practice, and breast cancer detection and management remains dependent on invasive procedures. Histological examination remains the standard for diagnosis, whereas immunohistochemical and genetic tests are utilized for treatment decisions and prognosis determinations. Therefore, we conducted a comprehensive review of literature published in PubMed on breast cancer biomarkers between 2009 and 2013. The keywords that were used together were breast cancer, biomarkers, diagnosis, prognosis and drug response. The cited references of the manuscripts included in this review were also screened. We have comprehensively summarized the performance of several biomarkers for diagnosis, prognosis and predicted drug responses of breast cancer. Finally, we have identified 15 biomarkers that have demonstrated promise in initial studies and several miRNAs. At this point, such biomarkers must be rigorously validated in the clinical setting to be translated into clinically useful tests for the diagnosis, prognosis and prediction of drug responses of breast cancer.
Collapse
Affiliation(s)
- Brunna Dos Anjos Pultz
- 1. Laboratório de Imunoparasitologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Paulo Rogério de Faria
- 2. Laboratório de Histologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula Lima Oliveira
- 2. Laboratório de Histologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Marcelo José Barbosa Silva
- 1. Laboratório de Imunoparasitologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
33
|
López-Knowles E, Segal CV, Gao Q, Garcia-Murillas I, Turner NC, Smith I, Martin LA, Dowsett M. Relationship of PIK3CA mutation and pathway activity with antiproliferative response to aromatase inhibition. Breast Cancer Res 2014; 16:R68. [PMID: 24981670 PMCID: PMC4227109 DOI: 10.1186/bcr3683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/17/2014] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α) somatic mutations are the most common genetic alteration in breast cancer (BC). Their prognostic value and that of the phosphatidylinositol 3-kinase (PI3K) pathway in BC remains only partly defined. The effect of PIK3CA mutations and alterations of the PI3K pathway on the antiproliferative response to aromatase inhibitor treatment was determined. METHODS The Sequenom MassARRAY System was used to determine the presence of 20 somatic mutations across the PIK3CA gene in 85 oestrogen receptor-positive (ER+) BC patients treated with 2 weeks of anastrozole before surgery. Whole-genome expression profiles were used to interrogate gene signatures (GSs) associated with the PI3K pathway. Antiproliferative activity was assessed by the change in Ki67 staining between baseline and surgery. Three GSs representing the PI3K pathway were assessed (PIK3CA-GS (Loi), PI3K-GS (Creighton) and PTEN-loss-GS (Saal)). RESULTS In our study sample, 29% of tumours presented with either a hotspot (HS, 71%) or a nonhotspot (non-HS, 29%) PIK3CA mutation. Mutations were associated with markers of good prognosis such as progesterone receptor positivity (PgR+) (P=0.006), low grade (P=0.028) and luminal A subtype (P=0.039), with a trend towards significance with degree of ER positivity (P=0.051) and low levels of Ki67 (P=0.051). Non-HS mutations were associated with higher PgR (P=0.014) and ER (P<0.001) expression than both wild-type (WT) and HS-mutated samples, whereas neither biomarker differed significantly between WT and HS mutations or between HS and non-HS mutations. An inverse correlation was found between the Loi signature and both the Creighton and Saal signatures, and a positive correlation was found between the latter signatures. Lower pretreatment Ki67 levels were observed in mutation compared with WT samples (P=0.051), which was confirmed in an independent data set. Mutation status did not predict change in Ki67 in response to 2 weeks of anastrozole treatment; there was no significant difference between HS and non-HS mutations in this regard. CONCLUSIONS PIK3CA mutations are associated with classical markers of good prognosis and signatures of PI3K pathway activity. The presence of a PIK3CA mutation does not preclude a response to neoadjuvant anastrozole treatment.
