1
|
Pont M, Marqués M, Sorolla A. Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research. Int J Mol Sci 2024; 25:13518. [PMID: 39769279 PMCID: PMC11676458 DOI: 10.3390/ijms252413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) represents roughly one-sixth of all breast cancer patients, but accounts for 30-40% of breast cancer deaths. Due to the lack of typical biomarkers exploited clinically for breast cancer, it remains very difficult to treat. Moreover, its intrinsic high heterogeneity and proneness to become resistant to the drugs administered makes the treatment management very challenging for oncologists. Herein, we outline the different therapies used currently for TNBC and list the ongoing clinical trials to provide an overview of the most recent TNBC therapeutic landscape. In addition, we highlight the emerging therapies in the preclinical stage that hold the most promise, such as epigenetic modulators, CRISPR, miniproteins, radioconjugates, cancer vaccines, and PROTACs. Moreover, we navigate through the existing limitations and challenges which hamper the development of new and more effective treatments for TNBC. Lastly, we point to emerging new directions that may revolutionize future therapy for TNBC.
Collapse
Affiliation(s)
- Mariona Pont
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Marta Marqués
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.)
| |
Collapse
|
2
|
Djamgoz MBA. Stemness of Cancer: A Study of Triple-negative Breast Cancer From a Neuroscience Perspective. Stem Cell Rev Rep 2024:10.1007/s12015-024-10809-0. [PMID: 39531198 DOI: 10.1007/s12015-024-10809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Stemness, giving cancer cells massive plasticity enabling them to survive in dynamic (e.g. hypoxic) environments and become resistant to treatment, especially chemotherapy, is an important property of aggressive tumours. Here, we review some essentials of cancer stemness focusing on triple-negative breast cancer (TNBC), the most aggressive form of all breast cancers. TNBC cells express a range of genes and mechanisms associated with stemness, including the fundamental four "Yamanaka factors". Most of the evidence concerns the transcription factor / oncogene c-Myc and an interesting case is the expression of the neonatal splice variant of voltage-gated sodium channel subtype Nav1.5. On the whole, measures that reduce the stemness make cancer cells less aggressive, reducing their invasive/metastatic potential and increasing/restoring their chemosensitivity. Such measures include gene silencing techniques, epigenetic therapies as well as novel approaches like optogenetics aiming to modulate the plasma membrane voltage. Indeed, simply hyperpolarizing their membrane potential can make stem cells differentiate. Finally, we give an overview of the clinical aspects and exploitation of cancer/TNBC stemness, including diagnostics and therapeutics. In particular, personalised mRNA-based therapies and mechanistically meaningful combinations are promising and the emerging discipline of 'cancer neuroscience' is providing novel insights to both fundamental issues and clinical applications.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Zhou L, Yu CW. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment. Pharmacol Res 2024; 204:107205. [PMID: 38719195 DOI: 10.1016/j.phrs.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen receptors, progesterone receptors and lacks HER2 overexpression. This absence of critical molecular targets poses significant challenges for conventional therapies. Immunotherapy, remarkably immune checkpoint blockade, offers promise for TNBC treatment, but its efficacy remains limited. Epigenetic dysregulation, including altered DNA methylation, histone modifications, and imbalances in regulators such as BET proteins, plays a crucial role in TNBC development and resistance to treatment. Hypermethylation of tumor suppressor gene promoters and the imbalance of histone methyltransferases such as EZH2 and histone deacetylases (HDACs) profoundly influence tumor cell proliferation, survival, and metastasis. In addition, epigenetic alterations critically shape the tumor microenvironment (TME), including immune cell composition, cytokine signaling, and immune checkpoint expression, ultimately contributing to immune evasion. Targeting these epigenetic mechanisms with specific inhibitors such as EZH2 and HDAC inhibitors in combination with immunotherapy represents a compelling strategy to remodel the TME, potentially overcoming immune evasion and enhancing therapeutic outcomes in TNBC. This review aims to comprehensively elucidate the current understanding of epigenetic modulation in TNBC, its influence on the TME, and the potential of combining epigenetic therapies with immunotherapy to overcome the challenges posed by this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Linlin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chen-Wei Yu
- Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int J Mol Sci 2024; 25:2559. [PMID: 38473804 PMCID: PMC10931553 DOI: 10.3390/ijms25052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, marked by poor outcomes and dismal prognosis. Due to the absence of targetable receptors, chemotherapy still represents the main therapeutic option. Therefore, current research is now focusing on understanding the specific molecular pathways implicated in TNBC, in order to identify novel biomarker signatures and develop targeted therapies able to improve its clinical management. With the aim of identifying novel molecular features characterizing TNBC, elucidating the mechanisms by which these molecular biomarkers are implicated in the tumor development and progression, and assessing the impact on cancerous cells following their inhibition or modulation, we conducted a literature search from the earliest works to December 2023 on PubMed, Scopus, and Web Of Science. A total of 146 studies were selected. The results obtained demonstrated that TNBC is characterized by a heterogeneous molecular profile. Several biomarkers have proven not only to be characteristic of TNBC but also to serve as potential effective therapeutic targets, holding the promise of a new era of personalized treatments able to improve its prognosis. The pre-clinical findings that have emerged from our systematic review set the stage for further investigation in forthcoming clinical trials.
Collapse
Affiliation(s)
- Paola Pastena
- Department of Medicine, Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Hiran Perera
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | | | - William Kartsonis
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Francesco Giovinazzo
- Department of Surgery, Saint Camillus Hospital, 31100 Treviso, Italy
- Department of Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Mehrotra S, Sharma S, Pandey RK. A journey from omics to clinicomics in solid cancers: Success stories and challenges. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:89-139. [PMID: 38448145 DOI: 10.1016/bs.apcsb.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The word 'cancer' encompasses a heterogenous group of distinct disease types characterized by a spectrum of pathological features, genetic alterations and response to therapies. According to the World Health Organization, cancer is the second leading cause of death worldwide, responsible for one in six deaths and hence imposes a significant burden on global healthcare systems. High-throughput omics technologies combined with advanced imaging tools, have revolutionized our ability to interrogate the molecular landscape of tumors and has provided unprecedented understanding of the disease. Yet, there is a gap between basic research discoveries and their translation into clinically meaningful therapies for improving patient care. To bridge this gap, there is a need to analyse the vast amounts of high dimensional datasets from multi-omics platforms. The integration of multi-omics data with clinical information like patient history, histological examination and imaging has led to the novel concept of clinicomics and may expedite the bench-to-bedside transition in cancer. The journey from omics to clinicomics has gained momentum with development of radiomics which involves extracting quantitative features from medical imaging data with the help of deep learning and artificial intelligence (AI) tools. These features capture detailed information about the tumor's shape, texture, intensity, and spatial distribution. Together, the related fields of multiomics, translational bioinformatics, radiomics and clinicomics may provide evidence-based recommendations tailored to the individual cancer patient's molecular profile and clinical characteristics. In this chapter, we summarize multiomics studies in solid cancers with a specific focus on breast cancer. We also review machine learning and AI based algorithms and their use in cancer diagnosis, subtyping, prognosis and predicting treatment resistance and relapse.
Collapse
|
7
|
Muhammad N, Azeem A, Bakar MA, Prajzendanc K, Loya A, Jakubowska A, Hamann U, Rashid MU. Contribution of constitutional BRCA1 promoter methylation to early-onset and familial breast cancer patients from Pakistan. Breast Cancer Res Treat 2023; 202:377-387. [PMID: 37528266 DOI: 10.1007/s10549-023-07068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Constitutional BRCA1 promoter methylation has been identified as a potential risk factor for breast cancer (BC) in the Caucasian population. However, this data is lacking for BC patients of Asian origin. Therefore, we assessed the contribution of constitutional BRCA1 promoter methylation in Pakistani BC patients. METHODS A total of 385 BRCA1/2-negative index BC patients (197 early-onset BC (≤ 30 years), 152 familial BC, 17 familial BC and ovarian cancer, 19 male BC) and 107 healthy controls were screened for the constitutional BRCA1 promoter methylation by methylation-sensitive high-resolution melting assay. Overall, 131 patients displayed triple-negative BC (TNBC) and 254 non-TNBC phenotypes. The prevalence of BRCA1 promoter methylation was calculated based on clinicopathological characteristics using univariable and multivariable logistic regression models. RESULTS Constitutional BRCA1 promoter methylation was identified in 19.5% (75/385) of BC patients and 13.1% (14/107) of controls. The frequency of methylation was higher in early-onset BC (23.4% vs. 13.1%, P = 0.035) and TNBC patients (29.0% vs. 13.1%, P = 0.004) compared to controls. Methylation was also more prevalent in patients with high-grade than low-grade tumors (21.7% vs. 12.2%, P = 0.034) and progesterone receptor (PR)-negative than PR-positive tumors (26.0% vs. 13.9%, P = 0.004). Constitutional BRCA1 promoter methylation remained independently associated with TNBC phenotype (odds ratio 1.99; 95% CI 1.12-3.54; P = 0.02) after adjusting for BC diagnosis age, tumor grade, ER, and PR status. CONCLUSION Constitutional BRCA1 promoter methylation is associated with TNBC and can serve as a non-invasive blood-based biomarker for Pakistani TNBC patients.
