1
|
Low MTUS1 Protein Expression Is Associated with Poor Survival in Patients with Colorectal Adenocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13061140. [PMID: 36980447 PMCID: PMC10047814 DOI: 10.3390/diagnostics13061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Microtubule-associated tumor suppressor 1 (MTUS1) is a novel tumor suppressor protein involved in cell proliferation, migration, and tumor growth. MTUS1 is thought to be downregulated in various human cancers and associated with poor prognosis. We evaluated the clinicopathologic significance and prognostic value of MTUS1 in colorectal adenocarcinoma. Methods: Immunohistochemical staining for MTUS1 was performed on tissue microarrays of 393 colorectal adenocarcinoma cases, and MTUS1 staining was classified into high- and low-expression groups. Then, we investigated the correlations between MTUS1 protein expression and various clinicopathological parameters and patient survival. Results: MTUS1 protein was expressed at various grade levels in the cytoplasm of tumor cells, which showed loss or decreased expression of MTUS1. A total of 253 cases (64.4%) were classified into the low MTUS1 protein expression group and 140 cases (35.6%) into the high MTUS1 expression group. A low level of MTUS1 protein significantly correlated with tumor size (p = 0.047), histological grade (p < 0.001), lymphovascular invasion (p < 0.001), perineural invasion (p = 0.047), and lymph node metastasis (p < 0.001). Survival analyses showed that patients with low MTUS1 protein expression had worse overall survival (p = 0.007, log-rank test) and worse recurrence-free survival (p = 0.019, log-rank test) than those with high MTUS1 expression. Conclusions: Low MTUS1 protein expression is associated with adverse clinicopathological characteristics and poor survival outcomes in patients with colorectal adenocarcinoma. These results suggest that MTUS1 functions as a tumor suppressor in colorectal adenocarcinoma and could be a potential prognostic biomarker.
Collapse
|
2
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
3
|
Cheng LY, Huang MS, Zhong HG, Ru HM, Mo SS, Wei CY, Su ZJ, Mo XW, Yan LH, Tang WZ. MTUS1 is a promising diagnostic and prognostic biomarker for colorectal cancer. World J Surg Oncol 2022; 20:257. [PMID: 35962436 PMCID: PMC9375397 DOI: 10.1186/s12957-022-02702-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background The morbidity and mortality of colorectal cancer (CRC) remain high, posing a serious threat to human life and health. The early diagnosis and prognostic evaluation of CRC are two major challenges in clinical practice. MTUS1 is considered a tumour suppressor and can play an important role in inhibiting cell proliferation, migration, and tumour growth. Moreover, the expression of MTUS1 is decreased in different human cancers, including CRC. However, the biological functions and molecular mechanisms of MTUS1 in CRC remain unclear. Methods In the present study, data from The Cancer Genome Atlas (TCGA) database were analysed using R statistical software (version 3.6.3.) to evaluate the expression of MTUS1 in tumour tissues and adjacent normal tissues using public databases such as the TIMER and Oncomine databases. Then, 38 clinical samples were collected, and qPCR was performed to verify MTUS1 expression. We also investigated the relationship between MTUS1 expression and clinicopathological characteristics and elucidated the diagnostic and prognostic value of MTUS1 in CRC. In addition, the correlation between MTUS1 expression and immune infiltration levels was identified using the TIMER and GEPIA databases. Furthermore, we constructed and analysed a PPI network and coexpression modules of MTUS1 to explore its molecular functions and mechanisms. Results CRC tissues exhibited lower levels of MTUS1 than normal tissues. The logistic regression analysis indicated that the expression of MTUS1 was associated with N stage, TNM stage, and neoplasm type. Moreover, CRC patients with low MTUS1 expression had poor overall survival (OS). Multivariate analysis revealed that the downregulation of MTUS1 was an independent prognostic factor and was correlated with poor OS in CRC patients. MTUS1 expression had good diagnostic value based on ROC analysis. Furthermore, we identified a group of potential MTUS1-interacting proteins and coexpressed genes. GO and KEGG enrichment analyses showed that MTUS1 was involved in multiple cancer-related signalling pathways. Moreover, the expression of MTUS1 was significantly related to the infiltration levels of multiple cells. Finally, MTUS1 expression was strongly correlated with various immune marker sets. Conclusions Our results indicated that MTUS1 is a promising biomarker for predicting the diagnosis and prognosis of CRC patients. MTUS1 can also become a new molecular target for tumour immunotherapy.
