1
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Rubovszky G. The role of everolimus in metastatic breast cancer and possibilities of moving forward-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:68. [PMID: 39118946 PMCID: PMC11304436 DOI: 10.21037/atm-23-1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/17/2023] [Indexed: 08/10/2024]
Abstract
Background and Objective In hormone-receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer endocrine-based therapies are preferred over chemotherapy. One of the treatment options is the combination of everolimus with exemestane or other endocrine drug in later lines mainly based on progression-free survival (PFS) results of the phase 3 BOLERO-2 trial. Altogether, clinical trials did not prove an overall survival (OS) benefit and considerable side effects hampered its application in the day-by-day practice. In recent years CDK4/6-inhibitors became a first-choice combination partner to the endocrine treatment, everolimus still has a place within the treatment armamentarium. Although everolimus is a targeted drug, there is no accepted predictive biomarker and further patient selection is not possible. However, several directions can be defined how to optimally use everolimus. For update information on everolimus treatment in breast cancer I have performed a literature search. Methods I used the keywords "breast cancer" and "everolimus" and extended the search in PubMed from 01/01/2014 to 10/02/2023. I considered all phase 3 trials, the phase 1-2 trials with not repetitive information, studies with biomarker results and I also checked review articles to identify potential relevant other clinical trial reports. I also have made a search in clinicaltrials.gov for recently completed and ongoing trials. Key Content and Findings I summarized the search results in this concise and brief report focusing on main trial results and ongoing research with everolimus. Conclusions The most promising research directions seem to be further investigations for useable predictive biomarkers, for combinations with other targeted drugs (even in a triple combination) and for the feasibility of pharmacologically guided dosing method.
Collapse
Affiliation(s)
- Gabor Rubovszky
- Department of Thoracic and Abdominal Tumors and Clinical Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Van Cauwenberge J, Van Baelen K, Maetens M, Geukens T, Nguyen HL, Nevelsteen I, Smeets A, Deblander A, Neven P, Koolen S, Wildiers H, Punie K, Desmedt C. Reporting on patient's body mass index (BMI) in recent clinical trials for patients with breast cancer: a systematic review. Breast Cancer Res 2024; 26:81. [PMID: 38778365 PMCID: PMC11112918 DOI: 10.1186/s13058-024-01832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proportion of patients with breast cancer and obesity is increasing. While the therapeutic landscape of breast cancer has been expanding, we lack knowledge about the potential differential efficacy of most drugs according to the body mass index (BMI). Here, we conducted a systematic review on recent clinical drug trials to document the dosing regimen of recent drugs, the reporting of BMI and the possible exclusion of patients according to BMI, other adiposity measurements and/or diabetes (leading comorbidity of obesity). We further explored whether treatment efficacy was evaluated according to BMI. METHODS A search of Pubmed and ClinicalTrials.gov was performed to identify phase I-IV trials investigating novel systemic breast cancer treatments. Dosing regimens and exclusion based on BMI, adiposity measurements or diabetes, documentation of BMI and subgroup analyses according to BMI were assessed. RESULTS 495 trials evaluating 26 different drugs were included. Most of the drugs (21/26, 81%) were given in a fixed dose independent of patient weight. BMI was an exclusion criterion in 3 out of 495 trials. Patients with diabetes, the leading comorbidity of obesity, were excluded in 67/495 trials (13.5%). Distribution of patients according to BMI was mentioned in 8% of the manuscripts, subgroup analysis was performed in 2 trials. No other measures of adiposity/body composition were mentioned in any of the trials. Retrospective analyses on the impact of BMI were performed in 6 trials. CONCLUSIONS Patient adiposity is hardly considered as most novel drug treatments are given in a fixed dose. BMI is generally not reported in recent trials and few secondary analyses are performed. Given the prevalence of patients with obesity and the impact obesity can have on pharmacokinetics and cancer biology, more attention should be given by investigators and study sponsors to reporting patient's BMI and evaluating its impact on treatment efficacy and toxicity.
Collapse
Affiliation(s)
- Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ha Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Anne Deblander
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of Medical Oncology, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Herestraat 49, Box 808, 3000, Louvain, Belgium.
| |
Collapse
|
4
|
Xu D, Hu Z, Wang K, Hu S, Zhou Y, Zhang S, Chen Y, Pan T. Why does HER2-positive breast cancer metastasize to the brain and what can we do about it? Crit Rev Oncol Hematol 2024; 195:104269. [PMID: 38272149 DOI: 10.1016/j.critrevonc.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women. However, in the middle and late stages, some people develop distant metastases, which considerably lower the quality of life and life expectancy. The brain is one of the sites where metastasis frequently happens. According to epidemiological research, brain metastases occur at a late stage in 30-50% of patients with HER2-positive breast cancer, resulting in a poor prognosis. Additionally, few treatments are available for HER2-positive brain metastatic breast cancer, and the mortality rate is remarkable owing to the complexity of the brain's anatomical structure and physiological function. In this review, we described the stages of the brain metastasis of breast cancer, the relationship between the microenvironment and metastatic cancer cells, and the unique molecular and cellular mechanisms. It involves cancer cells migrating, invading, and adhering to the brain; penetrating the blood-brain barrier; interacting with brain cells; and activating signal pathways once inside the brain. Finally, we reviewed current clinically used treatment approaches for brain metastasis in HER2-positive breast cancer; summarized the traditional treatment, targeted treatment, immunotherapy, and other treatment modalities; compared the benefits and drawbacks of each approach; discussed treatment challenges; and emphasized the importance of identifying potential targets to improve patient survival rates and comprehend brain metastasis in breast cancer.
Collapse
Affiliation(s)
- Dongyan Xu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengfang Hu
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Kaiyue Wang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shiyao Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shizhen Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tao Pan
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
5
|
Terceiro LEL, Ikeogu NM, Lima MF, Edechi CA, Nickel BE, Fischer G, Leygue E, McManus KJ, Myal Y. Navigating the Blood-Brain Barrier: Challenges and Therapeutic Strategies in Breast Cancer Brain Metastases. Int J Mol Sci 2023; 24:12034. [PMID: 37569410 PMCID: PMC10418424 DOI: 10.3390/ijms241512034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood-brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.
Collapse
Affiliation(s)
- Lucas E. L. Terceiro
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Matheus F. Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Chidalu A. Edechi
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Barbara E. Nickel
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Gabor Fischer
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Yvonne Myal
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Jusino S, Fadul CE, Dillon P. Systematic review of the management of brain metastases from hormone receptor positive breast cancer. J Neurooncol 2023; 162:45-57. [PMID: 36884200 PMCID: PMC10049940 DOI: 10.1007/s11060-023-04276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION Brain metastases are a common cause of morbidity and mortality in patients with breast cancer. Local central nervous system (CNS) directed therapies are usually the first line treatment for breast cancer brain metastases (BCBM), but those must be followed by systemic therapies to achieve long-term benefit. Systemic therapy for hormone receptor (HR+) breast cancer has evolved in the last 10 years, but their role when brain metastases occur is uncertain. METHODS We performed a systematic review of the literature focused on management of HR+ BCBM by searching Medline/PubMed, EBSCO, and Cochrane databases. The PRISMA guidelines were used for systematic review. RESULTS Out of 807 articles identified, 98 fulfilled the inclusion criteria in their relevance to the management of HR+ BCBM. CONCLUSIONS Similar to brain metastases from other neoplasms, local CNS directed therapies are the first line treatment for HR+ BCBM. Although the quality of evidence is low, after local therapies, our review supports the combination of targeted and endocrine therapies for both CNS and systemic management. Upon exhaustion of targeted/endocrine therapies, case series and retrospective reports suggest that certain chemotherapy agents are active against HR+ BCBM. Early phase clinical trials for HR+ BCBM are ongoing, but there is a need for prospective randomized trials to guide management and improve patients' outcome.