Collapse
Affiliation(s)
- Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, 54770, Pakistan
| | - Ayesha Azeem
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, 54770, Pakistan
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, SKMCH&RC, Lahore, Pakistan
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Asif Loya
- Department of Pathology, SKMCH&RC, Lahore, Pakistan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, 54770, Pakistan.
| |
Collapse
|
8
|
Ding L, Kun W, Xu W, Chen S, Cai Z. Comparative analysis of clinicopathological characteristics of central necrotizing breast cancer and basal cell-like breast cancer. Front Oncol 2023; 13:915949. [PMID: 37114130 PMCID: PMC10127251 DOI: 10.3389/fonc.2023.915949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
PurposeThis study aims to compare the clinicopathological and immunohistochemical characteristics of centrally necrotizing carcinoma of the breast (CNC) and basal-like breast cancer (BLBC), as well as to analyze the characteristics of the molecular typing of the CNC.MethodsThe clinicopathological features of 69 cases of CNC and 48 cases of BLBC were observed and compared. EnVision immunohistochemical staining was performed to detect the expressions of hypoxia-inducible factor 1α (HIF-1α), breast cancer susceptibility gene 1 (BRCA1), and vascular endothelial growth factor (VEGF) in CNC and BLBC.ResultsThe age of the 69 patients ranged from 32 to 80 years, with an average of 54.55 years. Gross examination showed that most tumors were well-defined single central nodules with a diameter of 1.2~5.0 cm. Microscopically, there is a large necrotic or acellular area in the center of the tumor, mainly composed of tumor coagulative necrosis with varying degrees of fibrosis or hyaline degeneration. A small amount of cancer tissue remained in the form of a ribbon or small nest around the necrotic focus. Among 69 cases of CNC, the proportion of basal cell type (56.5%) was significantly higher than that of lumen type A (18.84%), lumen type B (13.04%), HER2 overexpression (5.8%), and nonexpression (5.8%). A total of 31 cases were followed up for 8~50 months, with an average of 33.94 months. There have been nine cases of disease progression. When compared to BLBC, there were no significant differences in BRCA1 and VEGF protein expression in response to CNC (p > 0.05), but there were significant differences in protein expression in HIF-1α (p < 0.05).ConclusionThe molecular typing of CNC showed that over half of those were BLBC. No statistically significant difference in the expression of BRCA1 was observed between CNC and BLBC; thus, we predict that targeted therapy for BRCA1 in BLBC may also have considerable effects in CNC patients. The expression of HIF-1α is significantly different in CNC and BLBC, and perhaps HIF-1α can be used as a new entry point to distinguish between the two. There is a significant correlation between the expression of VEGF and HIF-1α in BLBC, and there was no significant correlation between the expression levels of the two proteins in CNC.
Collapse
Affiliation(s)
- Li Ding
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wang Kun
- Department of Pathology, Mengcheng Hospital of Traditional Chinese Medicine, Bozhou, Anhui, China
| | - Wenjing Xu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shaohua Chen
- Department of Pathology, Bengbu Medical College and The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaogen Cai
- Department of Pathology, Bengbu Medical College and The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Zhaogen Cai,
| |
Collapse
|
9
|
Lobanova O, Medvedieva N, Fishchuk L, Dubitska O, Cheshuk V, Vereshchako R, Zakhartseva L, Rossokha Z, Gorovenko N. Methylation of promoter region of BRCA1 gene versus pathogenic variants of gene: risk factor or clinical marker of breast cancer. Breast Cancer Res Treat 2022; 196:505-515. [DOI: 10.1007/s10549-022-06774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
10
|
Wang PW, Su YH, Chou PH, Huang MY, Chen TW. Survival-related genes are diversified across cancers but generally enriched in cancer hallmark pathways. BMC Genomics 2022; 22:918. [PMID: 35508961 PMCID: PMC9066720 DOI: 10.1186/s12864-022-08581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Pan-cancer studies have disclosed many commonalities and differences in mutations, copy number variations, and gene expression alterations among cancers. Some of these features are significantly associated with clinical outcomes, and many prognosis-predictive biomarkers or biosignatures have been proposed for specific cancer types. Here, we systematically explored the biological functions and the distribution of survival-related genes (SRGs) across cancers. Results We carried out two different statistical survival models on the mRNA expression profiles in 33 cancer types from TCGA. We identified SRGs in each cancer type based on the Cox proportional hazards model and the log-rank test. We found a large difference in the number of SRGs among different cancer types, and most of the identified SRGs were specific to a particular cancer type. While these SRGs were unique to each cancer type, they were found mostly enriched in cancer hallmark pathways, e.g., cell proliferation, cell differentiation, DNA metabolism, and RNA metabolism. We also analyzed the association between cancer driver genes and SRGs and did not find significant over-representation amongst most cancers. Conclusions In summary, our work identified all the SRGs for 33 cancer types from TCGA. In addition, the pan-cancer analysis revealed the similarities and the differences in the biological functions of SRGs across cancers. Given the potential of SRGs in clinical utility, our results can serve as a resource for basic research and biotech applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08581-x.
Collapse
Affiliation(s)
- Po-Wen Wang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Yi-Hsun Su
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Industrial Development PhD Program of the College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Po-Hao Chou
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Ming-Yueh Huang
- Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan. .,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.
| |
Collapse
|
11
|
Loss of function of BRCA1 promotes EMT in mammary tumors through activation of TGFβR2 signaling pathway. Cell Death Dis 2022; 13:195. [PMID: 35236825 PMCID: PMC8891277 DOI: 10.1038/s41419-022-04646-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
BRCA1 deficient breast cancers are aggressive and chemoresistant due, in part, to their enrichment of cancer stem cells that can be generated from carcinoma cells by an epithelial-mesenchymal transition (EMT). We previously discovered that BRCA1 deficiency activates EMT in mammary tumorigenesis. How BRCA1 controls EMT and how to effectively target BRCA1-deficient cancers remain elusive. We analyzed murine and human tumors and identified a role for Tgfβr2 in governing the molecular aspects of EMT that occur with Brca1 loss. We utilized CRISPR to delete Tgfβr2 and specific inhibitors to block Tgfβr2 activity and followed up with the molecular analysis of assays for tumor growth and metastasis. We discovered that heterozygous germline deletion, or epithelia-specific deletion of Brca1 in mice, activates Tgfβr2 signaling pathways in mammary tumors. BRCA1 depletion promotes TGFβ-mediated EMT activation in cancer cells. BRCA1 binds to the TGFβR2 locus to repress its transcription. Targeted deletion or pharmaceutical inhibition of Tgfβr2 in Brca1-deficient tumor cells reduces EMT and suppresses tumorigenesis and metastasis. BRCA1 and TGFβR2 expression levels are inversely related in human breast cancers. This study reveals for the first time that a targetable TGFβR signaling pathway is directly activated by BRCA1-deficiency in the induction of EMT in breast cancer progression.
Collapse
|
12
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
13
|
Zheng-Lin B, Rainone M, Varghese AM, Yu KH, Park W, Berger M, Mehine M, Chou J, Capanu M, Mandelker D, Stadler ZK, Birsoy O, Jairam S, Yang C, Li Y, Wong D, Benhamida JK, Ladanyi M, Zhang L, O’Reilly EM. Methylation Analyses Reveal Promoter Hypermethylation as a Rare Cause of "Second Hit" in Germline BRCA1-Associated Pancreatic Ductal Adenocarcinoma. Mol Diagn Ther 2022; 26:645-653. [PMID: 36178671 PMCID: PMC9626413 DOI: 10.1007/s40291-022-00614-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is characterized by the occurrence of pathogenic variants in BRCA1/2 in 5-6% of patients. Biallelic loss of BRCA1/2 enriches for response to platinum agents and poly (ADP-ribose) polymerase 1 inhibitors. There is a dearth of evidence on the mechanism of inactivation of the wild-type BRCA1 allele in PDAC tumors with a germline BRCA1 (gBRCA1) pathogenic or likely pathogenic variant (P/LPV). Herein, we examine promotor hypermethylation as a "second hit" mechanism in patients with gBRCA1-PDAC. METHODS We evaluated patients with PDAC who underwent Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) somatic and germline testing from an institutional database. DNA isolated from tumor tissue and matched normal peripheral blood were sequenced by MSK-IMPACT. In patients with gBRCA1-PDAC, we examined the somatic BRCA1 mutation status and promotor methylation status of the tumor BRCA1 allele via a methylation array analysis. In patients with sufficient remaining DNA, a second methylation analysis by pyrosequencing was performed. RESULTS Of 1012 patients with PDAC, 19 (1.9%) were identified to harbor a gBRCA1 P/LPV. Fifteen patients underwent a methylation array and the mean percentage of BRCA1 promotor methylation was 3.62%. In seven patients in whom sufficient DNA was available, subsequent pyrosequencing confirmed an unmethylated BRCA1 promotor. Loss of heterozygosity was detected in 12 of 19 (63%, 95% confidence interval 38-84) patients, demonstrating loss of heterozygosity is the major molecular mechanism of BRCA1 inactivation in PDAC. Two (10.5%) cases had a somatic BRCA1 mutation. CONCLUSIONS In patients with gBRCA1-P/LPV-PDAC, loss of heterozygosity is the main inactivating mechanism of the wild-type BRCA1 allele in the tumor, and methylation of the BRCA1 promoter is a distinctly uncommon occurrence.