Collapse
Affiliation(s)
- Lin-Yao Cheng
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Mao-Sen Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hua-Ge Zhong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Ming Ru
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chun-Yin Wei
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Jie Su
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. .,Guangxi Key Laboratory of Colorectal Cancer Prevention and Treatment, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Luo Z, Nong B, Ma Y, Fang D. Autophagy related long non-coding RNA and breast cancer prognosis analysis and prognostic risk model establishment. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:58. [PMID: 35282059 PMCID: PMC8848359 DOI: 10.21037/atm-21-6251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
Background The role of autophagy-related long-stranded non-coding RNA (lncRNA) in breast cancer (BRCA) is unclear. We proposed to screen autophagy-related lncRNAs in BRCA and construct a prognostic risk assessment model to explore prognostic correlates. Methods We extracted BRCA lncRNAs from The Cancer Genome Atlas (TCGA) database and autophagy-related genes from the Human Autophagy Database (HADb), to screen for autophagy-related lncRNA pairs (ARLP) in BRCA. Single-factor Cox regression analysis and multi-factor Cox regression analysis were used to screen lncRNAs associated with BRCA prognosis, and risk models were established. We divided BRCA patients into high-risk and low-risk groups based on median risk scores. The single-sample gene set enrichment analysis (ssGSEA) algorithm was used to calculate the abundance of 28 immune cells in the TCGA-BRCA cohort and to analyze the relationship between the risk score and the level of immune cell infiltration by ARLP characteristics. Results Univariate Cox regression results showed that 42 ARLPs were significantly associated with overall survival (OS) in BRCA patients. Further multifactorial analysis showed that a total of 11 lncRNAs, including SEMA3B-AS1, ST7-AS1, AL136295.7, AC090912.1, LINC01871, AL136531.1, AC024361.1, OTUD6B-AS1, LINC01786, AL122010.1, and MAPT-AS1, were prognostically independent influencers of BRCA. The risk model developed was further validated as a new independent prognostic factor for BRCA patients by Kaplan-Meier (KM) analysis, univariate and multivariate Cox regression analysis to calculate the risk score. In addition, the results of the relationship between risk score and immune infiltration showed that low risk score was associated with T-lymphocyte subpopulation. Conclusions Our study suggested that a risk model consisting of 11 autophagy-related lncRNAs can be used to assess the prognosis of BRCA patients.
Collapse
Affiliation(s)
- Zhizhai Luo
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Binbin Nong
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanfei Ma
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
5
|
Nasedkin A, Ermilova I, Swenson J. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:927-940. [PMID: 34215900 PMCID: PMC8448678 DOI: 10.1007/s00249-021-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
6
|
Wang H, Jiang X, Cheng Y, Ren H, Hu Y, Zhang Y, Su H, Zou Z, Wang Q, Liu Z, Zhang J, Qiu X. MZT2A promotes NSCLC viability and invasion by increasing Akt phosphorylation via the MOZART2 domain. Cancer Sci 2021; 112:2210-2222. [PMID: 33754417 PMCID: PMC8177791 DOI: 10.1111/cas.14900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitotic spindle organizing protein 2A (MZT2A) is localized at the centrosome and regulates microtubule nucleation activity in cells. This study assessed the role of MZT2A in non-small-cell lung cancer (NSCLC). Differential MZT2A expression was bioinformatically assessed using TCGA database, the GEPIA database, and Kaplan-Meier survival data to determine the association between MZT2A expression and NSCLC prognosis. Furthermore, NSCLC tissue specimens were evaluated by immunohistochemistry. MZT2A was overexpressed or knocked down in NSCLC cells using cDNA and siRNA, respectively. The cells were subjected to various assays and treated with the selective Akt inhibitor LY294002 or co-transfected with galectin-3-binding protein (LGALS3BP) siRNA. MZT2A mRNA and protein levels were upregulated in NSCLC lesions and MTZ2A expression was associated with poor NSCLC prognosis. MZT2A protein was also highly expressed in NSCLC cells compared with the expression in normal bronchial cells. MZT2A expression promoted NSCLC cell viability and invasion, whereas MTZ2A siRNA had the opposite effect on NSCLC cells in vitro. At the protein level, MZT2A induced Akt phosphorylation, promoting NSCLC proliferation and invasion (but the selective Akt inhibitor blocked these effects) through upregulation of LGALS3BP via the MTZ2A MOZART2 domain, whereas LGALS3BP siRNA suppressed MTZ2A activity in NSCLC cells. The limited in vivo experiments confirmed the in vitro data. In conclusion, MZT2A exhibits oncogenic activity by activating LGALS3BP and Akt in NSCLC. Future studies will assess MTZ2A as a biomarker to predict NSCLC prognosis or as a target in the control of NSCLC progression.