Collapse
Affiliation(s)
| | - Camilo E Fadul
- Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrick Dillon
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Müller V, Bartsch R, Lin NU, Montemurro F, Pegram MD, Tolaney SM. Epidemiology, clinical outcomes, and unmet needs of patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases: A systematic literature review. Cancer Treat Rev 2023; 115:102527. [PMID: 36893691 DOI: 10.1016/j.ctrv.2023.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND There is an increasing need for developing effective therapies for managing intracranial disease in patients with human epidermal growth factor receptor 2-positive (HER2 +) metastatic breast cancer and brain metastases (BM), as this population is growing and has historically been excluded from large clinical trials. In this systematic literature review, we aimed to provide a comprehensive overview of the epidemiology, unmet needs, and global treatment landscape for patients with HER2 + metastatic breast cancer and BM, with a particular focus on heterogeneity across clinical trial designs in this setting. METHODS We conducted literature searches of PubMed and select congress websites up to March 2022 and filtered for publications with a significant focus on epidemiology, unmet needs, or treatment outcomes in patients with HER2 + metastatic breast cancer and BM. RESULTS Key clinical trials of HER2-targeting treatments for HER2 + metastatic breast cancer had varying eligibility criteria relating to BM, with only two trials-HER2CLIMB and DEBBRAH-including patients with both active and stable BM. We also observed variance across assessed central nervous system (CNS)-focused endpoints (CNS objective response rate vs CNS progression-free survival vs time to CNS progression) and robustness of statistical analysis (prespecified vs exploratory). CONCLUSIONS There is an unmet need for standardization of clinical trial design for patients with HER2 + metastatic breast cancer and BM, to aid the interpretation of the global treatment landscape and ensure patients with all types of BM can access effective treatments.
Collapse
Affiliation(s)
| | | | - Nancy U Lin
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Mark D Pegram
- Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
8
|
Trapani D, Aizer AA, Lin NU. Multidisciplinary Management of Brain Metastasis from Breast Cancer. Hematol Oncol Clin North Am 2023; 37:183-202. [PMID: 36435610 DOI: 10.1016/j.hoc.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The management of patients with breast cancer and brain metastases (BMs) is exquisitely multidisciplinary. Patients presenting with a symptomatic BM may be offered neurosurgical resection, followed by radiation. Stereotactic radiosurgery (SRS) is preferred over whole-brain radiotherapy (WBRT) in most patients presenting with a limited number of BMs, whereas WBRT with hippocampal-sparing and concomitant memantine is preferred for patients with multiple BMs. There is a growing role for systemic therapy, in some cases in lieu of local therapy, particularly in patients with HER2+ breast cancer.
Collapse
Affiliation(s)
- Dario Trapani
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Chen Q, Xiong J, Ma Y, Wei J, Liu C, Zhao Y. Systemic treatments for breast cancer brain metastasis. Front Oncol 2023; 12:1086821. [PMID: 36686840 PMCID: PMC9853531 DOI: 10.3389/fonc.2022.1086821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in females and BC brain metastasis (BCBM) is considered as the second most frequent brain metastasis. Although the advanced treatment has significantly prolonged the survival in BC patients, the prognosis of BCBM is still poor. The management of BCBM remains challenging. Systemic treatments are important to maintain control of central nervous system disease and improve patients' survival. BCBM medical treatment is a rapidly advancing area of research. With the emergence of new targeted drugs, more options are provided for the treatment of BM. This review features currently available BCBM treatment strategies and outlines novel drugs and ongoing clinical trials that may be available in the future. These treatment strategies are discovered to be more efficacious and potent, and present a paradigm shift in the management of BCBMs.
Collapse
Affiliation(s)
| | | | | | | | - Cuiwei Liu
- *Correspondence: Cuiwei Liu, ; Yanxia Zhao,
| | | |
Collapse
|
10
|
Abstract
Leptomeningeal metastases represent an aggressive stage of cancer with few durable treatment options. Improved understanding of cancer biology, neoplastic reliance on oncogenic driver mutations, and complex immune system interactions have resulted in an explosion in cancer-directed therapy in the last two decades to include small molecule inhibitors and immune checkpoint inhibitors. Most of these therapeutics are underexplored in patients with leptomeningeal metastases, limiting extrapolation of extracranial and even intracranial efficacy outcomes to the unique leptomeningeal space. Further confounding our interpretation of drug activity in the leptomeninges is an incomplete understanding of drug penetration through the blood-cerebrospinal fluid barrier of the choroid plexus. Nevertheless, a number of retrospective studies and promising prospective trials provide evidence of leptomeningeal activity of several small molecule and immune checkpoint inhibitors and underscore potential areas of further therapeutic development for patients harboring leptomeningeal disease.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Adrienne A Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Sun H, Xu J, Dai S, Ma Y, Sun T. Breast cancer brain metastasis: Current evidence and future directions. Cancer Med 2023; 12:1007-1024. [PMID: 35822637 PMCID: PMC9883555 DOI: 10.1002/cam4.5021] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common cancer in women and the second leading cause of cancer-related deaths after lung cancer. Metastasis of the central nervous system is a terrible event for breast cancer patients, affecting their survival and quality of life. Compared with hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer patients, brain metastases are more likely to affect patients with triple-negative breast cancer and human epidermal growth factor receptor 2-positive breast cancer. The treatment of breast cancer has improved greatly in the last two decades. However, brain metastases from breast cancer remain the leading cause of morbidity and mortality. Patients with breast cancer brain metastasis have been in an inferior position due to the lack of clinical research in this field, and they are often explicitly excluded from almost all clinical trials. The occurrence and progression of brain metastases will result in severe cognitive impairment and adverse physical consequences, so we must have a good understanding of the molecular mechanisms of breast cancer brain metastasis. In this article, we have retrieved the latest literature of molecules and pathways associated with breast cancer brain metastasis, summarized common therapy strategies, and discussed the prospects and clinical implications of targeting the molecules involved.
Collapse
Affiliation(s)
- Hongna Sun
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Junnan Xu
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Shuang Dai
- Department of Medical Oncology, Lung cancer center, West China HospitalSichuan UniversityChengduChina
| | - Yiwen Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Tao Sun
- Department of Medical Oncology, Liaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
12
|
Systemic Therapy for Patients with HER2-Positive Breast Cancer and Brain Metastases: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14225612. [PMID: 36428705 PMCID: PMC9688214 DOI: 10.3390/cancers14225612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
AIM Patients with HER2-positive (HER2+) metastatic breast cancer (mBC) develop brain metastases (BM) in up to 30% of cases. Treatment of patients with BM can consist of local treatment (surgery and/or radiotherapy) and/or systemic treatment. We undertook a systematic review and meta-analysis to determine the effect of different systemic therapies in patients with HER2+ mBC and BM. METHODS A systematic search was performed in the databases PubMed, Embase.com, Clarivate Analytics/Web of Science Core Collection and the Wiley/Cochrane Library. Eligible articles included prospective or retrospective studies reporting on the effect of systemic therapy on objective response rate (ORR) and/or median progression free survival (mPFS) in patients with HER2+ mBC and BM. The timeframe within the databases was from inception to 19 January 2022. Fixed-effects meta-analyses were used. Quality appraisal was performed using the ROBINS-I tool. RESULTS Fifty-one studies were included, involving 3118 patients. Most studies, which contained the largest patient numbers, but also often carried a moderate-serious risk of bias, investigated lapatinib and capecitabine (LC), trastuzumab-emtansine (T-DM1) or pyrotinib. The best quality data and/or highest ORR were described with tucatinib (combined with trastuzumab and capecitabine, TTC) and trastuzumab-deruxtecan (T-DXd). TTC demonstrated an ORR of 47.3% in patients with asymptomatic and/or active BM. T-DXd achieved a pooled ORR of 64% (95% CI 43-85%, I2 0%) in a heavily pretreated population with asymptomatic BM (3 studies, n = 96). CONCLUSIONS Though our meta-analysis should be interpreted with caution due to the heterogeneity of included studies and a related serious risk of bias, this review provides a comprehensive overview of all currently available systemic treatment options. T-Dxd and TTC that appear to constitute the most effective systemic therapy in patients with HER2+ mBC and BM, while pyrotinib might be an option in Asian patients.