Collapse
Affiliation(s)
- Binbin Zheng-Lin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michael Rainone
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA USA
| | - Anna M. Varghese
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA
| | - Kenneth H. Yu
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA
| | - Wungki Park
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA ,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY USA ,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Miika Mehine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, NY USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, NY USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Zsofia K. Stadler
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA ,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY USA ,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ozge Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Sowmya Jairam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Donna Wong
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Eileen M. O’Reilly
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Office 1021, New York, NY 10065 USA ,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY USA ,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|
14
|
Vietri MT, D'Elia G, Benincasa G, Ferraro G, Caliendo G, Nicoletti GF, Napoli C. DNA methylation and breast cancer: A way forward (Review). Int J Oncol 2021; 59:98. [PMID: 34726251 DOI: 10.3892/ijo.2021.5278] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 11/05/2022] Open
Abstract
The current management of breast cancer (BC) lacks specific non‑invasive biomarkers able to provide an early diagnosis of the disease. Epigenetic‑sensitive signatures are influenced by environmental exposures and are mediated by direct molecular mechanisms, mainly guided by DNA methylation, which regulate the interplay between genetic and non‑genetic risk factors during cancerogenesis. The inactivation of tumor suppressor genes due to promoter hypermethylation is an early event in carcinogenesis. Of note, targeted tumor suppressor genes are frequently hypermethylated in patient‑derived BC tissues and peripheral blood biospecimens. In addition, epigenetic alterations in triple‑negative BC, as the most aggressive subtype, have been identified. Thus, detecting both targeted and genome‑wide DNA methylation changes through liquid‑based assays appears to be a useful clinical strategy for early detection, more accurate risk stratification and a personalized prediction of therapeutic response in patients with BC. Of note, the DNA methylation profile may be mapped by isolating the circulating tumor DNA from the plasma as a more accessible biospecimen. Furthermore, the sensitivity to treatment with chemotherapy, hormones and immunotherapy may be altered by gene‑specific DNA methylation, suggesting novel potential drug targets. Recently, the use of epigenetic drugs administered alone and/or with anticancer therapies has led to remarkable results, particularly in patients with BC resistant to anticancer treatment. The aim of the present review was to provide an update on DNA methylation changes that are potentially involved in BC development and their putative clinical utility in the fields of diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giovanna D'Elia
- Unit of Clinical and Molecular Pathology, AOU, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Gemma Caliendo
- Unit of Clinical and Molecular Pathology, AOU, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| |
Collapse
|
15
|
Dai YH, Wang YF, Shen PC, Lo CH, Yang JF, Lin CS, Chao HL, Huang WY. Gene-associated methylation status of ST14 as a predictor of survival and hormone receptor positivity in breast Cancer. BMC Cancer 2021; 21:945. [PMID: 34418985 PMCID: PMC8380334 DOI: 10.1186/s12885-021-08645-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background Genomic profiles of specific gene sets have been established to guide personalized treatment and prognosis for patients with breast cancer (BC). However, epigenomic information has not yet been applied in a clinical setting. ST14 encodes matriptase, a proteinase that is widely expressed in BC with reported prognostic value. Methods In this present study, we evaluated the effect of ST14 DNA methylation (DNAm) on overall survival (OS) of patients with BC as a representative example to promote the use of the epigenome in clinical decisions. We analyzed publicly available genomic and epigenomic data from 1361 BC patients. Methylation was characterized by the β-value from CpG probes based on sequencing with the Illumina Human 450 K platform. Results A high mean DNAm (β > 0.6779) across 34 CpG probes for ST14, as the gene-associated methylation (GAM) pattern, was associated with a longer OS after adjusting age, stage, histology and molecular features in Cox model (p value < 0.001). A high GAM status was also associated with a higher XBP1 expression level and higher proportion of hormone-positive BC (p value < 0.001). Pathway analysis revealed that altered GAM was related to matrisome-associated pathway. Conclusions Here we show the potential role of ST14 DNAm in BC prognosis and warrant further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08645-3.
Collapse
Affiliation(s)
- Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Ying-Fu Wang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Cheng-Hsiang Lo
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Jen-Fu Yang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan
| | - Hsing-Lung Chao
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Chengong Rd., Sec. 2, Neihu, Taipei, 114, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
16
|
Guardia T, Eason M, Kontrogianni-Konstantopoulos A. Obscurin: A multitasking giant in the fight against cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188567. [PMID: 34015411 PMCID: PMC8349851 DOI: 10.1016/j.bbcan.2021.188567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Giant obscurins (720-870 kDa), encoded by OBSCN, were originally discovered in striated muscles as cytoskeletal proteins with scaffolding and regulatory roles. Recently though, they have risen to the spotlight as key players in cancer development and progression. Herein, we provide a timely prudent synopsis of the expanse of OBSCN mutations across 16 cancer types. Given the extensive work on OBSCN's role in breast epithelium, we summarize functional studies implicating obscurins as potent tumor suppressors in breast cancer and delve into an in silico analysis of its mutational profile and epigenetic (de)regulation using different dataset platforms and sophisticated computational tools. Lastly, we formally describe the OBSCN-Antisense-RNA-1 gene, which belongs to the long non-coding RNA family and discuss its potential role in modulating OBSCN expression in breast cancer. Collectively, we highlight the escalating involvement of obscurins in cancer biology and outline novel potential mechanisms of OBSCN (de)regulation that warrant further investigation.
Collapse
Affiliation(s)
- Talia Guardia
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew Eason
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, USA.
| |
Collapse
|
17
|
Bai F, Zhang LH, Liu X, Wang C, Zheng C, Sun J, Li M, Zhu WG, Pei XH. GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer. Theranostics 2021; 11:8218-8233. [PMID: 34373738 PMCID: PMC8344017 DOI: 10.7150/thno.59280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose: Functional loss of BRCA1 is associated with poorly differentiated and metastatic breast cancers that are enriched with cancer stem cells (CSCs). CSCs can be generated from carcinoma cells through an epithelial-mesenchymal transition (EMT) program. We and others have previously demonstrated that BRCA1 suppresses EMT and regulates the expression of multiple EMT-related transcription factors. However, the downstream mediators of BRCA1 function in EMT suppression remain elusive. Methods: Depletion of BRCA1 or GATA3 activates p18INK4C , a cell cycle inhibitor which inhibits mammary epithelial cell proliferation. We have therefore created genetically engineered mice with Brca1 or Gata3 loss in addition to deletion of p18INK4C , to rescue proliferative defects caused by deficiency of Brca1 or Gata3. By using these mutant mice along with human BRCA1 deficient as well as proficient breast cancer tissues and cells, we investigated and compared the role of Brca1 and Gata3 loss in the activation of EMT in breast cancers. Results: We discovered that BRCA1 and GATA3 expressions were positively correlated in human breast cancer. Depletion of BRCA1 stimulated methylation of GATA3 promoter thereby repressing GATA3 transcription. We developed Brca1 and Gata3 deficient mouse system. We found that Gata3 deficiency in mice induced poorly-differentiated mammary tumors with the activation of EMT and promoted tumor initiating and metastatic potential. Gata3 deficient mammary tumors phenocopied Brca1 deficient tumors in the induction of EMT under the same genetic background. Reconstitution of Gata3 in Brca1-deficient tumor cells activated mesenchymal-epithelial transition, suppressing tumor initiation and metastasis. Conclusions: Our finding, for the first time, demonstrates that GATA3 functions downstream of BRCA1 to suppress EMT in controlling mammary tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Li-Han Zhang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chuying Wang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenglong Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jianping Sun
- Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Min Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
18
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
19
|
Ruscito I, Gasparri ML, De Marco MP, Costanzi F, Besharat AR, Papadia A, Kuehn T, Gentilini OD, Bellati F, Caserta D. The Clinical and Pathological Profile of BRCA1 Gene Methylated Breast Cancer Women: A Meta-Analysis. Cancers (Basel) 2021; 13:cancers13061391. [PMID: 33808555 PMCID: PMC8003261 DOI: 10.3390/cancers13061391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND DNA aberrant hypermethylation is the major cause of transcriptional silencing of the breast cancer gene 1 (BRCA1) gene in sporadic breast cancer patients. The aim of the present meta-analysis was to analyze all available studies reporting clinical characteristics of BRCA1 gene hypermethylated breast cancer in women, and to pool the results to provide a unique clinical profile of this cancer population. METHODS On September 2020, a systematic literature search was performed. Data were retrieved from PubMed, MEDLINE, and Scopus by searching the terms: "BRCA*" AND "methyl*" AND "breast". All studies evaluating the association between BRCA1 methylation status and breast cancer patients' clinicopathological features were considered for inclusion. RESULTS 465 studies were retrieved. Thirty (6.4%) studies including 3985 patients met all selection criteria. The pooled analysis data revealed a significant correlation between BRCA1 gene hypermethylation and advanced breast cancer disease stage (OR = 0.75: 95% CI: 0.58-0.97; p = 0.03, fixed effects model), lymph nodes involvement (OR = 1.22: 95% CI: 1.01-1.48; p = 0.04, fixed effects model), and pre-menopausal status (OR = 1.34: 95% CI: 1.08-1.66; p = 0.008, fixed effects model). No association could be found between BRCA1 hypermethylation and tumor histology (OR = 0.78: 95% CI: 0.59-1.03; p = 0.08, fixed effects model), tumor grading (OR = 0.78: 95% CI :0.46-1.32; p = 0.36, fixed effects model), and breast cancer molecular classification (OR = 1.59: 95% CI: 0.68-3.72; p = 0.29, random effects model). CONCLUSIONS hypermethylation of the BRCA1 gene significantly correlates with advanced breast cancer disease, lymph nodes involvement, and pre-menopausal cancer onset.
Collapse
Affiliation(s)
- Ilary Ruscito
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (A.R.B.); (F.B.); (D.C.)
- Correspondence: ; Tel.: +39-06-3377-5696
| | - Maria Luisa Gasparri
- Department of Gynecology and Obstetrics, Ente Ospedaliere Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland; (M.L.G.); (A.P.)