Collapse
|
34
|
Ocana A, Vera-Badillo F, Al-Mubarak M, Templeton AJ, Corrales-Sanchez V, Diez-Gonzalez L, Cuenca-Lopez MD, Seruga B, Pandiella A, Amir E. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 2014; 9:e95219. [PMID: 24777052 PMCID: PMC4002433 DOI: 10.1371/journal.pone.0095219] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/24/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Aberrations in the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/AKT pathway are common in solid tumors. Numerous drugs have been developed to target different components of this pathway. However the prognostic value of these aberrations is unclear. METHODS PubMed was searched for studies evaluating the association between activation of the PI3K/mTOR/AKT pathway (defined as PI3K mutation [PIK3CA], lack of phosphatase and tensin homolog [PTEN] expression by immunohistochemistry or western-blot or increased expression/activation of downstream components of the pathway by immunohistochemistry) with overall survival (OS) in solid tumors. Published data were extracted and computed into odds ratios (OR) for death at 5 years. Data were pooled using the Mantel-Haenszel random-effect model. RESULTS Analysis included 17 studies. Activation of the PI3K/mTOR/AKT pathway was associated with significantly worse 5-year survival (OR:2.12, 95% confidence intervals 1.42-3.16, p<0.001). Loss of PTEN expression and increased expression/activation of downstream components were associated with worse survival. No association between PIK3CA mutations and survival was observed. Differences between methods for assessing activation of the PI3K/mTOR/AKT pathway were statistically significant (p = 0.04). There was no difference in the effect of up-regulation of the pathway on survival between different cancer sites (p = 0.13). CONCLUSION Activation of the PI3K/AKT/mTOR pathway, especially if measured by loss of PTEN expression or increased expression/activation of downstream components is associated with poor survival. PIK3CA mutational status is not associated with adverse outcome, challenging its value as a biomarker of patient outcome or as a stratification factor for patients treated with agents acting on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Alberto Ocana
- Translational Research Unit, Albacete University Hospital, Albacete, Spain
| | - Francisco Vera-Badillo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| | - Mustafa Al-Mubarak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| | - Arnoud J. Templeton
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| | | | | | | | - Bostjan Seruga
- Sector of medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre and University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Abramson VG, Cooper Lloyd M, Ballinger T, Sanders ME, Du L, Lai D, Su Z, Mayer I, Levy M, LaFrance DR, Vnencak-Jones CL, Shyr Y, Dahlman KB, Pao W, Arteaga CL. Characterization of breast cancers with PI3K mutations in an academic practice setting using SNaPshot profiling. Breast Cancer Res Treat 2014; 145:389-99. [PMID: 24722917 DOI: 10.1007/s10549-014-2945-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
Mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful therapeutic target. Several larger, population-based studies have shown a positive prognostic significance associated with these mutations. This study aims to further identify characteristics of patients harboring PIK3CA mutations while evaluating the clinical impact of genomic testing for these mutations. Tumors from 312 patients at Vanderbilt-Ingram Cancer Center were analyzed for PIK3CA mutations using a multiplex screening assay (SNaPshot). Mutation rates, receptor status, histopathologic characteristics, and time to recurrence were assessed. The number of patients participating in clinical trials, specifically trials relating to the PIK3CA mutation, was examined. Statistically significant differences between wild-type and mutated tumors were determined using the Wilcoxon, Pearson, and Fischer exact tests. The PIK3CA mutation was found in 25 % of tumors tested. Patients with PIK3CA mutations were significantly more likely to express hormone receptors, be of lower combined histological grade, and have a reduced time to recurrence. Patients found to have a PIK3CA mutation were significantly more likely to enter a PIK3CA-specific clinical trial. In addition to confirming previously established positive prognostic characteristics of tumors harboring PIK3CA mutations, this study demonstrates the feasibility and utility of mutation profiling in a clinical setting. PIK3CA mutation testing impacted treatment and resulted in more patients entering mutation-specific clinical trials.
Collapse
Affiliation(s)
- Vandana G Abramson
- Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu YR, Jiang YZ, Zuo WJ, Yu KD, Shao ZM. PIK3CA mutations define favorable prognostic biomarkers in operable breast cancer: a systematic review and meta-analysis. Onco Targets Ther 2014; 7:543-52. [PMID: 24748804 PMCID: PMC3986298 DOI: 10.2147/ott.s60115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Mutations of the p110α catalytic subunit of phosphatidylinositol 3-kinase (PIK3CA) are among the most common genetic aberrations in human breast cancer. At present, controversy exists concerning the prognostic value of the mutations. Methods We performed a systematic review and meta-analysis to clarify the association between PIK3CA mutations and survival outcomes. A comprehensive, computerized literature search of PubMed, Web of Science databases, the Chinese Biomedical Literature Database, and Wangfang Data until August 27, 2013 was carried out. Eligible studies were included according to specific inclusion criteria. Pooled hazard ratio was estimated by using the fixed effects model or random effects model according to heterogeneity between studies. Results Eight eligible studies were included in the analysis, all of which were retrospective cohort studies. The overall meta-analysis demonstrated that the PIK3CA mutations were associated with better clinical outcomes (hazard ratio 0.72; 95% confidence interval: 0.57–0.91; P=0.006). None of the single studies materially altered the original results and no evidence of publication bias was found. Further subgroup analysis of mutations in exons 9 and 20 did not show statistical significance. Conclusion PIK3CA mutations in operable primary breast cancer indicate a good prognosis. Further studies should be conducted to investigate the effect of PIK3CA mutations on clinical outcomes in different histologic types, different molecular subtypes of breast cancer, and different exons of PIK3CA.