Collapse
|
13
|
McGranahan TM, Bonm AV, Specht JM, Venur V, Lo SS. Management of Brain Metastases from Human Epidermal Growth Factor Receptor 2 Positive (HER2+) Breast Cancer. Cancers (Basel) 2022; 14:cancers14205136. [PMID: 36291922 PMCID: PMC9601150 DOI: 10.3390/cancers14205136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Treatment options for patients with Human Epidermal growth factor Receptor 2 positive (HER2+) metastatic breast cancer are rapidly changing, especially for patients with brain metastasis. Historically, treatment options for brain metastasis were focused on local therapies, radiation and surgery. There are now multiple targeted therapies that are able to treat brain metastasis and prolong the lives of patients with HER2+ breast cancer. With the growing number of treatment options, making medical decisions for patients and clinicians is more complicated. This paper reviews the treatment options for patients with HER2+ breast cancer brain metastasis and provides a simplified algorithm for when to consider delaying local treatments. Abstract In the past 5 years, the treatment options available to patients with HER2+ breast cancer brain metastasis (BCBM) have expanded. The longer survival of patients with HER2+ BCBM renders understanding the toxicities of local therapies even more important to consider. After reviewing the available literature for HER2 targeted systemic therapies as well as local therapies, we present a simplified algorithm for when to prioritize systemic therapies over local therapies in patients with HER2+ BCBM.
Collapse
Affiliation(s)
- Tresa M. McGranahan
- Department of Neurology, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alipi V. Bonm
- Virginia Mason Franciscan Health, Seattle, WA 98101, USA
| | - Jennifer M. Specht
- Division of Medical Oncology, Fred Hutchinson Cancer Center/University of Washington, Seattle, WA 98109, USA
| | - Vyshak Venur
- Department of Neurology, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Oncology, Fred Hutchinson Cancer Center/University of Washington, Seattle, WA 98109, USA
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
14
|
Avila J, Leone JP. Advances in the Management of Central Nervous System Metastases from Breast Cancer. Int J Mol Sci 2022; 23:12525. [PMID: 36293379 PMCID: PMC9604332 DOI: 10.3390/ijms232012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Central nervous system (CNS) metastases are common in breast cancer (BC) patients and are particularly relevant as new treatments for BC are prolonging survival. Here, we review advances in the treatment of CNS metastases from BC, including radiotherapy, systemic therapies, and the evolving role of immunotherapy. The use of radiotherapy and chemotherapy is the cornerstone of treatment for CNS metastases. However, new targeted therapies have recently been developed, including anti-HER2 agents and antibody-drug conjugates that have presented promising results for the treatment of these patients.
Collapse
Affiliation(s)
- Jorge Avila
- Department of Internal Medicine, St Elizabeth’s Medical Center, 736 Cambridge St., Boston, MA 02135, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - José Pablo Leone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
15
|
Curtaz CJ, Kiesel L, Meybohm P, Wöckel A, Burek M. Anti-Hormonal Therapy in Breast Cancer and Its Effect on the Blood-Brain Barrier. Cancers (Basel) 2022; 14:cancers14205132. [PMID: 36291916 PMCID: PMC9599962 DOI: 10.3390/cancers14205132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2−negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.
Collapse
Affiliation(s)
- Carolin J. Curtaz
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
- Correspondence:
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48143 Münster, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial. Nat Med 2022; 28:1840-1847. [PMID: 35941372 PMCID: PMC9499862 DOI: 10.1038/s41591-022-01935-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
Trastuzumab deruxtecan is an antibody–drug conjugate with high extracranial activity in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. We conducted the prospective, open-label, single-arm, phase 2 TUXEDO-1 trial. We enrolled patients aged ≥18 years with HER2-positive breast cancer and newly diagnosed untreated brain metastases or brain metastases progressing after previous local therapy, previous exposure to trastuzumab and pertuzumab and no indication for immediate local therapy. Patients received trastuzumab deruxtecan intravenously at the standard dose of 5.4 mg per kg bodyweight once every 3 weeks. The primary endpoint was intracranial response rate measured according to the response assessment in neuro-oncology brain metastases criteria. A Simon two-stage design was used to compare a null hypothesis of <26% response rate against an alternative of 61%. Fifteen patients were enrolled in the intention-to-treat population of patients who received at least one dose of study drug. Two patients (13.3%) had a complete intracranial response, nine (60%) had a partial intracranial response and three (20%) had stable disease as the best intracranial response, with a best overall intracranial response rate of 73.3% (95% confidential interval 48.1–89.1%), thus meeting the predefined primary outcome. No new safety signals were observed and global quality-of-life and cognitive functioning were maintained over the treatment duration. In the TUXEDO-1 trial (NCT04752059, EudraCT 2020-000981-41), trastuzumab deruxtecan showed a high intracranial response rate in patients with active brain metastases from HER2-positive breast cancer and should be considered as a treatment option in this setting. Findings from the TUXEDO-1 trial demonstrate efficacy of the antibody–drug conjugate trastuzumab deruxtecan for treatment of brain metastases in patients with HER2-positive breast cancer.
Collapse
|
17
|
Routh ED, Van Swearingen AED, Sambade MJ, Vensko S, McClure MB, Woodcock MG, Chai S, Cuaboy LA, Wheless A, Garrett A, Carey LA, Hoyle AP, Parker JS, Vincent BG, Anders CK. Comprehensive Analysis of the Immunogenomics of Triple-Negative Breast Cancer Brain Metastases From LCCC1419. Front Oncol 2022; 12:818693. [PMID: 35992833 PMCID: PMC9387304 DOI: 10.3389/fonc.2022.818693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is an aggressive variant of breast cancer that lacks the expression of estrogen and progesterone receptors (ER and PR) and HER2. Nearly 50% of patients with advanced TNBC will develop brain metastases (BrM), commonly with progressive extracranial disease. Immunotherapy has shown promise in the treatment of advanced TNBC; however, the immune contexture of BrM remains largely unknown. We conducted a comprehensive analysis of TNBC BrM and matched primary tumors to characterize the genomic and immune landscape of TNBC BrM to inform the development of immunotherapy strategies in this aggressive disease. Methods Whole-exome sequencing (WES) and RNA sequencing were conducted on formalin-fixed, paraffin-embedded samples of BrM and primary tumors of patients with clinical TNBC (n = 25, n = 9 matched pairs) from the LCCC1419 biobank at UNC—Chapel Hill. Matched blood was analyzed by DNA sequencing as a comparison for tumor WES for the identification of somatic variants. A comprehensive genomics assessment, including mutational and copy number alteration analyses, neoantigen prediction, and transcriptomic analysis of the tumor immune microenvironment were performed. Results Primary and BrM tissues were confirmed as TNBC (23/25 primaries, 16/17 BrM) by immunohistochemistry and of the basal intrinsic subtype (13/15 primaries and 16/19 BrM) by PAM50. Compared to primary tumors, BrM demonstrated a higher tumor mutational burden. TP53 was the most frequently mutated gene and was altered in 50% of the samples. Neoantigen prediction showed elevated cancer testis antigen- and endogenous retrovirus-derived MHC class I-binding peptides in both primary tumors and BrM and predicted that single-nucleotide variant (SNV)-derived peptides were significantly higher in BrM. BrM demonstrated a reduced immune gene signature expression, although a signature associated with fibroblast-associated wound healing was elevated in BrM. Metrics of T and B cell receptor diversity were also reduced in BrM. Conclusions BrM harbored higher mutational burden and SNV-derived neoantigen expression along with reduced immune gene signature expression relative to primary TNBC. Immune signatures correlated with improved survival, including T cell signatures. Further research will expand these findings to other breast cancer subtypes in the same biobank. Exploration of immunomodulatory approaches including vaccine applications and immune checkpoint inhibition to enhance anti-tumor immunity in TNBC BrM is warranted.
Collapse
Affiliation(s)
- Eric D. Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda E. D. Van Swearingen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maria J. Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marni B. McClure
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- National Cancer Center Research Institute, Tokyo, Japan
| | - Mark G. Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, United States
| | - Luz A. Cuaboy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy Wheless
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy Garrett
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa A. Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alan P. Hoyle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carey K. Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Carey K. Anders,
| |
Collapse
|
18
|
Mampre D, Mehkri Y, Rajkumar S, Sriram S, Hernandez J, Lucke-Wold B, Chandra V. Treatment of breast cancer brain metastases: radiotherapy and emerging preclinical approaches. DIAGNOSTICS AND THERAPEUTICS 2022; 1:25-38. [PMID: 35782783 PMCID: PMC9249118 DOI: 10.55976/dt.1202216523-36] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The breast is one of the common primary sites of brain metastases (BM). Radiotherapy for BM from breast cancer may include whole brain radiation therapy (WBRT), stereotactic radiosurgery (SRS), and stereotactic radiotherapy (SRT), but a consensus is difficult to reach because of the wide and varied protocols, indications, and outcomes of these interventions. Overall, dissemination of disease, patient functional status, and tumor size are all important factors in the decision of treatment with WBRT or SRS. Thus far, previous studies indicate that WBRT can improve tumor control compared to SRS, but increase side effects, however no randomized trials have compared the efficacy of these therapies in BM from breast cancer. Therapies targeting long non-coding RNAs and transcription factors, such as MALAT1, HOTAIR, lnc-BM, TGL1, and ATF3, have the potential to both prevent metastatic spread and treat BM with improved radiosensitivity. Given the propensity for HER2+ breast cancer to develop BM, the above-mentioned cell lines may represent an important target for future investigations, and the development of everolimus and pyrotinib are equally important.