- University of the Italian Switzerland (USI), Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - Maria Paola De Marco
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (A.R.B.); (F.B.); (D.C.)
| | - Flavia Costanzi
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (A.R.B.); (F.B.); (D.C.)
| | - Aris Raad Besharat
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (A.R.B.); (F.B.); (D.C.)
| | - Andrea Papadia
- Department of Gynecology and Obstetrics, Ente Ospedaliere Cantonale (EOC), Via Tesserete 46, 6900 Lugano, Switzerland; (M.L.G.); (A.P.)
- University of the Italian Switzerland (USI), Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - Thorsten Kuehn
- Interdisciplinary Breast Center, Department of Gynecology and Obstetrics, Klinikum Esslingen, 73730 Neckar, Germany;
| | - Oreste Davide Gentilini
- Breast Surgery Unit, San Raffaele University Hospital, via Olgettina 60, 20132 Milan, Italy;
| | - Filippo Bellati
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (A.R.B.); (F.B.); (D.C.)
| | - Donatella Caserta
- Gynecology Division, Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (A.R.B.); (F.B.); (D.C.)
| |
Collapse
|
20
|
Bai F, Liu S, Liu X, Hollern DP, Scott A, Wang C, Zhang L, Fan C, Fu L, Perou CM, Zhu WG, Pei XH. PDGFRβ is an essential therapeutic target for BRCA1-deficient mammary tumors. Breast Cancer Res 2021; 23:10. [PMID: 33478572 PMCID: PMC7819225 DOI: 10.1186/s13058-021-01387-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Basal-like breast cancers (BLBCs) are a leading cause of cancer death due to their capacity to metastasize and lack of effective therapies. More than half of BLBCs have a dysfunctional BRCA1. Although most BRCA1-deficient cancers respond to DNA-damaging agents, resistance and tumor recurrence remain a challenge to survival outcomes for BLBC patients. Additional therapies targeting the pathways aberrantly activated by BRCA1 deficiency are urgently needed. METHODS Most BRCA1-deficient BLBCs carry a dysfunctional INK4-RB pathway. Thus, we created genetically engineered mice with Brca1 loss and deletion of p16INK4A, or separately p18INK4C, to model the deficient INK4-RB signaling in human BLBC. By using these mutant mice and human BRCA1-deficient and proficient breast cancer tissues and cells, we tested if there exists a druggable target in BRCA1-deficient breast cancers. RESULTS Heterozygous germline or epithelium-specific deletion of Brca1 in p18INK4C- or p16INK4A-deficient mice activated Pdgfrβ signaling, induced epithelial-to-mesenchymal transition, and led to BLBCs. Confirming this role, targeted deletion of Pdgfrβ in Brca1-deficient tumor cells promoted cell death, induced mesenchymal-to-epithelial transition, and suppressed tumorigenesis. Importantly, we also found that pharmaceutical inhibition of Pdgfrβ and its downstream target Pkcα suppressed Brca1-deficient tumor initiation and progression and effectively killed BRCA1-deficient cancer cells. CONCLUSIONS Our work offers the first genetic and biochemical evidence that PDGFRβ-PKCα signaling is repressed by BRCA1, which establishes PDGFRβ-PKCα signaling as a therapeutic target for BRCA1-deficient breast cancers.
Collapse
Affiliation(s)
- Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Shiqin Liu
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandria Scott
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Chuying Wang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lihan Zhang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, 518039, China
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
21
|
Liang F, Zhang H, Gao H, Cheng D, Zhang N, Du J, Yue J, Du P, Zhao B, Yin L. Liquiritigenin decreases tumorigenesis by inhibiting DNMT activity and increasing BRCA1 transcriptional activity in triple-negative breast cancer. Exp Biol Med (Maywood) 2020; 246:459-466. [PMID: 32938226 DOI: 10.1177/1535370220957255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As a selective estrogen receptor β agonist, the natural flavonoid liquiritigenin reportedly inhibits invasiveness of breast cancer cells, but its specific role and mechanism remain largely unclear. In this study, cells from the triple negative breast cancer lines MDA-MB-231 and BT549 were incubated with different concentrations of liquiritigenin. The results indicated that low concentrations had no significant cytotoxic effect, whereas high concentrations decreased viability of both MDA-MB-231 and BT549 cells. Liquiritigenin treatment also resulted in increased apoptosis and enhanced Caspase3 activity. After liquiritigenin treatment, we observed decreased invasive and migratory capacities of cells, as well as upregulated E-cadherin and downregulated N-cadherin, vimentin, and MMP9. Interestingly, liquiritigenin increased the mRNA and protein expression of breast cancer 1 (BRCA1). It also increased p21 and growth arrest and DNA-damage-inducible 45 alpha (GADD45A) levels, accompanied by decreased cellular DNA methyltransferase (DNMT) activity and downregulation of DNMT1, DNMT3a, and DNMT3b. These findings suggest that liquiritigenin can inhibit malignant behavior of triple negative breast cancer cells by inhibiting DNMT activity and increasing BRCA1 expression and its transcriptional activity. Liquiritigenin thus may be a promising candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fang Liang
- Department of Cancer Rehabilitation, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Hao Zhang
- Department of Urology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Hui Gao
- Department of Cancer Rehabilitation, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Duo Cheng
- Department of Cancer Rehabilitation, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Nan Zhang
- Department of Cancer Rehabilitation, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jie Du
- Department of Cancer Rehabilitation, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Junmin Yue
- Department of Urology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Peng Du
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of education/Beijing), University Cancer Hospital and Institute, Beijing 100142, China
| | - Beibei Zhao
- Department of Cancer Rehabilitation, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Lu Yin
- Charity Office, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
22
|
Glodzik D, Bosch A, Hartman J, Aine M, Vallon-Christersson J, Reuterswärd C, Karlsson A, Mitra S, Niméus E, Holm K, Häkkinen J, Hegardt C, Saal LH, Larsson C, Malmberg M, Rydén L, Ehinger A, Loman N, Kvist A, Ehrencrona H, Nik-Zainal S, Borg Å, Staaf J. Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers. Nat Commun 2020; 11:3747. [PMID: 32719340 PMCID: PMC7385112 DOI: 10.1038/s41467-020-17537-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC.
Collapse
Affiliation(s)
- Dominik Glodzik
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Cambridge, UK
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Oncology, Skåne University Hospital, SE-22184, Lund, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Mattias Aine
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, SE-22184, Lund, Sweden
| | - Johan Vallon-Christersson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Christel Reuterswärd
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Anna Karlsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Shamik Mitra
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Emma Niméus
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Division of Surgery, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Karolina Holm
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Cecilia Hegardt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Martin Malmberg
- Department of Oncology, Skåne University Hospital, SE-22184, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Anna Ehinger
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, SE-22184, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Oncology, Skåne University Hospital, SE-22184, Lund, Sweden
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Hans Ehrencrona
- Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, SE-22184, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-22184, Lund, Sweden
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, The Clinical School University of Cambridge, Cambridge Biomedical Research Campus, CB2 0QQ, Cambridge, UK
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden.
| |
Collapse
|
23
|
Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, Lamy PJ, Guiu S. BRCA1 Promoter Hypermethylation is Associated with Good Prognosis and Chemosensitivity in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12040828. [PMID: 32235500 PMCID: PMC7225997 DOI: 10.3390/cancers12040828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The aberrant hypermethylation of BRCA1 promoter CpG islands induces the decreased expression of BRCA1 (Breast Cancer 1) protein. It can be detected in sporadic breast cancer without BRCA1 pathogenic variants, particularly in triple-negative breast cancers (TNBC). We investigated BRCA1 hypermethylation status (by methylation-specific polymerase chain reaction (MS-PCR) and MassARRAY® assays), and BRCA1 protein expression using immunohistochemistry (IHC), and their clinicopathological significance in 248 chemotherapy-naïve TNBC samples. Fifty-five tumors (22%) exhibited BRCA1 promoter hypermethylation, with a high concordance rate between MS-PCR and MassARRAY® results. Promoter hypermethylation was associated with reduced IHC BRCA1 protein expression (p = 0.005), and expression of Programmed death-ligand 1 protein (PD-L1) by tumor and immune cells (p = 0.03 and 0.011, respectively). A trend was found between promoter hypermethylation and basal marker staining (p = 0.058), and between BRCA1 expression and a basal-like phenotype. In multivariate analysis, relapse-free survival was significantly associated with N stage, adjuvant chemotherapy, and histological subtype. Overall survival was significantly associated with T and N stage, histology, and adjuvant chemotherapy. In addition, patients with tumors harboring BRCA1 promoter hypermethylation derived the most benefit from adjuvant chemotherapy. In conclusion, BRCA1 promoter hypermethylation is associated with TNBC sensitivity to adjuvant chemotherapy, basal-like features and PD-L1 expression. BRCA1 IHC expression is not a good surrogate marker for promoter hypermethylation and is not independently associated with prognosis. Association between promoter hypermethylation and sensitivity to Poly(ADP-ribose) polymerase PARP inhibitors needs to be evaluated in a specific series of patients.
