1
|
Annoor A, Rahman Marzan M, Iqbal RB, Ferdausi A, Yasmeen A, Tarannum P, John P. Alpelisib-Induced Hyperglycemia in PIK3CA+ Breast Cancer Patients. South Med J 2025; 118:97-101. [PMID: 39883146 DOI: 10.14423/smj.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Alpelisib is a phosphatidylinositol 3-kinase inhibitor approved by the US Food and Drug Administration for the treatment of hormone receptor-positive metastatic breast cancer with PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α) mutation. In recent years a number of adverse effects have been observed to be associated with this therapy, the most notable of which is hyperglycemia. A literature search was conducted to include case studies, case series, systematic reviews, and meta-analyses within the last 10 years that evaluated patients with PIK3CA-mutated hormone receptor-positive, human epidermal growth factor receptor 2 negative metastatic breast cancer. Hyperglycemia was a notable adverse effect that was found in the majority of patients without preexisting diabetes mellitus. Patients with hyperglycemia were in the high-risk groups of advanced age, prediabetes mellitus or history of insulin resistance, increased body mass index, increased blood monocyte count, and increased hemoglobin A1c (glycated hemoglobin). Hyperglycemia was manageable with antihyperglycemic agents and dose modification/discontinuation of alpelisib with no severe progression. Other notable adverse effects were rash, stomatitis, diarrhea, pneumonitis, reduced appetite, elevated liver enzymes, nausea, fatigue, and rare reports of diabetic ketoacidosis. This literature review aims to highlight the incidence and risk factors of alpelisib-induced hyperglycemia in greater depth.
Collapse
Affiliation(s)
- Anika Annoor
- From Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas
| | | | | | | | - Arowa Yasmeen
- the Department of Computer Science, University of Dallas, Dallas, Texas
| | - Parisa Tarannum
- the GPST1 East Kent Hospitals University NHS Foundation Trust, East Kent, UK
| | | |
Collapse
|
2
|
Moore HN, Goncalves MD, Johnston AM, Mayer EL, Rugo HS, Gradishar WJ, Zylla DM, Bergenstal RM. Effective Strategies for the Prevention and Mitigation of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia: Optimizing Patient Care. Clin Breast Cancer 2025; 25:1-11. [PMID: 39462728 DOI: 10.1016/j.clbc.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Hyperglycemia is a common adverse event (AE) associated with phosphatidylinositol-3-kinase inhibitors (PI3Kis) and considered an on-target effect. Presence of hyperglycemia is associated with poor outcomes in patients with cancer, and there is need for further refinement of hyperglycemia prevention and mitigation strategies in patients receiving PI3Kis. In this review, the authors highlight effective strategies for preventing PI3Ki-induced hyperglycemia before and during treatment as well as hyperglycemia management. Prior to initiating treatment with PI3Ki, identify baseline risk factors of patients at increased risk for developing hyperglycemia, which include older age, obesity, and glycosylated hemoglobin (HbA1c) 5.7%-6.4% (prediabetes or Type 2 diabetes). To prevent new-onset hyperglycemia, optimize blood glucose, and recommend a low-carbohydrate (60-130 g/day) diet along with regular exercise to all patients prior to initiating the PI3Ki. Prophylactic metformin may be considered in all patients starting a PI3Ki with HbA1c ≤6.4%. Although existing recommendations support monitoring fasting blood glucose (FBG) once weekly (twice-weekly for intermediate-risk, daily for high-risk patients) and HbA1c every 3 months upon initiation of PI3Ki, more frequent FBG monitoring may be considered for prompt detection of hyperglycemia. Experts also recommend considering postprandial glucose monitoring because it is an early indicator of glucose intolerance. If hyperglycemia develops, metformin (first-line) and/or sodium glucose co-transporter 2 inhibitors or thiazolidinediones (second-/third-line) are the preferred agents; consider early referral to an endocrinologist. In conclusion, hyperglycemia is a common but manageable AE associated with PI3Kis. Multidisciplinary approach to the prevention, monitoring, and management of hyperglycemia optimizes patient care and allows patients to maintain therapy on PI3Ki.