Collapse
Affiliation(s)
- David Mampre
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | | | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Jairo Hernandez
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | | | - Vyshak Chandra
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
19
|
Intracranial Response Rate in Patients with Breast Cancer Brain Metastases after Systemic Therapy. Cancers (Basel) 2022; 14:cancers14040965. [PMID: 35205723 PMCID: PMC8869862 DOI: 10.3390/cancers14040965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary For many years, patients with breast cancer and brain metastases were excluded from participation in clinical trials. It was believed that anticancer drugs could not cross the blood–brain barrier. However, recent evidence strongly suggests that some drugs can act against brain metastases, with the greatest intracranial response rate reported in the case of capecitabine, neratinib plus capecitabine, trastuzumab deruxtecan and tucatinib plus trastuzumab and capecitabine. In this article, we discuss the achievements in systemic therapy of breast cancer patients with brain metastases. We stress on the newest clinical trial results which indicate tremendous progress in HER2-positive breast cancer. On the other hand, in patients with triple-negative breast cancer or hormone-receptor-positive brain metastases, much fewer compounds were discovered. Based on the presented results, patients with active brain metastases should be routinely included in clinical trials with novel agents. Abstract Brain metastases are detected in 5% of patients with breast cancer at diagnosis. The rate of brain metastases is higher in HER2-positive and triple-negative breast cancer patients (TNBC). In patients with metastatic breast cancer, the risk of brain metastases is much higher, with up to 50% of the patients having two aggressive biological breast cancer subtypes. The prognosis for such patients is poor. Until recently, little was known about the response to systemic therapy in brain metastases. The number of trials dedicated to breast cancer with brain metastases was scarce. Our review summarizes the current knowledge on this topic including very significant results of clinical trials which have been presented very recently. We focus on the intracranial response rate of modern drugs, including new antibody–drug conjugates, HER2- targeted tyrosine kinase inhibitors and other targeted therapies. We highlight the most effective and promising drugs. On the other hand, we also suggest that further efforts are needed to improve the prognosis, especially patients with TNBC and brain metastases. The information contained in this article can help oncologists make treatment-related decisions.
Collapse
|
20
|
Global management of brain metastasis from renal cell carcinoma. Crit Rev Oncol Hematol 2022; 171:103600. [DOI: 10.1016/j.critrevonc.2022.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
|
21
|
He DJ, Yu DQ, Wang QM, Yu ZY, Qi YH, Shao QJ, Chang H. Breast Cancer Subtypes and Mortality of Breast Cancer Patients With Brain Metastasis at Diagnosis: A Population-Based Study. INQUIRY: The Journal of Health Care Organization, Provision, and Financing 2021; 58:469580211055636. [PMID: 34789038 PMCID: PMC8619743 DOI: 10.1177/00469580211055636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Brain metastasis is an important cause of breast cancer-related death. Aim We evaluated the relationships between breast cancer subtype and prognosis
among patients with brain metastasis at the initial diagnosis. Methods The Surveillance, Epidemiology, and End Results database was searched to
identify patients with brain metastasis from breast cancer between 2010 and
2015. Multivariable Cox proportional hazard models were used to identify
factors that were associated with survival among patients with initial brain
metastases. The Kaplan–Meier method was used to compare survival outcomes
according to breast cancer subtype. Results Among 752 breast cancer patients with brain metastasis at diagnosis, 140
patients (18.6%) underwent primary surgery and 612 patients (81.4%) did not
undergo surgery, while 460 patients (61.2%) received chemotherapy and 292
patients (38.8%) did not receive chemotherapy. Multivariable analysis
revealed that, relative to HR+/HER2– breast cancer, HR–/HER2– breast cancer
was associated with significantly poorer overall survival (hazard ratio:
2.52, 95% confidence interval: 1.99–3.21), independent of age, sex, race,
marital status, insurance status, grade, liver involvement, lung
involvement, primary surgery, radiotherapy, and chemotherapy. The median
overall survival intervals were 12 months for HR+/HER2−, 19 months for
HR+/HER2+, 11 months for HR−/HER2+, and 6 months for HR–/HER2–
(P < .0001). Relative to HR+/HER2– breast cancer,
HR–/HER2– breast cancer was associated with a significantly higher risk of
mortality among patients, and the association was stronger among patients
who received chemotherapy (p for interaction = .005). Conclusions Breast cancer subtype significantly predicted overall survival among patients
with brain metastasis at diagnosis.
Collapse
Affiliation(s)
- Dong-Jie He
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - De-Quan Yu
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Qi-Ming Wang
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Zong-Yan Yu
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Yu-Hong Qi
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Qiu-Ju Shao
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Hao Chang
- Department of Radiation Oncology, Tangdu Hospital, 56697The Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| |
Collapse
|
22
|
Dong L, Lin S, Zhong L, Nian D, Li Y, Wang R, Zhou W, Weng X, Xu X. Evaluation of Tucatinib in HER2-Positive Breast Cancer Patients With Brain Metastases: A United States-Based Cost-Effectiveness Analysis. Clin Breast Cancer 2021; 22:e21-e29. [PMID: 34238670 DOI: 10.1016/j.clbc.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the cost-effectiveness of tucatinib in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) patients with brain metastases (BMs) and the subgroup of active BMs from the United States (US) payer perspective. MATERIALS AND METHODS A 3-state Markov model was developed to compare the cost-effectiveness of 2 regimens in HER2-positive BC patients with BMs: (1) tucatinib, trastuzumab, and capecitabine (TTC); (2) placebo, trastuzumab, and capecitabine (PTC). And subgroup analysis of active BMs was also performed. Lifetime costs, quality-adjusted life years (QALYs), incremental cost-effectiveness ratio (ICER) and incremental net-health benefit (INHB) were estimated. The willingness-to-pay (WTP) threshold was $200,000/QALY. The robustness of the model was tested by sensitivity analyses. Additional scenario analysis was also performed. RESULTS Compared with PTC, the ICER yielded by TTC was $418,007.01/QALY and the INHB was -1.08 QALYs in patients with BMs. In the subgroup of active BMs, the ICER and the INHB were $324,465.03/QALY and -0.71 QALY, respectively. The results were most sensitive to the cost of tucatinib. Probabilistic sensitivity analyses suggested that the cost-effective probability of TTC was low at the current WTP threshold in the patients with BMs and the subgroup of active BMs. CONCLUSION Tucatinib is unlikely to be cost-effective in HER2-positive BC patients with BMs from the US payer perspective but shows better economics in patients with active BMs. Selecting a favorable population, reducing the price of tucatinib or offering appropriate drug assistance policies might be considerable options to optimize the cost-effectiveness of tucatinib.
Collapse
Affiliation(s)
- Liangliang Dong
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China
| | - Shen Lin
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China
| | - Lixian Zhong
- College of Pharmacy, Texas A&M University, College Station, TX
| | - Dongni Nian
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China
| | - Yiyuan Li
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China
| | - Rixiong Wang
- Department of Medical Oncology, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China
| | - Wei Zhou
- Department of Human Resource, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China
| | - Xiuhua Weng
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China.
| | - Xiongwei Xu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Taijiang, Fuzhou, China.
| |
Collapse
|
23
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
24
|
Cali Daylan AE, Leone JP. Targeted Therapies for Breast Cancer Brain Metastases. Clin Breast Cancer 2021; 21:263-270. [PMID: 33384227 DOI: 10.1016/j.clbc.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The management of breast cancer, the most common cancer in the female population, has changed dramatically over years with the introduction of newer therapies. An increased incidence of brain metastases in recent years has created a challenge for oncologists because this population continues to have a poorer prognosis compared to metastatic breast cancer without central nervous system involvement. Historically, the exclusion of breast cancer patients with brain metastases from clinical trials has made treatment options even more limited. Nonetheless, more recently, this unmet need has been recognized by basic and clinical researchers and has led to the development of targeted therapies with better blood-brain barrier penetration and intracranial efficacy. Here we review targeted therapies directed at human epidermal growth factor receptor type 2 (HER2), vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 and 6 (CDK4/6) and poly(ADP-ribose) polymerase (PARP) for breast cancer patients with brain metastases. These therapies aim to be more efficacious and less toxic to represent a paradigm shift in the management of breast cancer brain metastases.