Collapse
Affiliation(s)
- Huanxi Wang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Xizi Jiang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yu Cheng
- Department of PathologyChina Medical UniversityShenyangChina
- Departemt of PathologyCancer Research LaboratoryChengde Medical CollegeChengdeChina
| | - Hongjiu Ren
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yujiao Hu
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yao Zhang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Hongbo Su
- Department of PathologyChina Medical UniversityShenyangChina
| | - Zifang Zou
- Department of Thoracic SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Qiongzi Wang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Zongang Liu
- Department of Thoracic SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Jiameng Zhang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Xueshan Qiu
- Department of PathologyChina Medical UniversityShenyangChina
- Department of PathologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
7
|
Haykal MM, Rodrigues-Ferreira S, Nahmias C. Microtubule-Associated Protein ATIP3, an Emerging Target for Personalized Medicine in Breast Cancer. Cells 2021; 10:cells10051080. [PMID: 34062782 PMCID: PMC8147298 DOI: 10.3390/cells10051080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of death by malignancy among women worldwide. Clinical data and molecular characteristics of breast tumors are essential to guide clinician’s therapeutic decisions. In the new era of precision medicine, that aims at personalizing the treatment for each patient, there is urgent need to identify robust companion biomarkers for new targeted therapies. This review focuses on ATIP3, a potent anti-cancer protein encoded by candidate tumor suppressor gene MTUS1, whose expression levels are markedly down-regulated in breast cancer. ATIP3 is a microtubule-associated protein identified both as a prognostic biomarker of patient survival and a predictive biomarker of breast tumors response to taxane-based chemotherapy. We present here recent studies pointing out ATIP3 as an emerging anti-cancer protein and a potential companion biomarker to be combined with future personalized therapy against ATIP3-deficient breast cancer.
Collapse
Affiliation(s)
- Maria M. Haykal
- Institut Gustave Roussy, Université Paris-Saclay, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 94800 Villejuif, France; (M.M.H.); (S.R.-F.)
- LERMIT Laboratory, 92296 Chatenay-Malabry, France
| | - Sylvie Rodrigues-Ferreira
- Institut Gustave Roussy, Université Paris-Saclay, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 94800 Villejuif, France; (M.M.H.); (S.R.-F.)
- LERMIT Laboratory, 92296 Chatenay-Malabry, France
- Inovarion, 75005 Paris, France
| | - Clara Nahmias
- Institut Gustave Roussy, Université Paris-Saclay, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 94800 Villejuif, France; (M.M.H.); (S.R.-F.)