Collapse
Affiliation(s)
- Yi-Rong Liu
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jia Zuo
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ke-Da Yu
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Heger Z, Rodrigo MAM, Krizkova S, Zitka O, Beklova M, Kizek R, Adam V. Identification of estrogen receptor proteins in breast cancer cells using matrix-assisted laser desorption/ionization time of flight mass spectrometry (Review). Oncol Lett 2014; 7:1341-1344. [PMID: 24765135 PMCID: PMC3997732 DOI: 10.3892/ol.2014.1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/06/2013] [Indexed: 01/03/2023] Open
Abstract
Estrogen receptors [ERs (subtypes α and β)], classified as a nuclear receptor super family, are intracellular proteins with an important biological role as the transcription factors for estrogen target genes. For ER-induced transcription, an interaction must exist between ligand and coregulators. Coregulators may stimulate (coactivators) or inhibit (corepressors) transcription, following binding with a specific region of the gene, called the estrogen response element. Misbalanced activity of coregulators or higher ligand concentrations may cause increased cell proliferation, resulting in specific types of cancer. These are exhibited as overexpression of ER proteins. Breast cancer currently ranks first in the incidence and second in the mortality of cancer in females worldwide. In addition, 70% of breast tumors are ERα positive and the importance of these proteins for diagnostic use is indisputable. Early diagnosis of the tumor and its classification has a large influence on the selection of appropriate therapy, as ER-positive tumors demonstrate a positive response to hormonal therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) has been hypothesized to have great potential, as it offers reliable, robust and efficient analysis methods for biomarker monitoring and identification. The present review discusses ER protein analysis by MALDI TOF MS, including the crucial step of protein separation.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Ondrej Zitka
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Miroslava Beklova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| |
Collapse
|
38
|
Huemer F, Bartsch R, Gnant M. The PI3K/AKT/MTOR Signaling Pathway: The Role of PI3K and AKT Inhibitors in Breast Cancer. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0139-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Jansen MPHM, Knijnenburg T, Reijm EA, Simon I, Kerkhoven R, Droog M, Velds A, van Laere S, Dirix L, Alexi X, Foekens JA, Wessels L, Linn SC, Berns EMJJ, Zwart W. Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res 2014; 73:6632-41. [PMID: 24242068 DOI: 10.1158/0008-5472.can-13-0704] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aromatase inhibitors are the major first-line treatment of estrogen receptor-positive breast cancer, but resistance to treatment is common. To date, no biomarkers have been validated clinically to guide subsequent therapy in these patients. In this study, we mapped the genome-wide chromatin-binding profiles of estrogen receptor α (ERα), along with the epigenetic modifications H3K4me3 and H3K27me3, that are responsible for determining gene transcription (n = 12). Differential binding patterns of ERα, H3K4me3, and H3K27me3 were enriched between patients with good or poor outcomes after aromatase inhibition. ERα and H3K27me3 patterns were validated in an additional independent set of breast cancer cases (n = 10). We coupled these patterns to array-based proximal gene expression and progression-free survival data derived from a further independent cohort of 72 aromatase inhibitor-treated patients. Through this approach, we determined that the ERα and H3K27me3 profiles predicted the treatment outcomes for first-line aromatase inhibitors. In contrast, the H3K4me3 pattern identified was not similarly informative. The classification potential of these genes was only partially preserved in a cohort of 101 patients who received first-line tamoxifen treatment, suggesting some treatment selectivity in patient classification.
Collapse
Affiliation(s)
- Maurice P H M Jansen
- Authors' Affiliations: Department of Medical Oncology, Erasmus University Medical Center, Cancer Institute, Rotterdam; Departments of Molecular Carcinogenesis and Molecular Pathology, Central Genomic Facility, the Netherlands Cancer Institute; Agendia NV, Amsterdam, the Netherlands; and Translational Cancer Research Unit, Laboratory of Pathology, Antwerp University/Oncology Centre, GZA Hospitals St-Augustinus, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jia P, Wang Q, Chen Q, Hutchinson KE, Pao W, Zhao Z. MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol 2014; 15:489. [PMID: 25348067 PMCID: PMC4226881 DOI: 10.1186/s13059-014-0489-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/07/2014] [Indexed: 12/30/2022] Open
Abstract
Many cancer genes form mutation hotspots that disrupt their functional domains or active sites, leading to gain- or loss-of-function. We propose a mutation set enrichment analysis (MSEA) implemented by two novel methods,MSEA-clust and MSEA-domain, to predict cancer genes based on mutation hotspot patterns. MSEA methods are evaluated by both simulated and real cancer data. We find approximately 51% of the eligible known cancer genes form detectable mutation hotspots. Application of MSEA in eight cancers reveals a total of 82 genes with mutation hotspots,including well-studied cancer genes, known cancer genes re-found in new cancer types, and novel cancer genes.
Collapse
Affiliation(s)
- Peilin Jia
- />Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA
- />Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Quan Wang
- />Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA
| | - Qingxia Chen
- />Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA
- />Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Katherine E Hutchinson
- />Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - William Pao
- />Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
- />Department of Medicine/Division of Hematology-Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Zhongming Zhao
- />Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203 USA
- />Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- />Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
- />Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|