Collapse
Affiliation(s)
- Ayse Ece Cali Daylan
- Department of Medicine, St Elizabeth's Medical Center, Boston, MA; Department of Medicine, Tufts University School of Medicine, Boston, MA.
| | - José Pablo Leone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Gril B, Wei D, Zimmer AS, Robinson C, Khan I, Difilippantonio S, Overstreet MG, Steeg PS. HER2 antibody-drug conjugate controls growth of breast cancer brain metastases in hematogenous xenograft models, with heterogeneous blood-tumor barrier penetration unlinked to a passive marker. Neuro Oncol 2020; 22:1625-1636. [PMID: 32386414 PMCID: PMC7690367 DOI: 10.1093/neuonc/noaa118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brain metastases of HER2+ breast cancer persist as a clinical challenge. Many therapeutics directed at human epidermal growth factor receptor 2 (HER2) are antibodies or antibody-drug conjugates (ADCs), and their permeability through the blood-tumor barrier (BTB) is poorly understood. We investigated the efficacy of a biparatopic anti-HER2 antibody-tubulysin conjugate (bHER2-ATC) in preclinical models of brain metastases. METHODS The compound was evaluated in 2 hematogenous HER2+ brain metastasis mouse models, SUM190-BR and JIMT-1-BR. Endpoints included metastasis count, compound brain penetration, cancer cell proliferation, and apoptosis. RESULTS Biparatopic HER2-ATC 3 mg/kg prevented metastasis outgrowth in the JIMT-1-BR model. At 1 mg/kg bHER2-ATC, a 70% and 92% reduction in large and micrometastases was observed. For the SUM190-BR model, an 85% and 53% reduction, respectively, in large and micrometastases was observed at 3 mg/kg, without statistical significance. Proliferation was reduced in both models at the highest dose. At the endpoint, bHER2-ATC uptake covered a median of 4-6% and 7-17% of metastasis area in the JIMT-1-BR and SUM190-BR models, respectively. Maximal compound uptake in the models was 19% and 86% in JIMT-1-BR and SUM190-BR, respectively. Multiple lesions in both models demonstrated ADC uptake in the absence or low diffusion of Texas Red Dextran, a marker of paracellular permeability. Using in vitro BTB assays, the ADC was endocytosed into brain endothelial cells, identifying a potentially new mechanism of antibody permeability. CONCLUSIONS Biparatopic HER2-ATC significantly prevented JIMT-1-BR brain metastasis outgrowth and showed activity in the SUM190-BR model. The bHER2-ATC penetration into metastases that are impermeable to fluorescent dye suggested an endocytic mechanism of brain penetration.
Collapse
Affiliation(s)
- Brunilde Gril
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Debbie Wei
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alexandra S Zimmer
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Christina Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Imran Khan
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Patricia S Steeg
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
26
|
Pellerino A, Internò V, Mo F, Franchino F, Soffietti R, Rudà R. Management of Brain and Leptomeningeal Metastases from Breast Cancer. Int J Mol Sci 2020; 21:E8534. [PMID: 33198331 PMCID: PMC7698162 DOI: 10.3390/ijms21228534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The management of breast cancer (BC) has rapidly evolved in the last 20 years. The improvement of systemic therapy allows a remarkable control of extracranial disease. However, brain (BM) and leptomeningeal metastases (LM) are frequent complications of advanced BC and represent a challenging issue for clinicians. Some prognostic scales designed for metastatic BC have been employed to select fit patients for adequate therapy and enrollment in clinical trials. Different systemic drugs, such as targeted therapies with either monoclonal antibodies or small tyrosine kinase molecules, or modified chemotherapeutic agents are under investigation. Major aims are to improve the penetration of active drugs through the blood-brain barrier (BBB) or brain-tumor barrier (BTB), and establish the best sequence and timing of radiotherapy and systemic therapy to avoid neurocognitive impairment. Moreover, pharmacologic prevention is a new concept driven by the efficacy of targeted agents on macrometastases from specific molecular subgroups. This review aims to provide an overview of the clinical and molecular factors involved in the selection of patients for local and/or systemic therapy, as well as the results of clinical trials on advanced BC. Moreover, insight on promising therapeutic options and potential directions of future therapeutic targets against BBB and microenvironment are discussed.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Francesca Mo
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
27
|
Fares J, Kanojia D, Rashidi A, Ulasov I, Lesniak MS. Landscape of combination therapy trials in breast cancer brain metastasis. Int J Cancer 2020; 147:1939-1952. [PMID: 32086955 PMCID: PMC7423704 DOI: 10.1002/ijc.32937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Combination therapy has become a cornerstone in cancer treatment to potentiate therapeutic effectiveness and overcome drug resistance and metastasis. In this work, we explore combination trials in breast cancer brain metastasis (BCBM), highlighting deficiencies in trial design and underlining promising combination strategies. On October 31, 2019, we examined ClinicalTrials.gov for interventional and therapeutic clinical trials involving combination therapy for BCBM, without limiting for date or location. Information on trial characteristics was collected. Combination therapies used in trials were analyzed and explored in line with evidence from the medical literature. Sixty-five combination therapy trials were selected (n = 65), constituting less than 0.7% of all breast cancer trials. Most trials (62%) combined ≥2 chemotherapeutic agents. Chemotherapy with radiation was main-stay in 23% of trials. Trastuzumab was mostly used in combination (31%), followed by lapatinib (20%) and capecitabine (15%). Common strategies involved combining tyrosine kinase inhibitors with thymidylate synthase inhibitors (6 trials), dual HER-dimerization inhibitors (3 trials), microtubule inhibitors and tyrosine kinase inhibitors (3 trials), and HER-dimerization inhibitors and tyrosine kinase inhibitors (3 trials). The combination of tucatinib and capecitabine yielded the highest objective response rate (83%) in early phase trials. The triple combination of trastuzumab, tucatinib and capecitabine lowered the risk of disease progression or death by 52% in patients with HER2-positive BCBM. Combining therapeutic agents based on biological mechanisms is necessary to increase the effectiveness of available anti-cancer regimens. Significant survival benefit has yet to be achieved in future combination therapy trials. Enhancing drug delivery through blood-brain barrier permeable agents may potentiate the overall therapeutic outcomes.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- High Impact Cancer Research program, Harvard Medical School, Boston, MA, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Zimmer AS, Van Swearingen AED, Anders CK. HER2‐positive
breast cancer brain metastasis: A new and exciting landscape. Cancer Rep (Hoboken) 2020; 5:e1274. [PMID: 32881421 PMCID: PMC9124511 DOI: 10.1002/cnr2.1274] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Brain metastases (BrM) incidence is 25% to 50% in women with advanced human epidermal growth factor receptor 2 (HER2)‐positive breast cancer. Radiation and surgery are currently the main local treatment approaches for central nervous system (CNS) metastases. Systemic anti‐HER2 therapy following a diagnosis of BrM improves outcomes. Previous preclinical data has helped elucidate HER2 brain trophism, the blood‐brain/blood‐tumor barrier(s), and the brain tumor microenvironment, all of which can lead to development of novel therapeutic options. Recent findings Several anti‐HER2 agents are currently available and reviewed here, some of which have recently shown promising effects in BrM patients, specifically. New strategies driven by and focusing on brain metastasis‐specific genomics, immunotherapy, and preventive strategies have shown promising results and are under development. Conclusions The field of HER2+ breast cancer, particularly for BrM, continues to evolve as new therapeutic strategies show promising results in recent clinical trials. Increasing inclusion of patients with BrM in clinical studies, and a focus on assessing their outcomes both intracranially and extracranially, is changing the landscape for patients with HER2+ CNS metastases by demonstrating the ability of newer agents to improve outcomes.