Collapse
Affiliation(s)
- William Jacot
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Faculty of Medicine, Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Correspondence: ; Tel.: +33-4-67-61-31-00; Fax: +33-4-67-63-28-73
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Caroline Mollevi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Biometrics Unit, Institut du Cancer Montpellier (ICM), Université de Montpellier, 208 rue des Apothicaires, F-34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Joelle Simony-Lafontaine
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Alexandre Ho-Pun-Cheung
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Elodie Chartron
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Antoinette Lemoine
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Raphael Saffroy
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Pierre-Jean Lamy
- Institut d’Analyse Génomique, Imagenome-Inovie, Clinique BeauSoleil, 34070 Montpellier, France;
- Biological Resources Center, Montpellier Cancer Institute Val d’Aurelle, F-34298 Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| |
Collapse
|
24
|
Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine (Rij) 2020; 7:1849543520983196. [PMID: 33488814 PMCID: PMC7768851 DOI: 10.1177/1849543520983196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, approximately 1 in 4 cancers in women are diagnosed as breast cancer (BC). Despite significant advances in the diagnosis and therapy BCs, many patients develop metastases or relapses. Hence, novel therapeutic strategies are required, that can selectively and efficiently kill malignant cells. Direct targeting of the genetic and epigenetic aberrations that occur in BC development is a promising strategy to overcome the limitations of current therapies, which target the tumour phenotype. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, composed of only an easily modifiable single guide RNA (sgRNA) sequence bound to a Cas9 nuclease, has revolutionised genome editing due to its simplicity and efficiency compared to earlier systems. CRISPR/Cas9 and its associated catalytically inactivated dCas9 variants facilitate the knockout of overexpressed genes, correction of mutations in inactivated genes, and reprogramming of the epigenetic landscape to impair BC growth. To achieve efficient genome editing in vivo, a vector is required to deliver the components to target cells. Gold nanomaterials, including gold nanoparticles and nanoclusters, display many advantageous characteristics that have facilitated their widespread use in theranostics, as delivery vehicles, and imaging and photothermal agents. This review highlights the therapeutic applications of CRISPR/Cas9 in treating BCs, and briefly describes gold nanomaterials and their potential in CRISPR/Cas9 delivery.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
25
|
Paluch-Shimon S, Evron E. Targeting DNA repair in breast cancer. Breast 2019; 47:33-42. [DOI: 10.1016/j.breast.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
|
26
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
27
|
de Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 2019; 19:219. [PMID: 30866861 PMCID: PMC6416975 DOI: 10.1186/s12885-019-5403-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease resulting in diverse clinical behaviours and therapeutic responses. DNA methylation is a major epigenetic alteration that is commonly perturbed in cancers. The aim of this study is to characterize the relationship between DNA methylation and aberrant gene expression in breast cancer. METHODS We analysed DNA methylation and gene expression profiles from breast cancer tissue and matched normal tissue in The Cancer Genome Atlas (TCGA). Genome-wide differential methylation analysis and methylation-gene expression correlation was performed. Gene expression changes were subsequently validated in the METABRIC dataset. The Oncoscore tool was used to identify genes that had previously been associated with cancer in the literature. A subset of genes that had not previously been studied in cancer was chosen for further analysis. RESULTS We identified 368 CpGs that were differentially methylated between tumor and normal breast tissue (∆β > 0.4). Hypermethylated CpGs were overrepresented in tumor tissue and were found predominantly (56%) in upstream promoter regions. Conversely, hypomethylated CpG sites were found primarily in the gene body (66%). Expression analysis revealed that 209 of the differentially-methylated CpGs were located in 169 genes that were differently expressed between normal and breast tumor tissue. Methylation-expression correlations were predominantly negative (70%) for promoter CpG sites and positive (74%) for gene body CpG sites. Among these differentially-methylated and differentially-expressed genes, we identified 7 that had not previously been studied in any form of cancer. Three of these, TDRD10, PRAC2 and TMEM132C, contained CpG sites that showed diagnostic and prognostic value in breast cancer, particularly in estrogen-receptor (ER)-positive samples. A pan-cancer analysis confirmed differential expression of these genes together with diagnostic and prognostic value of their respective CpG sites in multiple cancer types. CONCLUSION We have identified 368 DNA methylation changes that characterize breast cancer tumor tissue, of which 209 are associated with genes that are differentially-expressed in the same samples. Novel DNA methylation markers were identified, of which cg12374721 (PRAC2), cg18081940 (TDRD10) and cg04475027 (TMEM132C) show promise as diagnostic and prognostic markers in breast cancer as well as other cancer types.
Collapse
Affiliation(s)
- Bernardo P. de Almeida
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Present address: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joana Dias Apolónio
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
| | - Alexandra Binnie
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
- William Osler Health System, Brampton, ON Canada
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
28
|
Tian T, Shan L, Yang W, Zhou X, Shui R. Evaluation of the BRCAness phenotype and its correlations with clinicopathological features in triple-negative breast cancers. Hum Pathol 2019; 84:231-238. [DOI: 10.1016/j.humpath.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
|
29
|
Mio C, Gerratana L, Bolis M, Caponnetto F, Zanello A, Barbina M, Di Loreto C, Garattini E, Damante G, Puglisi F. BET proteins regulate homologous recombination-mediated DNA repair: BRCAness and implications for cancer therapy. Int J Cancer 2018; 144:755-766. [PMID: 30259975 DOI: 10.1002/ijc.31898] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
Bromodomain and Extra-Terminal (BET) proteins are historically involved in regulating gene expression and BRD4 was recently found to be involved in DNA damage regulation. Aims of our study were to assess BRD4 regulation in homologous recombination-mediated DNA repair and to explore novel clinical strategies through the combinations of the pharmacological induction of epigenetic BRCAness in BRCA1 wild-type triple negative breast cancer (TNBC) cells by means of BET inhibitors and compounds already available in clinic. Performing a dual approach (chromatin immunoprecipitation and RNA interference), the direct relationship between BRD4 and BRCA1/RAD51 expression was confirmed in TNBC cells. Moreover, BRD4 pharmacological inhibition using two BET inhibitors (JQ1 and GSK525762A) induced a dose-dependent reduction in BRCA1 and RAD51 levels and is able to hinder homologous recombination-mediated DNA damage repair, generating a BRCAness phenotype in TNBC cells. Furthermore, BET inhibition impaired the ability of TNBC cells to overcome the increase in DNA damage after platinum salts (i.e., CDDP) exposure, leading to massive cell death, and triggered synthetic lethality when combined with PARP inhibitors (i.e., AZD2281). Altogether, the present study confirms that BET proteins directly regulate the homologous recombination pathway and their inhibition induced a BRCAness phenotype in BRCA1 wild-type TNBC cells. Noteworthy, being this strategy based on drugs already available for human use, it is rapidly transferable and could potentially enable clinicians to exploit platinum salts and PARP inhibitors-based treatments in a wider population of TNBC patients and not just in a specific subgroup, after validating clinical trials.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | | | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Andrea Zanello
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mattia Barbina
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Carla Di Loreto
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Institute of Pathology, ASUIUD University Hospital of Udine, Udine, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Damante
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Institute of Medical Genetics, ASUIUD University Hospital of Udine, Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
30
|
Yin L, Cai WJ, Chang XY, Li J, Zhu LY, Su XH, Yu XF, Sun K. Analysis of PTEN expression and promoter methylation in Uyghur patients with mild type 2 diabetes mellitus. Medicine (Baltimore) 2018; 97:e13513. [PMID: 30544451 PMCID: PMC6310531 DOI: 10.1097/md.0000000000013513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphatase and tension homolog deleted on chromosome 10 (PTEN) was considered as a promising target in type 2 diabetes mellitus (T2DM) because of its negative effects on insulin resistance. Alteration in DNA methylation is thought to play a role in the pathogenesis of T2DM. The aim of the present study was to quantitatively evaluate the promoter methylation of PTEN in Uyghur patients with mild T2DM. We evaluated methylation levels in 21 CpG sites from -2515 bp to -2186 bp relative to the translation initiation site in 55 cases of T2DM and 50 cases of normal glucose tolerance (NGT) using the MassARRAY spectrometry. In addition, PTEN mRNA and protein levels were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting to determine whether DNA methylation alterations were responsible for PTEN expression. Compared with NGT groups, the PTEN mRNA expression was significantly higher in Uyghur patients with mild T2DM groups. We also showed that PTEN protein expression was upregulated in Uyghur patients with mild T2DM groups, but the level of protein kinase B (AKT) was downregulated. PTEN methylation in T2DM patients was significantly lower than that in NGT groups. In addition, 2 CpG units demonstrated a significant difference between the NGT and Uyghur patients with mild T2DM groups. Furthermore, there was a negative association between promoter methylation and PTEN expression. Together, these findings suggest that epigenetic inactivation of PTEN plays an important role in Uyghur patients with mild T2DM. The aberrant methylation of CpG sites within the PTEN promoter may serve as a potential candidate biomarker for T2DM in the Uyghur population.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology and Metabolism, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, Wuhan, Hubei
| | - Wei-Juan Cai
- Department of Clinical Laboratory, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | | | - Jun Li
- Department of Endocrinology and Metabolism
| | | | | | - Xue-Feng Yu
- Department of Endocrinology and Metabolism, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, Wuhan, Hubei
| | - Kan Sun
- Department of Endocrinology and Metabolism
| |
Collapse
|
31
|
Chartron E, Theillet C, Guiu S, Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: Biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol 2018; 133:58-73. [PMID: 30661659 DOI: 10.1016/j.critrevonc.2018.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Mutation or epigenetic silencing of homologous recombination (HR) repair genes is characteristic of a growing proportion of triple-negative breast cancers (TNBCs) and high-grade serous ovarian carcinomas. Defects in HR lead to genome instability, allowing cells to acquire the multiple genetic alterations essential for cancer development. However, this deficiency can also be exploited by using DNA damaging agents or by targeting compensatory repair pathways. A noteworthy example is treatment of TNBC and epithelial ovarian cancer harboring BRCA1/2 germline mutations using platinum salts and/or PARP inhibitors. Dramatic responses to PARP inhibitors may support a wider use in the HR-deficient population beyond those with mutated germline BRCA1 and 2. In this review, we discuss HR deficiency hallmarks as predictive biomarkers for platinum salt and PARP inhibitor sensitivity for selecting patients affected by TNBC or epithelial ovarian cancer who could benefit from these therapeutic options.