- LERMIT Laboratory, 92296 Chatenay-Malabry, France
- Correspondence:
| |
Collapse
|
8
|
MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal 2021; 83:109979. [PMID: 33744419 DOI: 10.1016/j.cellsig.2021.109979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed malignancy. MicroRNAs (miRNAs) play important roles in the tumorigenesis, metastasis and progression of BC. Forkhead Box M1 (FOXM1) oncogenic transcription factor is involved in events considered as hallmarks of cancer. However, the specific mechanism by which FOXM1 exerts its oncogenic effects remains unclear and little is known about its effects on the regulation of miRNA expression. We have found that FOXM1 is upregulated in breast cancer cells and that its expression is associated with shortened overall survival and poor prognosis in patients with BC. Using microarray technology, we assessed the expression profiles of 752 miRNAs in highly aggressive and metastatic triple negative breast cancer (TNBC) cells in response to FOXM1 knockdown and identified 13 differentialy expressed miRNAs (3 miRNAs upregulated and 10 miRNAs down-regulated). We validated the results of the miRNA expression profile in two different TNBC cells by performing qRT-PCR and identified that miR-186-5p and miR-200b-5p were consistently down- or up-regulated, respectively, after knockdown of FOXM1. We further performed KEGG pathway analysis and GO enrichment analysis for miR-186-5p and miR-200b-5p, and identified that these miRNAs are associated with cancer development and progression involving toll-like receptor signaling, cell cycle, AMPK, p53 and NF-kappa B signaling pathways. Taken together, our results suggest that increased FOXM1 expression is associated with poor patient survival and leads to induction of oncomiR miR-186-5p expression and tumor-suppressor inhibition miR-200b-5p, suggesting that the FOXM1/miRNA signaling pathway may contribute to poor patient prognosis and may be a potential therapeutic target in TNBC.
Collapse
|
9
|
Ge LP, Jin X, Yang YS, Liu XY, Shao ZM, Di GH, Jiang YZ. Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor. Oncogene 2021; 40:2323-2334. [PMID: 33654196 DOI: 10.1038/s41388-021-01655-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 02/03/2023]
Abstract
Progression of triple-negative breast cancer (TNBC) constitutes a major unresolved clinical challenge, and effective targeted therapies are lacking. Because microtubule dynamics play pivotal roles in breast cancer metastasis, we performed RNA sequencing on 245 samples from TNBC patients to characterize the landscape of microtubule-associated proteins (MAPs). Here, our transcriptome analyses revealed that low expression of one MAP, tektin4, indicated poor patient outcomes. Tektin4 loss led to a marked increase in TNBC migration, invasion, and metastasis and a decrease in microtubule stability. Mechanistically, we identified a novel microtubule-associated complex containing tektin4 and histone deacetylase 6 (HDAC6). Tektin4 loss increased the interaction between HDAC6 and α-tubulin, thus decreasing microtubule stability through HDAC6-mediated tubulin deacetylation. Significantly, we found that tektin4 loss sensitized TNBC cells, xenograft models, and patient-derived organoid models to the HDAC6-selective inhibitor ACY1215. Furthermore, tektin4 expression levels were positively correlated with microtubule stability levels in clinical samples. Together, our findings uncover a metastasis suppressor function of tektin4 and support clinical development of HDAC6 inhibition as a new therapeutic strategy for tektin4-deficient TNBC patients.
Collapse
Affiliation(s)
- Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Yun-Song Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Xi-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Human Phenome Institute, Fudan University, Shanghai, PR China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Gen-Hong Di
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, PR China. .,Key Laboratory of Breast Cancer in Shanghai, Shanghai, PR China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China. .,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, PR China.