Collapse
Affiliation(s)
| | | | - Carey K. Anders
- Duke Center for Brain and Spine MetastasisDuke Cancer Institute Durham North Carolina USA
| |
Collapse
|
29
|
Li Z, Qin Y, Chen P, Luo Q, Shi H, Jiang X. miR‑135b‑5p enhances the sensitivity of HER‑2 positive breast cancer to trastuzumab via binding to cyclin D2. Int J Mol Med 2020; 46:1514-1524. [PMID: 32700749 PMCID: PMC7447305 DOI: 10.3892/ijmm.2020.4681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Trastuzumab has led to a marked improvement in the outcomes of patients with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer. However, the effects of trastuzumab on HER-2-positive breast cancer are limited by the emergence of its cardiotoxicside effects. MicroRNA (miR)-135b-5p has been shown to inhibit tumor metastasis in breast cancer. The present study aimed to explore the effects of miR-135b-5p overexpression on the efficacy of trastuzumab in HER-2-positive breast cancer. Reverse transcription-quantitative PCR was performed to detect the levels of miR-135b-5p. Cell viability was evaluated with a Cell Counting Kit-8 assay. Annexin V/propidium iodide staining was employed to detect the number of apoptotic cells. Flow cytometry assay was performed to investigate the cell cycle. Western blotting was used to detect the expression levels of Bax, cleaved caspase-3, Bcl-2, cyclin D2, p27Kip1 and cyclin E1. Cell migration and invasion were detected by Transwell assay. Luciferase assays were conducted to identify the target gene of miR-135b-5p. In addition, an in vivo tumor xenograft model was established. miR-135b-5p agomir significantly enhanced the anti-proliferative effect of trastuzumab on HER-2-positive breast cancer cells via the induction of apoptosis, whereas the anti-metastatic effect of trastuzumab was enhanced by miR-135b-5p agomir treatment. Subsequently, luciferase assays indicated that cyclin D2 was the direct target of miR-135b-5p, whereas overexpression of the latter arrested cell cycleduring the G0/G1 phase. Moreover, miR-135b-5p agomir notably increased the antitumor effect of trastuzumab in vivo. The data demonstrated that miR-135b-5p sensitized HER-2-positive breast cancer cells to trastuzumab in vitro and in vivo by directly binding to cyclin D2. These results suggested that the combination of miR-135b-5p with trastuzumab may be a therapeutic strategy for patients with HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Zhilan Li
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yiyu Qin
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Peihong Chen
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiong Luo
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Haiyan Shi
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Xiudi Jiang
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
30
|
Ren D, Cheng H, Wang X, Vishnoi M, Teh BS, Rostomily R, Chang J, Wong ST, Zhao H. Emerging treatment strategies for breast cancer brain metastasis: from translational therapeutics to real-world experience. Ther Adv Med Oncol 2020; 12:1758835920936151. [PMID: 32655700 PMCID: PMC7328353 DOI: 10.1177/1758835920936151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic therapies for primary breast cancer have made great progress over the past two decades. However, oncologists confront an insidious and particularly difficult problem: in those patients with metastatic breast cancer, up to 50% of human epidermal growth factor 2 (HER2)-positive and 25-40% of triple-negative subtypes, brain metastases (BM) kill most of them. Fortunately, standard- of-care treatments for BM have improved rapidly, with a decline in whole brain radiation therapy and use of fractionated stereotactic radiosurgery as well as targeted therapies and immunotherapies. Meanwhile, advances in fundamental understanding of the basic biological processes of breast cancer BM (BCBM) have led to many novel experimental therapeutic strategies. In this review, we describe the most recent clinical treatment options and emerging experimental therapeutic strategies that have the potential to combat BCBM.
Collapse
Affiliation(s)
- Ding Ren
- Outpatient Department, PLA Navy NO.905 Hospital,
Shanghai, P.R. China
| | - Hao Cheng
- Department of Orthopedics, Tongji Hospital,
Wuhan, P.R. China
| | - Xin Wang
- Department of Systems Medicine and
Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine,
Houston, TX, USA
| | - Monika Vishnoi
- Department of Neurosurgery, Houston Methodist
Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Bin S. Teh
- Department of Radiation Oncology, Houston
Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Robert Rostomily
- Department of Neurosurgery, Houston Methodist
Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Jenny Chang
- Houston Methodist Cancer Center, Weill Cornell
Medicine, Houston, TX, USA
| | - Stephen T. Wong
- Department of Systems Medicine and
Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine,
6670 Bertner Ave, Houston, TX 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and
Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine,
6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
31
|
Kim JS, Kim IA. Evolving treatment strategies of brain metastases from breast cancer: current status and future direction. Ther Adv Med Oncol 2020; 12:1758835920936117. [PMID: 32636942 PMCID: PMC7313341 DOI: 10.1177/1758835920936117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in breast cancer treatment has improved patient survival, resulting in an increased incidence of brain metastasis (BM). Current treatment options for BM are limited and are generally used for palliative purposes. Historically, local treatment, consisting of radiotherapy and surgery, is the standard of care due to delivery limitations of systemic treatments through the blood-brain barrier. However, as novel biological mechanisms for tumors and BM have been discovered, several innovative systemic agents, such as small-molecular-targeted therapy and immunotherapy, have begun to change the treatment paradigm. In addition, efforts to maximize antitumor effects have been attempted using combination therapy, informed by tumor biology. In this comprehensive review, we will highlight various clinical trials investigating the treatment of BM in breast cancer patients, discuss presently available treatment options, and suggest potential directions of future therapeutic targets.
Collapse
Affiliation(s)
- Jae Sik Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Gumi-ro 173, 82 Beon-gil, Bundang gu, Seongnam, 13620, Republic of Korea
| |
Collapse
|
32
|
Yamashita D, Minata M, Ibrahim AN, Yamaguchi S, Coviello V, Bernstock JD, Harada S, Cerione RA, Tannous BA, La Motta C, Nakano I. Identification of ALDH1A3 as a Viable Therapeutic Target in Breast Cancer Metastasis-Initiating Cells. Mol Cancer Ther 2020; 19:1134-1147. [PMID: 32127468 PMCID: PMC7716183 DOI: 10.1158/1535-7163.mct-19-0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/03/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
The development of efficacious therapies targeting metastatic spread of breast cancer to the brain represents an unmet clinical need. Accordingly, an improved understanding of the molecular underpinnings of central nervous system spread and progression of breast cancer brain metastases (BCBM) is required. In this study, the clinical burden of disease in BCBM was investigated, as well as the role of aldehyde dehydrogenase 1A3 (ALDH1A3) in the metastatic cascade leading to BCBM development. Initial analysis of clinical survival trends for breast cancer and BCBM determined improvement of breast cancer survival rates; however, this has failed to positively affect the prognostic milestones of triple-negative breast cancer (TNBC) brain metastases (BM). ALDH1A3 and a representative epithelial-mesenchymal transition (EMT) gene signature (mesenchymal markers, CD44 or Vimentin) were compared in tumors derived from BM, lung metastases (LM), or bone metastases (BoM) of patients as well as mice after injection of TNBC cells. Selective elevation of the EMT signature and ALDH1A3 were observed in BM, unlike LM and BoM, especially in the tumor edge. Furthermore, ALDH1A3 was determined to play a role in BCBM establishment via regulation of circulating tumor cell adhesion and migration phases in the BCBM cascade. Validation through genetic and pharmacologic inhibition of ALDH1A3 via lentiviral shRNA knockdown and a novel small-molecule inhibitor demonstrated selective inhibition of BCBM formation with prolonged survival of tumor-bearing mice. Given the survival benefits via targeting ALDH1A3, it may prove an effective therapeutic strategy for BCBM prevention and/or treatment.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mutsuko Minata
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed N Ibrahim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shinobu Yamaguchi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vito Coviello
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuko Harada
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard A Cerione
- Department of Molecular Medicine VMC, Cornell University, Ithaca, New York
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
33
|
You H, Baluszek S, Kaminska B. Supportive roles of brain macrophages in CNS metastases and assessment of new approaches targeting their functions. Am J Cancer Res 2020; 10:2949-2964. [PMID: 32194848 PMCID: PMC7053204 DOI: 10.7150/thno.40783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Metastases to the central nervous system (CNS) occur frequently in adults and their frequency increases with the prolonged survival of cancer patients. Patients with CNS metastases have short survival, and modern therapeutics, while effective for extra-cranial cancers, do not reduce metastatic burden. Tumor cells attract and reprogram stromal cells, including tumor-associated macrophages that support cancer growth by promoting tissue remodeling, invasion, immunosuppression and metastasis. Specific roles of brain resident and infiltrating macrophages in creating a pre-metastatic niche for CNS invading cancer cells are less known. There are populations of CNS resident innate immune cells such as: parenchymal microglia and non-parenchymal, CNS border-associated macrophages that colonize CNS in early development and sustain its homeostasis. In this study we summarize available data on potential roles of different brain macrophages in most common brain metastases. We hypothesize that metastatic cancer cells exploit CNS macrophages and their cytoprotective mechanisms to create a pre-metastatic niche and facilitate metastatic growth. We assess current pharmacological strategies to manipulate functions of brain macrophages and hypothesize on their potential use in a therapy of CNS metastases. We conclude that the current data strongly support a notion that microglia, as well as non-parenchymal macrophages and peripheral infiltrating macrophages, are involved in multiple stages of CNS metastases. Understanding their contribution will lead to development of new therapeutic strategies.