Collapse
Affiliation(s)
- Elodie Chartron
- Department of medical oncology, Montpellier Academic Hospital, Montpellier, France
| | - Charles Theillet
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - William Jacot
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France; Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
32
|
Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:38-44. [DOI: 10.1016/j.mrrev.2018.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
|
33
|
Wang C, Bai F, Zhang LH, Scott A, Li E, Pei XH. Estrogen promotes estrogen receptor negative BRCA1-deficient tumor initiation and progression. Breast Cancer Res 2018; 20:74. [PMID: 29996906 PMCID: PMC6042319 DOI: 10.1186/s13058-018-0996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Estrogen promotes breast cancer development and progression mainly through estrogen receptor (ER). However, blockage of estrogen production or action prevents development of and suppresses progression of ER-negative breast cancers. How estrogen promotes ER-negative breast cancer development and progression is poorly understood. We previously discovered that deletion of cell cycle inhibitors p16Ink4a (p16) or p18Ink4c (p18) is required for development of Brca1-deficient basal-like mammary tumors, and that mice lacking p18 develop luminal-type mammary tumors. METHODS A genetic model system with three mouse strains, one that develops ER-positive mammary tumors (p18 single deletion) and the others that develop ER-negative tumors (p16;Brca1 and p18;Brca1 compound deletion), human BRCA1 mutant breast cancer patient-derived xenografts, and human BRCA1-deficient and BRCA1-proficient breast cancer cells were used to determine the role of estrogen in activating epithelial-mesenchymal transition (EMT), stimulating cell proliferation, and promoting ER-negative mammary tumor initiation and metastasis. RESULTS Estrogen stimulated the proliferation and tumor-initiating potential of both ER-positive Brca1-proficient and ER-negative Brca1-deficient tumor cells. Estrogen activated EMT in a subset of Brca1-deficient mammary tumor cells that maintained epithelial features, and enhanced the number of cancer stem cells, promoting tumor progression and metastasis. Estrogen activated EMT independent of ER in Brca1-deficient, but not Brca1-proficient, tumor cells. Estrogen activated the AKT pathway in BRCA1-deficient tumor cells independent of ER, and pharmaceutical inhibition of AKT activity suppressed EMT and cell proliferation preventing BRCA1 deficient tumor progression. CONCLUSIONS This study reveals for the first time that estrogen promotes BRCA1-deficient tumor initiation and progression by stimulation of cell proliferation and activation of EMT, which are dependent on AKT activation and independent of ER.
Collapse
Affiliation(s)
- Chuying Wang
- Department of Medical Oncology, The First Affiliated hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 People’s Republic of China
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Feng Bai
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Li-han Zhang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Alexandria Scott
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 People’s Republic of China
| | - Xin-Hai Pei
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
34
|
Tucker DW, Getchell CR, McCarthy ET, Ohman AW, Sasamoto N, Xu S, Ko JY, Gupta M, Shafrir A, Medina JE, Lee JJ, MacDonald LA, Malik A, Hasselblatt KT, Li W, Zhang H, Kaplan SJ, Murphy GF, Hirsch MS, Liu JF, Matulonis UA, Terry KL, Lian CG, Dinulescu DM. Epigenetic Reprogramming Strategies to Reverse Global Loss of 5-Hydroxymethylcytosine, a Prognostic Factor for Poor Survival in High-grade Serous Ovarian Cancer. Clin Cancer Res 2018; 24:1389-1401. [PMID: 29263182 PMCID: PMC5951622 DOI: 10.1158/1078-0432.ccr-17-1958] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
Purpose: A major challenge in platinum-based cancer therapy is the clinical management of chemoresistant tumors, which have a largely unknown pathogenesis at the level of epigenetic regulation.Experimental Design: We evaluated the potential of using global loss of 5-hydroxymethylcytosine (5-hmC) levels as a novel diagnostic and prognostic epigenetic marker to better assess platinum-based chemotherapy response and clinical outcome in high-grade serous tumors (HGSOC), the most common and deadliest subtype of ovarian cancer. Furthermore, we identified a targetable pathway to reverse these epigenetic changes, both genetically and pharmacologically.Results: This study shows that decreased 5-hmC levels are an epigenetic hallmark for malignancy and tumor progression in HGSOC. In addition, global 5-hmC loss is associated with a decreased response to platinum-based chemotherapy, shorter time to relapse, and poor overall survival in patients newly diagnosed with HGSOC. Interestingly, the rescue of 5-hmC loss restores sensitivity to platinum chemotherapy in vitro and in vivo, decreases the percentage of tumor cells with cancer stem cell markers, and increases overall survival in an aggressive animal model of platinum-resistant disease.Conclusions: Consequently, a global analysis of patient 5-hmC levels should be included in future clinical trials, which use pretreatment with epigenetic adjuvants to elevate 5-hmC levels and improve the efficacy of current chemotherapies. Identifying prognostic epigenetic markers and altering chemotherapeutic regimens to incorporate DNMTi pretreatment in tumors with low 5-hmC levels could have important clinical implications for newly diagnosed HGSOC disease. Clin Cancer Res; 24(6); 1389-401. ©2017 AACR.
Collapse
Affiliation(s)
- Douglass W Tucker
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher R Getchell
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric T McCarthy
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anders W Ohman
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Naoko Sasamoto
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuyun Xu
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joo Yeon Ko
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Korea
| | - Mamta Gupta
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amy Shafrir
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jamie E Medina
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan J Lee
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren A MacDonald
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Ammara Malik
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Kathleen T Hasselblatt
- Gynecologic Oncology Laboratory, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Wenjing Li
- Department of Medicine, Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Hong Zhang
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel J Kaplan
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michelle S Hirsch
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts
| | - Kathryn L Terry
- Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Christine G Lian
- Department of Pathology, Division of Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Daniela M Dinulescu
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
35
|
Abstract
Breast cancer is the most common cancer among women and represents one of the top five leading causes of cancer-related mortality. Inherited and acquired genetic mutations as well as epigenetic aberrations are known to be important contributors to the development and progression of breast cancer. Recent developments in high-throughput technologies have increased our understanding of the molecular changes in breast cancer, leading to the identification of distinctive genetic and epigenetic modifications in different breast cancer molecular subtypes. These genetic and epigenetic changes in luminal A, luminal B, ERBB2/HER2-enriched, basal-like, and normal-like breast cancer subtypes are discussed in this chapter. Furthermore, recent epigenome studies provided more information about further stratification of breast cancer subtypes, with essential role in the appropriate diagnosis and treatment of breast cancer. Thus, the inclusion of both genetic and epigenetic information in breast cancer clinical care could provide critical scientific base for precision medicine in breast cancer.
Collapse
|
36
|
The role of BRCA status on prognosis in patients with triple-negative breast cancer. Oncotarget 2017; 8:87151-87162. [PMID: 29152070 PMCID: PMC5675622 DOI: 10.18632/oncotarget.19895] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
Studies have showed that dysfunction in the breast cancer susceptibility gene (BRCA) is associated with triple-negative breast cancer (TNBC); however, its effect on patient survival remains controversial. We investigated the distribution of BRCA1/2 mutations in unselected Chinese patients with TNBC and explored their roles in prognosis. Then a systematic review and meta-analysis were performed to evaluate the prognostic role of BRCA dysfunction, including BRCA1/2 germline/somatic mutations, BRCA1 promoter methylation, and low BRCA1 protein expression in TNBC patients. Pooled hazard ratios with 95% confidence intervals were estimated to determine the association between BRCA dysfunction and survival. Our results showed a high frequency of BRCA1/2 mutations, especially germline BRCA1 variants, were associated with bilateral breast cancer. Although no correlations were found between BRCA1/2 mutations and recurrence-free survival (RFS) or overall survival (OS). In the meta-analysis, patients with BRCA1 promoter methylation showed poor OS. However, there was a favorable impact on disease free survival (DFS) for TNBC patients with BRCA1 promoter methylation when received adjuvant-chemotherapy. In conclusion, BRCA1/2 mutations were associated with bilateral breast cancer and BRCA1 promoter methylation may have a prognostic effect on TNBC.
Collapse
|
37
|
Zhong D, Cen H. Aberrant promoter methylation profiles and association with survival in patients with hepatocellular carcinoma. Onco Targets Ther 2017; 10:2501-2509. [PMID: 28507442 PMCID: PMC5428754 DOI: 10.2147/ott.s128058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the prognostic and diagnostic value of genes with promoter methylation in hepatocellular carcinoma (HCC) patients. On the basis of The Cancer Genome Atlas data, we identified genes with differentially methylated promoters in HCC tissues and adjacent non-tumor tissues, using the linear models for microarray data approach. Cox proportional hazard regression analysis was applied to access the prognostic value of identified differentially methylated genes. The diagnostic value of the genes was evaluated through receiver operating characteristic. Pathway analyses were performed to illustrate biological functions of the identified genes. Compared to adjacent tissues, 77 genes with hypermethylated promoters and 2,412 genes with hypomethylated promoters were identified in HCC. The promoter hypomethylations of RNA5SP38, IL21, SDC4P, and MIR4439 were found to be associated with HCC patient survival (P=0.035, 0.040, 0.004, and 0.024, respectively). Hypomethylated SDC4P was associated with a better prognosis (hazard ratio, 0.482; 95% confidence interval [CI], −0.147–1.110; P=0.007). The combination of the promoter hypomethylations with RNA5SP38, IL21, and SDC4P showed an area under receiver operating characteristic curves of 0.975 (95% CI, 0.962–0.989; P=4.811E-25). Several pathways, including olfactory transduction, cytokine–cytokine receptor interaction, natural killer cell–mediated cytotoxicity, as well as inflammation mediated by chemokine and cytokine signaling pathway, were annotated with the hypomethylated promoter genes. SDC4P promoter hypomethylation may be a potential prognosis biomarker. A panel of promoter methylations in RNA5SP38, IL21, and SDC4P was proven a novel approach to diagnosis HCC. The pathway analysis defined the extensive functional role of DNA hypomethylation in cancer.