| |
Collapse
|
10
|
Nassef MZ, Melnik D, Kopp S, Sahana J, Infanger M, Lützenberg R, Relja B, Wehland M, Grimm D, Krüger M. Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. Int J Mol Sci 2020; 21:ijms21197345. [PMID: 33027908 PMCID: PMC7582256 DOI: 10.3390/ijms21197345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in females. The incidence has risen dramatically during recent decades. Dismissed as an "unsolved problem of the last century", breast cancer still represents a health burden with no effective solution identified so far. Microgravity (µg) research might be an unusual method to combat the disease, but cancer biologists decided to harness the power of µg as an exceptional method to increase efficacy and precision of future breast cancer therapies. Numerous studies have indicated that µg has a great impact on cancer cells; by influencing proliferation, survival, and migration, it shifts breast cancer cells toward a less aggressive phenotype. In addition, through the de novo generation of tumor spheroids, µg research provides a reliable in vitro 3D tumor model for preclinical cancer drug development and to study various processes of cancer progression. In summary, µg has become an important tool in understanding and influencing breast cancer biology.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Ronald Lützenberg
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, 39120 Magdeburg, Germany;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6757471
| |
Collapse
|
11
|
Rodrigues-Ferreira S, Nehlig A, Kacem M, Nahmias C. ATIP3 deficiency facilitates intracellular accumulation of paclitaxel to reduce cancer cell migration and lymph node metastasis in breast cancer patients. Sci Rep 2020; 10:13217. [PMID: 32764625 PMCID: PMC7411068 DOI: 10.1038/s41598-020-70142-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Taxane-based chemotherapy is frequently used in neoadjuvant treatment of breast cancer patients to reduce tumor growth and lymph node metastasis. However, few patients benefit from chemotherapy and predictive biomarkers of chemoresistance are needed. The microtubule-associated protein ATIP3 has recently been identified as a predictive biomarker whose low levels in breast tumors are associated with increased sensitivity to chemotherapy. In this study, we investigated whether ATIP3 deficiency may impact the effects of paclitaxel on cancer cell migration and lymph node metastasis. Expression levels of ATIP3 were analyzed in a cohort of 133 breast cancer patients and classified according to lymph node positivity following neoadjuvant chemotherapy. Results showed that low ATIP3 levels are associated with reduced axillary lymph node metastasis. At the functional level, ATIP3 depletion increases cell migration, front-rear polarity and microtubule dynamics at the plus ends, but paradoxically sensitizes cancer cells to the inhibitory effects of paclitaxel on these processes. ATIP3 silencing concomitantly increases the incorporation of fluorescent derivative of Taxol along the microtubule lattice. Together our results support a model in which alterations of microtubule plus ends dynamics in ATIP3-deficient cells may favor intracellular accumulation of paclitaxel, thereby accounting for increased breast tumor sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Gustave Roussy, 94800, Villejuif, France
- LabEx LERMIT, University Paris Saclay, 92296, Châtenay-Malabry, France
- Inovarion SAS, 75005, Paris, France
| | - Anne Nehlig
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Gustave Roussy, 94800, Villejuif, France
- LabEx LERMIT, University Paris Saclay, 92296, Châtenay-Malabry, France
| | - Mariem Kacem
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Gustave Roussy, 94800, Villejuif, France
- LabEx LERMIT, University Paris Saclay, 92296, Châtenay-Malabry, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Gustave Roussy, 94800, Villejuif, France.
- LabEx LERMIT, University Paris Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
12
|
Altonsy MO, Ganguly A, Amrein M, Surmanowicz P, Li SS, Lauzon GJ, Mydlarski PR. Beta3-Tubulin is Critical for Microtubule Dynamics, Cell Cycle Regulation, and Spontaneous Release of Microvesicles in Human Malignant Melanoma Cells (A375). Int J Mol Sci 2020; 21:ijms21051656. [PMID: 32121295 PMCID: PMC7084453 DOI: 10.3390/ijms21051656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy. We studied the effects of β3-tubulin gene silencing on MTs dynamics, cell cycle, and MVs release in human malignant melanoma cells (A375). The knockdown of β3-tubulin induced G2/M cell cycle arrest, impaired MTs dynamics, and reduced spontaneous MVs release. Additional studies are therefore required to elucidate the pathophysiologic and therapeutic role of β3-tubulin in melanoma.
Collapse
Affiliation(s)
- Mohammed O. Altonsy
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Department of Zoology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Anutosh Ganguly
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Philip Surmanowicz
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
| | - Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gilles J. Lauzon
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
| | - P. Régine Mydlarski
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB T2T 5C7, Canada; (M.O.A.); (A.G.); (P.S.); (G.J.L.)
- Correspondence: ; Tel.: +1-403-955-8345; Fax: +1-403-955-8200
| |
Collapse
|