Collapse
|
34
|
Erickson AW, Ghodrati F, Habbous S, Jerzak KJ, Sahgal A, Ahluwalia MS, Das S. HER2-targeted therapy prolongs survival in patients with HER2-positive breast cancer and intracranial metastatic disease: a systematic review and meta-analysis. Neurooncol Adv 2020; 2:vdaa136. [PMID: 33305268 PMCID: PMC7720818 DOI: 10.1093/noajnl/vdaa136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Intracranial metastatic disease (IMD) is a serious and known complication of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. The role of targeted therapy for patients with HER2-positive breast cancer and IMD remains unclear. In this study, we sought to evaluate the effect of HER2-targeted therapy on IMD from HER2-positive breast cancer. METHODS We searched MEDLINE, EMBASE, CENTRAL, and gray literature sources for interventional and observational studies reporting survival, response, and safety outcomes for patients with IMD receiving HER2-targeted therapy. We pooled outcomes through meta-analysis and examined confounder effects through forest plot stratification and meta-regression. Evidence quality was evaluated using GRADE (PROSPERO CRD42020161209). RESULTS A total of 97 studies (37 interventional and 60 observational) were included. HER2-targeted therapy was associated with prolonged overall survival (hazard ratio [HR] 0.47; 95% confidence interval [CI], 0.39-0.56) without significantly prolonged progression-free survival (HR 0.52; 95% CI, 0.27-1.02) versus non-targeted therapy; the intracranial objective response rate was 19% (95% CI, 12-27%), intracranial disease control rate 62% (95% CI, 55-69%), intracranial complete response rate 0% (95% CI, 0-0.01%), and grade 3+ adverse event rate 26% (95% CI, 11-45%). Risk of bias was high in 40% (39/97) of studies. CONCLUSION These findings support a potential role for systemic HER2-targeted therapy in the treatment of patients with IMD from HER2-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Anders W Erickson
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Farinaz Ghodrati
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Habbous
- Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada
| | - Katarzyna J Jerzak
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Manmeet S Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Timmermans-Sprang EPM, Mestemaker HM, Steenlage RR, Mol JA. Dasatinib inhibition of cSRC prevents the migration and metastasis of canine mammary cancer cells with enhanced Wnt and HER signalling. Vet Comp Oncol 2019; 17:413-426. [PMID: 31069942 DOI: 10.1111/vco.12490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/05/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor 2 (HER2) overexpression leads to aggressive mammary tumour growth. Although the prognosis of HER2+ tumours in humans is greatly improved using biologicals, therapy resistance, which may be caused by increased phosphatidyl-3-kinase (PI3K), rous sarcoma proto-oncogene (cSRC) or wingless-type MMTV integration site family (Wnt) activity, is a major concern. A recent analysis of 12 canine mammary cell lines showed an association between HER2/3 overexpression and phosphatase and tensin homologue (PTEN) deletion with elevated Wnt-signalling. Wnt-activity appeared to be insensitive to phosphatidyl-3-kinase (PI3K) inhibitors but sensitive to Src-I1. We hypothesized that Wnt activation, was caused by HER2/3-activated cSRC activation. The role of HER2/3 on Wnt signalling was investigated by silencing HER2/3 expression using specific small interfering RNA (siRNAs). Next, the effect of an epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor on Wnt activity and migration was investigated and compared to other tyrosine kinase inhibitors (TKIs) of related signalling pathways. Finally, two TKIs, a cSRC and a PI3K inhibitor, were investigated in a zebrafish xenograft model. Silencing of HER1-3 did not inhibit the intrinsic high Wnt activity, whereas the HER kinase inhibitor afatinib showed enhanced Wnt activity. The strongest inhibition of Wnt activity and cell viability and migration was shown by cSRC inhibitors, which also showed strong inhibition of cell viability and metastasis in a zebrafish xenograft model. HER2/3 overexpression or HER2/3-induced cSRC activation is not the cause of enhanced Wnt activity. However, inhibition of cSRC resulted in a strong inhibition of Wnt activity and cell migration and metastasis. Further studies are needed to unravel the mechanism of cSRC activation and cSRC inhibition to restore sensitivity to HER-inhibitors in HER2/3-positive breast cancer.
Collapse
Affiliation(s)
| | - Helena M Mestemaker
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Renske R Steenlage
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Phase II study of irinotecan and temozolomide in breast cancer patients with progressing central nervous system disease. Breast Cancer Res Treat 2019; 177:401-408. [PMID: 31172405 DOI: 10.1007/s10549-019-05309-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Breast cancer patients with progressing central nervous system (CNS) disease have limited treatment options. Few chemotherapy drugs with activity in breast cancer have well-documented CNS penetration. This phase 2 trial evaluated efficacy and safety of irinotecan 125 mg/m2 on days 1 and 15 with temozolomide 100 mg/m2 days 1-7 and days 15-21 of a 28 day cycle. METHODS Breast cancer patients of any biological subtype and progressing brain metastases and/or leptomeningeal disease (LMD) were eligible. The primary endpoint was CNS response rate. Secondary endpoints were clinical benefit rate (CBR), time to progression (TTP), and overall survival (OS). Imaging studies evaluating intracranial and extracranial response were performed every 8 weeks. RESULTS Thirty patients were evaluable for safety and efficacy. The most common hematologic and non-hematologic adverse events were neutropenia, and nausea and fatigue, respectively. There were two confirmed CNS partial responses (PR) and five patients with stable disease in the CNS ≥ 16 weeks, resulting in a 7% PR and 23% CBR. Median TTP was 2.3 months (range 13-444 days), and median OS from treatment initiation until death was 4.9 months (range 20-1023 days). Excluding patients with LMD, median TTP and OS were 3.1 and 5.6 months, respectively. Only one patient progressed systemically before CNS progression. CONCLUSIONS The combination of irinotecan and temozolomide was well tolerated, demonstrated some clinical activity across multiple breast cancer subtypes with progressing CNS disease, and offers a reasonable option for patients who are not candidates for further radiation or clinical trials.
Collapse
|
37
|
Ippen FM, Alvarez-Breckenridge CA, Kuter BM, Fink AL, Bihun IV, Lastrapes M, Penson T, Schmidt SP, Wojtkiewicz GR, Ning J, Subramanian M, Giobbie-Hurder A, Martinez-Lage M, Carter SL, Cahill DP, Wakimoto H, Brastianos PK. The Dual PI3K/mTOR Pathway Inhibitor GDC-0084 Achieves Antitumor Activity in PIK3CA-Mutant Breast Cancer Brain Metastases. Clin Cancer Res 2019; 25:3374-3383. [PMID: 30796030 PMCID: PMC6685218 DOI: 10.1158/1078-0432.ccr-18-3049] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/28/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Previous studies have shown that the PI3K/Akt/mTOR pathway is activated in up to 70% of breast cancer brain metastases, but there are no approved agents for affected patients. GDC-0084 is a brain penetrant, dual PI3K/mTOR inhibitor that has shown promising activity in a preclinical model of glioblastoma. The aim of this study was to analyze the efficacy of PI3K/mTOR blockade in breast cancer brain metastases models.Experimental Design: The efficacy of GDC-0084 was evaluated in PIK3CA-mutant and PIK3CA wild-type breast cancer cell lines and the isogenic pairs of PIK3CA wild-type and mutant (H1047R/+) MCF10A cells in vitro. In vitro studies included cell viability and apoptosis assays, cell-cycle analysis, and Western blots. In vivo, the effect of GDC-0084 was investigated in breast cancer brain metastasis xenograft mouse models and assessed by bioluminescent imaging and IHC. RESULTS In vitro, GDC-0084 considerably decreased cell viability, induced apoptosis, and inhibited phosphorylation of Akt and p70 S6 kinase in a dose-dependent manner in PIK3CA-mutant breast cancer brain metastatic cell lines. In contrast, GDC-0084 led only to growth inhibition in PIK3CA wild-type cell lines in vitro. In vivo, treatment with GDC-0084 markedly inhibited the growth of PIK3CA-mutant, with accompanying signaling changes, and not PIK3CA wild-type brain tumors. CONCLUSIONS The results of this study suggest that the brain-penetrant PI3K/mTOR targeting GDC-0084 is a promising treatment option for breast cancer brain metastases with dysregulated PI3K/mTOR signaling pathway conferred by activating PIK3CA mutations. A national clinical trial is planned to further investigate the role of this compound in patients with brain metastases.