Collapse
Affiliation(s)
- Dani Zhong
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hong Cen
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
38
|
Abstract
Activation of oncogenes or the deactivation of tumor suppressor genes has long been established as the fundamental mechanism leading towards carcinogenesis. Although this age old axiom is vastly accurate, thorough study over the last 15years has given us unprecedented information on the involvement of epigenetic in cancer. Various biochemical pathways that are essential towards tumorigenesis are regulated by the epigenetic phenomenons like remodeling of nucleosome by histone modifications, DNA methylation and miRNA mediated targeting of various genes. Moreover the presence of mutations in the genes controlling the epigenetic players has further strengthened the association of epigenetics in cancer. This merger has opened up newer avenues for targeted anti-cancer drug therapy with numerous pharmaceutical industries focusing on expanding their research and development pipeline with epigenetic drugs. The information provided here elaborates the elementary phenomena of the various epigenetic regulators and discusses their alteration associated with the development of cancer. We also highlight the recent developments in epigenetic drugs combining preclinical and clinical data to signify this evolving field in cancer research.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
39
|
Fleisher B, Clarke C, Ait-Oudhia S. Current advances in biomarkers for targeted therapy in triple-negative breast cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2016; 8:183-197. [PMID: 27785100 PMCID: PMC5063595 DOI: 10.2147/bctt.s114659] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is a complex heterogeneous disease characterized by the absence of three hallmark receptors: human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. Compared to other breast cancer subtypes, TNBC is more aggressive, has a higher prevalence in African-Americans, and more frequently affects younger patients. Currently, TNBC lacks clinically accepted targets for tailored therapy, warranting the need for candidate biomarkers. BiomarkerBase, an online platform used to find biomarkers reported in clinical trials, was utilized to screen all potential biomarkers for TNBC and select only the ones registered in completed TNBC trials through clinicaltrials.gov. The selected candidate biomarkers were classified as surrogate, prognostic, predictive, or pharmacodynamic (PD) and organized by location in the blood, on the cell surface, in the cytoplasm, or in the nucleus. Blood biomarkers include vascular endothelial growth factor/vascular endothelial growth factor receptor and interleukin-8 (IL-8); cell surface biomarkers include EGFR, insulin-like growth factor binding protein, c-Kit, c-Met, and PD-L1; cytoplasm biomarkers include PIK3CA, pAKT/S6/p4E-BP1, PTEN, ALDH1, and the PIK3CA/AKT/mTOR-related metabolites; and nucleus biomarkers include BRCA1, the gluco-corticoid receptor, TP53, and Ki67. Candidate biomarkers were further organized into a "cellular protein network" that demonstrates potential connectivity. This review provides an inventory and reference point for promising biomarkers for breakthrough targeted therapies in TNBC.
Collapse
Affiliation(s)
- Brett Fleisher
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL
| | - Charlotte Clarke
- Department of Translational Research, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sihem Ait-Oudhia
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL
| |
Collapse
|
40
|
Xu W, Liu D, Yang Y, Ding X, Sun Y, Zhang B, Xu J, Su B. Association of CHEK2 polymorphisms with the efficacy of platinum-based chemotherapy for advanced non-small-cell lung cancer in Chinese never-smoking women. J Thorac Dis 2016; 8:2519-2529. [PMID: 27747004 DOI: 10.21037/jtd.2016.08.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cell cycle checkpoint kinase 2 (CHEK2) plays an essential role in the repair of DNA damage. Single nucleotide polymorphisms (SNPs) in DNA repair genes are thought to influence treatment effects and survival of cancer patients. This study aimed to investigate the relationship between polymorphisms in the CHEK2 gene and efficacy of platinum-based doublet chemotherapy in never-smoking Chinese female patients with advanced non-small-cell lung cancer (NSCLC). METHODS Using DNA from blood samples of 272 Chinese advanced NSCLC non-smoking female patients treated with first-line platinum-based chemotherapy, we have analyzed the relationships between four SNPs in the CHEK2 gene and clinical outcomes. RESULTS We found that overall survival (OS) was significantly associated with CHEK2 rs4035540 (Log-Rank P=0.020), as well as the CHEK2 rs4035540 dominant model (Log-Rank P=0.026), especially in the lung adenocarcinoma group. After multivariate analysis, patients with rs4035540 A/G genotype had a significantly better OS than those with the G/G genotype (HR =0.67, 95% CI, 0.48-0.93; P=0.016). In the toxicity analysis, it was observed that patients with the CHEK2 rs4035540 A/A genotype had a higher risk of gastrointestinal toxicity than the G/G genotype group (P=0.009). However, there are no significant associations between chemotherapy treatments and genetic variations. CONCLUSIONS Our findings indicate that SNPs in CHEK2 are related to Chinese advanced NSCLC never-smoking female patients receiving platinum-based doublet chemotherapy in China. Patients with rs4035540 A/G genotype have a better OS. And patients with rs4035540 A/A genotype have a higher risk of gastrointestinal toxicity. These results point to a direction for predicting the prognosis for Chinese never-smoking NSCLC female patients. However, there are no significant associations between chemotherapy treatments and SNPs in CHEK2, which need more samples to the further study.
Collapse
Affiliation(s)
- Wen Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Di Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Xi Ding
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifeng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
41
|
Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and "BRCA-Like" Status, in Both Blood and Tumour DNA. PLoS One 2016; 11:e0160174. [PMID: 27463681 PMCID: PMC4963032 DOI: 10.1371/journal.pone.0160174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies.
Collapse
|
42
|
Guo L, Li W, Zhu X, Ling Y, Qiu T, Dong L, Fang Y, Yang H, Ying J. PD-L1 expression and CD274 gene alteration in triple-negative breast cancer: implication for prognostic biomarker. SPRINGERPLUS 2016; 5:805. [PMID: 27390646 PMCID: PMC4916110 DOI: 10.1186/s40064-016-2513-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To estimate the therapeutic potential of PD-L1 inhibition in breast cancer, we evaluated the prevalence and significance of PD-L1 protein expression with a validated antibody and CD274 gene alternation in a large cohort of triple negative breast cancer (TNBC) and correlated with clinicopathological data and patients overall survival. METHODS Immunohistochemistry and in situ mRNA hybridization was used to detect PD-L1 protein and mRNA expression in tumor tissues from 183 TNBC patients respectively. Fluorescence in situ hybridization analysis was performed on PD-L1 strong expression samples to assess copy number on chromosome 9p24.1 of CD274 gene. RESULTS Expression of PD-L1 by immune cells was observed in 4.9 % of TNBC, while expression by tumor cells accounted for 8.7 %. There was a high concordance in PD-L1 protein expression and PDL1 mRNA expression. Samples with PD-L1 strong expression were found to have a CD274 gene copy number gain. PD-L1 expression was correlated with higher tumor grade, but was independent of menopausal status, lymph nodes metastasis, histological subtype and tumor size. In addition, we used precise stratification of PD-L1 expression on tumor or immune cells of certain breast cancer subtype and suggested that patients with PD-L1 expression in basal-like tumors by immune cells or with CD274 gene copy number gain had a longer disease-specific overall survival. CONCLUSIONS Our findings may promote the more precise analysis of PD-L1 expression in breast cancer and aid the selection of patients who may benefit from immune therapy.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| | - Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Yun Ling
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| | - Lin Dong
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Hongying Yang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17#, Beijing, 100021 China
| |
Collapse
|
43
|
Kim MC, Choi JE, Lee SJ, Bae YK. Coexistent Loss of the Expressions of BRCA1 and p53 Predicts Poor Prognosis in Triple-Negative Breast Cancer. Ann Surg Oncol 2016; 23:3524-3530. [PMID: 27278204 DOI: 10.1245/s10434-016-5307-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND To investigate the prognostic significance of altered breast cancer susceptibility gene 1 (BRCA1) and p53 expression in triple-negative breast cancer (TNBC). METHODS Immunohistochemical expression of BRCA1 and p53 was examined in the tumor tissues of 465 TNBC cases and relations were sought with clinicopathological features and patient survival. RESULTS Loss of BRCA1 expression was found in 29.5% (137/465) of TNBCs. Positive expression of p53 was observed in 49.9% (232/465). Patients with loss of BRCA1 expression had a tendency to have higher rate of lymph node metastasis (p = 0.075). An association between p53 expression and high histological grade was observed (p = 0.039). TNBC patients with loss of BRCA1 expression had a tendency to have poorer overall survival (OS) than those positive for BRCA1 (p = 0.09). TNBC patients with positive p53 expression showed better OS than those with p53 negativity (p = 0.001). In terms of combined expression patterns, significantly poorer overall survival (OS) was observed for BRCA1-negative/p53-negative TNBCs and best OS for BRCA1-positive/p53-positive TNBCs (p = 0.005). CONCLUSIONS Combined expression patterns of BRCA1 and p53 could serve as useful prognostic markers in TNBC.
Collapse
Affiliation(s)
- Min Chong Kim
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Eun Choi
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
44
|
Zhang C, Peng Y, Yang F, Qin R, Liu W, Zhang C. PCDH8 is Frequently Inactivated by Promoter Hypermethylation in Liver Cancer: Diagnostic and Clinical Significance. J Cancer 2016; 7:446-52. [PMID: 26918058 PMCID: PMC4749365 DOI: 10.7150/jca.13065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
AIM: Protocadherin-8 (PCDH8) plays an important role in signaling pathways of cell adhesin, proliferation, and migration. It has been reported that PCDH8 is mutated or methylated in several human cancers. However, little is known about PCDH8 in liver cancer. The aim of this study was to investigate the protein expression and promoter methylation status of PCDH8 in liver cancer and evaluate the association between PCDH8 methylation and the clinicopathological features. METHODS: The methylation status of PCDH8 in 42 hepatocellular carcinoma (HCC), 8 Cholangiocarcinoma (CC) and 50 normal liver tissues were examined using methylation-specific PCR (MSP) and the protein expression of PCDH8 was detected by immunohistochemistry. The relationships between PCDH8 methylation and clinicopathological features as well as overall survival of patients were evaluated. RESULTS: The PCDH8 methylation was more frequent in liver cancer tissues than that in the normal liver tissues (88% vs. 32%, P < 0.001), and is significantly associated with loss of its protein expression (P = 0.004). Moreover, there is a significant correlation between PCDH8 methylation and the alpha-fetoprotein (AFP) level (P = 0.008). Kaplan-Meier survival analysis revealed that patients with PCDH8 methylation have shorter OS and PFS than those without PCDH8 methylation (P = 0.041 and P = 0.028, respectively). CONCLUSION: PCDH8 is often inactivated by promoter methylation in liver cancer. PCDH8 methylation can serve as a valuable diagnostic biomarker for early detection of liver cancer and might be useful to predict an unfavorable clinical feature.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Yunfei Peng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Ruixi Qin
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Wenjun Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| |
Collapse
|
45
|
Wei X, Zhang S, Cao D, Zhao M, Zhang Q, Zhao J, Yang T, Pei M, Wang L, Li Y, Yang X. Aberrant Hypermethylation of SALL3 with HPV Involvement Contributes to the Carcinogenesis of Cervical Cancer. PLoS One 2015; 10:e0145700. [PMID: 26697877 PMCID: PMC4689451 DOI: 10.1371/journal.pone.0145700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the methylation status of the promoter region of spalt-like transcription factor 3 (SALL3) and the expression of SALL3 in cervical cancer to explore the function of this gene in cervical cancer carcinogenesis. METHODS The methylation status of SALL3 was detected by methylation-specific PCR, and SALL3 gene expression was assessed by real-time quantitative PCR in the cervical cancer cell lines, SiHa, HeLa and C33A, as well as in cervical cancer tissue samples (n = 23), matched pericarcinomatous tissue samples (n = 23) and normal cervix tissue samples (n = 17). MTT was used to measure the cell viability and proliferation capacity of SiHa and HeLa cells. RESULTS The SALL3 promoter was completely methylated in SiHa cells, unmethylated in C33A cells and partially methylated in HeLa cells. After treatment of SiHa and HeLa cells with 5 μM and 10 μM of 5-Azacytidine (5-Aza), respectively, the methylation level of the SALL3 promoter decreased and observed increase in the degree of unmethylation in a dose-dependent manner. Moreover, the relative expression of SALL3 mRNA increased as the concentration of 5-Aza increased in SiHa (p<0.05) and HeLa (p<0.05) cells. This above-mentioned increase in SALL3 mRNA in SiHa cells was more remarkable than that observed in HeLa cells. Cell proliferation capacity also decreased after administration of 5-Aza to SiHa and HeLa cells (p<0.05). Methylation of the SALL3 promoter was observed in 15 of 23 (65.21%) cervical cancer tissue samples, 15 of 23 (65.21%) matched pericarcinomatous tissue samples and 5 of 17 (29.41%) normal cervical tissue samples (p<0.05). SALL3 mRNA expression was significantly lower in cervical cancer and pericarcinomatous tissues compared with normal cervical tissues (p<0.05). In all cervix tissue samples, HPV infection was positively associated with hypermethylation of the promoter region of SALL3 (p<0.05, r = 0.408), and the expression of SALL3 mRNA in HPV-positive tissues was lower than that in HPV-negative tissues (p<0.05). CONCLUSION The aberrant hypermethylation of SALL3 together with HPV involvement inactivated its function as a tumor suppressor and contributed to carcinogenesis in cervical cancer.
Collapse
Affiliation(s)
- Xing Wei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Shaohua Zhang
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Xi’an Medical College, Xi’an 710077, China
| | - Di Cao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Qian Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Juan Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Meili Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Li Wang
- Center of Maternal and Child Health Care, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Yang Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- * E-mail:
| |
Collapse
|
46
|
Wang X, Chen E, Yang X, Wang Y, Quan Z, Wu X, Luo C. 5-azacytidine inhibits the proliferation of bladder cancer cells via reversal of the aberrant hypermethylation of the hepaCAM gene. Oncol Rep 2015; 35:1375-84. [PMID: 26677113 DOI: 10.3892/or.2015.4492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte cell adhesion molecule (hepaCAM), a tumor-suppressor gene, is rarely expressed in bladder carcinoma. However, little is known concerning the mechanisms of low hepaCAM expression in bladder cancer. Abnormal hypermethylation in the promoter plays a crucial role in cancer by silencing tumor-suppressor genes, which is catalyzed by DNA methyltransferases (DNMTs). In the present study, a total of 31 bladder cancer and 22 adjacent tissues were assessed by immunohistochemistry to detect DNMT3A/3B and hepaCAM expression. Methylation of hepaCAM was determined by methylation‑specific polymerase chain reaction (MSP). The mRNA and protein levels of DNMT3A/3B and hepaCAM were determined by RT-PCR and western blot analysis after treatment with 5-azacytidine (AZAC). Following AZAC treatment, the proliferation of bladder cancer cells was detected by CCK-8 and colony formation assays. Cell cycle distribution was examined by flow cytometry. To further evaluate the tumor‑suppressive roles of AZAC and the involved mechanisms, the anti-tumorigenicity of AZAC was tested in vivo. The expression of DNMT3A/3B protein was markedly increased in the bladder carcinoma tissues (P<0.05), and had a negative linear correlation with hepaCAM expression in the same patients according to Pearson's analysis (r=-0.7176/-0.7127, P<0.05). The MSP results indicated that the hepaCAM gene was hypermethylated in three bladder cancer cell lines. Furthermore, we found that downregulation of DNMT3A/3B expression, after treatment with AZAC, reversed the hypermethylation and expression of hepaCAM in bladder cancer cells. In addition, AZAC inhibited the proliferation of bladder cancer cells and arrested cells at the G0/G1 phase. The in vivo results showed that expression of DNMT3A/3B and hepaCAM as well as tumor growth of nude mice were markedly altered which corresponded with the in vitro results. Due to the ability to reactivate expression of hepaCAM and inhibit growth of bladder cancer cells, AZAC may represent an effective treatment for bladder cancer.
Collapse
Affiliation(s)
- Xiaorong Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - E Chen
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Xue Yang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Yin Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
47
|
Zhang L, Long X. Association of BRCA1 promoter methylation with sporadic breast cancers: Evidence from 40 studies. Sci Rep 2015; 5:17869. [PMID: 26643130 PMCID: PMC4672329 DOI: 10.1038/srep17869] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/04/2015] [Indexed: 12/01/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) located at chromosome 17q12-21 is a classic tumor suppressor gene, and has been considered as a significant role in hereditary breast cancers. Moreover, numerous studies demonstrated the methylation status of CpG islands in the promoter regions of BRCA1 gene was aberrant in patients with sporadic breast tumors compared with healthy females or patients with benign diseases. However, these conclusions were not always consistent. Hence, a meta-analysis was performed to get a more precise estimate for these associations. Crude odds ratio with 95% confidence interval were used to assess the association of BRCA1 promoter methylation and the risk or clinicopathologic characteristics of breast cancers under fixed or random effect model. A total of 40 studies were eligible for this present study. We observed the frequency of BRCA1 promoter methylation was statistically significant higher in breast cancers than non-cancer controls. Furthermore, BRCA1 methylation was statistically associated with lymph node metastasis, histological grade 3, ER(-), PR(-), triple-negative phenotype, and decreased or lack levels of BRCA1 protein expression. In conclusion, this study indicated that BRCA1 promoter methylation appeared to be a useful predictive or prognostic biomarker for breast cancers in clinical assessment.
Collapse
Affiliation(s)
- Li Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghua Long
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
48
|
Qi J, Ronai ZA. Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat 2015; 23:1-11. [PMID: 26690337 DOI: 10.1016/j.drup.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Ubiquitin ligases (UBLs) are critical components of the ubiquitin proteasome system (UPS), which governs fundamental processes regulating normal cellular homeostasis, metabolism, and cell cycle in response to external stress signals and DNA damage. Among multiple steps of the UPS system required to regulate protein ubiquitination and stability, UBLs define specificity, as they recognize and interact with substrates in a temporally- and spatially-regulated manner. Such interactions are required for substrate modification by ubiquitin chains, which marks proteins for recognition and degradation by the proteasome or alters their subcellular localization or assembly into functional complexes. UBLs are often deregulated in cancer, altering substrate availability or activity in a manner that can promote cellular transformation. Such deregulation can occur at the epigenetic, genomic, or post-translational levels. Alterations in UBL can be used to predict their contributions, affecting tumor suppressors or oncogenes in select tumors. Better understanding of mechanisms underlying UBL expression and activities is expected to drive the development of next generation modulators that can serve as novel therapeutic modalities. This review summarizes our current understanding of UBL deregulation in cancer and highlights novel opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Jianfei Qi
- University of Maryland School of Medicine, Baltimore, 21201, USA.
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|