Collapse
Affiliation(s)
- Franziska M Ippen
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Benjamin M Kuter
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandria L Fink
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ivanna V Bihun
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew Lastrapes
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tristan Penson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen P Schmidt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gregory R Wojtkiewicz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianfang Ning
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megha Subramanian
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott L Carter
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Priscilla K Brastianos
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
38
|
Fares J, Kanojia D, Cordero A, Rashidi A, Miska J, Schwartz CW, Savchuk S, Ahmed AU, Balyasnikova IV, Cristofanilli M, Gradishar WJ, Lesniak MS. Current state of clinical trials in breast cancer brain metastases. Neurooncol Pract 2019; 6:392-401. [PMID: 31555454 DOI: 10.1093/nop/npz003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer brain metastases (BCBM) are the final frontier in neuro-oncology for which more efficacious therapies are required. In this work, we explore clinical trials in BCBM, and determine the shortcomings in the development of new BCBM therapies to shed light on potential areas for enhancement. Methods On July 9, 2018, we searched ClinicalTrials.gov for all interventional and therapeutic clinical trials involving BCBM, without limiting for date or location. Information on trial characteristics, including phase, status, start and end dates, study design, primary endpoints, selection criteria, sample size, experimental interventions, results, and publications were collected and analyzed. Results Fifty-three trials fulfilled the selection criteria. Median trial duration across phases ranged between 3 and 6 years. More than half of the trials were conducted in the United States. Although 94% of the trials were in early phases (I-II), 20% of patients were in phase III trials. Two phase III trials were anteceded by phase II trials that were non-randomized; one reported positive results. Approximately one-third of the trials were completed, whereas 23% of trials were terminated early; mostly due to inadequate enrollment. Only 13% of all trials and 22% of completed trials had published results directly linked to their primary outcomes. Conclusions The low number of trials and accrual numbers, the lack of diversity, and the scarcity of published results represent the main troubles in clinical BCBM research. Optimization of BCBM trials is necessary to achieve effective therapies.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles W Schwartz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Solomiia Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Massimo Cristofanilli
- Lynn Sage Breast Cancer Program, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William J Gradishar
- Lynn Sage Breast Cancer Program, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
39
|
Hurvitz SA, O'Shaughnessy J, Mason G, Yardley DA, Jahanzeb M, Brufsky A, Rugo HS, Swain SM, Kaufman PA, Tripathy D, Chu L, Li H, Antao V, Cobleigh M. Central Nervous System Metastasis in Patients with HER2-Positive Metastatic Breast Cancer: Patient Characteristics, Treatment, and Survival from SystHERs. Clin Cancer Res 2018; 25:2433-2441. [PMID: 30593513 DOI: 10.1158/1078-0432.ccr-18-2366] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with HER2-positive metastatic breast cancer (MBC) with central nervous system (CNS) metastasis have a poor prognosis. We report treatments and outcomes in patients with HER2-positive MBC and CNS metastasis from the Systemic Therapies for HER2-positive Metastatic Breast Cancer Study (SystHERs). EXPERIMENTAL DESIGN SystHERs (NCT01615068) was a prospective, U.S.-based, observational registry of patients with newly diagnosed HER2-positive MBC. Study endpoints included treatment patterns, clinical outcomes, and patient-reported outcomes (PRO). RESULTS Among 977 eligible patients enrolled (2012-2016), CNS metastasis was observed in 87 (8.9%) at initial MBC diagnosis and 212 (21.7%) after diagnosis, and was not observed in 678 (69.4%) patients. White and younger patients, and those with recurrent MBC and hormone receptor-negative disease, had higher risk of CNS metastasis. Patients with CNS metastasis at diagnosis received first-line lapatinib more commonly (23.0% vs. 2.5%), and trastuzumab less commonly (70.1% vs. 92.8%), than patients without CNS metastasis at diagnosis. Risk of death was higher with CNS metastasis observed at or after diagnosis [median overall survival (OS) 30.2 and 38.3 months from MBC diagnosis, respectively] versus no CNS metastasis [median OS not estimable: HR 2.86; 95% confidence interval (CI), 2.05-4.00 and HR 1.94; 95% CI, 1.52-2.49]. Patients with versus without CNS metastasis at diagnosis had lower quality of life at enrollment. CONCLUSIONS Despite advances in HER2-targeted treatments, patients with CNS metastasis continue to have a poor prognosis and impaired quality of life. Observation of CNS metastasis appears to influence HER2-targeted treatment choice.
Collapse
Affiliation(s)
- Sara A Hurvitz
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology and US Oncology, Dallas, Texas
| | - Ginny Mason
- Inflammatory Breast Cancer Research Foundation, West Lafayette, Indiana
| | - Denise A Yardley
- Breast Cancer Research Program, Sarah Cannon Research Institute and Tennessee Oncology, Nashville, Tennessee
| | - Mohammad Jahanzeb
- Sylvester Comprehensive Cancer Center, University of Miami, Deerfield Campus, Deerfield Beach, Florida
| | - Adam Brufsky
- University of Pittsburgh Cancer Institute, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Sandra M Swain
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Peter A Kaufman
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Chu
- Genentech, Inc., South San Francisco, California
| | - Haocheng Li
- F. Hoffmann-La Roche, Mississauga, ON, Canada
| | | | - Melody Cobleigh
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
40
|
O'Sullivan CC, Smith KL. Therapeutic Considerations in Treating HER2-Positive Metastatic Breast Cancer. CURRENT BREAST CANCER REPORTS 2014; 6:169-182. [PMID: 25285186 DOI: 10.1007/s12609-014-0155-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in detection and treatment, metastatic breast cancer (MBC) remains the second highest cause of cancer-related death for women in the United States. Human epidermal growth factor receptor-2 (HER2) is amplified in 25-30% of breast cancers and is associated with aggressive disease and, historically, with poorer outcomes. The advent of trastuzumab, a monoclonal antibody to HER2, revolutionized the management of HER2-positive breast cancer (BC) in the metastatic and adjuvant settings. However, relapse despite adjuvant trastuzumab and resistance to trastuzumab in the metastatic setting remain substantial clinical problems for many patients with HER2-positive BC. As such, analyzing the mechanisms of trastuzumab resistance and developing new therapy to overcome trastuzumab resistance are research priorities. There has been progress, with the approval of three additional HER2-targeted agents in the last six years: lapatinib, pertuzumab, and ado-trastuzumab emtansine (T-DM1). Other HER2-targeted therapies, including neratinib and afatinib, are in clinical development, and trials of novel agents such as heat shock protein-90 (HSP90) inhibitors, phosphatidylinositol-3-kinase (PI3K) inhibitors, and HER2-targeted vaccines are ongoing. In addition to developing new therapy, research is addressing several unique challenges in the management of HER2-positive MBC. In this article, we discuss advances in the treatment of HER2-positive MBC, with a focus on novel HER2-targeted therapy and HER2-targeted agents recently approved by the United States Food and Drug Administration (FDA). Additionally, we also address the management of brain metastases (BM) and hormone receptor (HR) - positive, HER2-positive MBC.
Collapse
Affiliation(s)
- Ciara C O'Sullivan
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karen L Smith
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
41
|
Siegel MB, Van Swearingen AED, Anders CK. Approaches for optimal drug development and clinical trial design for breast cancer brain metastasis. ONCOLOGY (WILLISTON PARK, N.Y.) 2014; 28:579-585. [PMID: 25144277 PMCID: PMC5504407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|