Collapse
Affiliation(s)
| | | | | | - Erica L Mayer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hope S Rugo
- Department of Medicine (Hematology/Oncology), University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Dylan M Zylla
- The Cancer Research Center, HealthPartners Institute, Minneapolis, MN
| | | |
Collapse
|
3
|
Li Q, Li H, Zhu R, Cho WCS, Yao X, Leung FP, Tse G, Leung LK, Wong WT. TRPV2 calcium channel promotes breast cancer progression potential by activating autophagy. Cancer Cell Int 2024; 24:324. [PMID: 39334351 PMCID: PMC11438410 DOI: 10.1186/s12935-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer, the most prevalent and aggressive tumor affecting women, requires identification of disease determinants to facilitate the development of effective therapeutic strategies. Transient receptor potential vanilloid 2 (TRPV2), an ion channel highly permeable for calcium (Ca2+), is implicated in physiological and pathological processes. Nevertheless, the role of TRPV2 in breast cancer remains poorly elucidated. In this study, we found high levels of TRPV2 expression associated with advanced malignancy, thereby suggesting its potential as a biomarker for breast cancer staging. We demonstrated that TRPV2 activation promotes breast cancer cell proliferation, migration, and invasion, while silencing of TRPV2 suppresses breast cancer progression, highlighting the oncogenic role of TRPV2. Moreover, we reveal that TRPV2 facilitates cancer progression by modulating the CaMKKβ/AMPK/ULK1-autophagic axis through mediating calcium influx, providing new insights into TRPV2 as a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Qing Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Huixian Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ruiwen Zhu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Fung Ping Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, 999077, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lai Kwok Leung
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
4
|
Brennan RJ, Jenkinson S, Brown A, Delaunois A, Dumotier B, Pannirselvam M, Rao M, Ribeiro LR, Schmidt F, Sibony A, Timsit Y, Sales VT, Armstrong D, Lagrutta A, Mittlestadt SW, Naven R, Peri R, Roberts S, Vergis JM, Valentin JP. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov 2024; 23:525-545. [PMID: 38773351 DOI: 10.1038/s41573-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohan Rao
- Janssen Research & Development, San Diego, CA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Lyn Rosenbrier Ribeiro
- UCB Biopharma, Braine-l'Alleud, Belgium
- AstraZeneca, Cambridge, UK
- Grunenthal, Berkshire, UK
| | | | | | - Yoav Timsit
- Novartis Biomedical Research, Cambridge, MA, USA
- Blueprint Medicines, Cambridge, MA, USA
| | | | - Duncan Armstrong
- Novartis Biomedical Research, Cambridge, MA, USA
- Armstrong Pharmacology, Macclesfield, UK
| | | | | | - Russell Naven
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Ravikumar Peri
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Alexion Pharmaceuticals, Wilmington, DE, USA
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - James M Vergis
- Faegre Drinker Biddle and Reath, LLP, Washington, DC, USA
| | | |
Collapse
|
5
|
Gallagher EJ, Moore H, Lacouture ME, Dent SF, Farooki A, Goncalves MD, Isaacs C, Johnston A, Juric D, Quandt Z, Spring L, Berman B, Decker M, Hortobagyi GN, Kaffenberger BH, Kwong BY, Pluard T, Rao R, Schwartzberg L, Broder MS. Managing hyperglycemia and rash associated with alpelisib: expert consensus recommendations using the Delphi technique. NPJ Breast Cancer 2024; 10:12. [PMID: 38297009 PMCID: PMC10831089 DOI: 10.1038/s41523-024-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Hyperglycemia and rash are expected but challenging adverse events of phosphatidylinositol-3-kinase inhibition (such as with alpelisib). Two modified Delphi panels were conducted to provide consensus recommendations for managing hyperglycemia and rash in patients taking alpelisib. Experts rated the appropriateness of interventions on a 1-to-9 scale; median scores and dispersion were used to classify the levels of agreement. Per the hyperglycemia panel, it is appropriate to start alpelisib in patients with HbA1c 6.5% (diabetes) to <8%, or at highest risk for developing hyperglycemia, if they have a pre-treatment endocrinology consult. Recommend prophylactic metformin in patients with baseline HbA1c 5.7% to 6.4%. Metformin is the preferred first-line anti-hyperglycemic agent. Per the rash panel, initiate prophylactic nonsedating H1 antihistamines in patients starting alpelisib. Nonsedating H1 antihistamines and topical steroids are the preferred initial management for rash. In addition to clinical trial evidence, these recommendations will help address gaps encountered in clinical practice.
Collapse
Affiliation(s)
- Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Heather Moore
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Mario E Lacouture
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan F Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Azeez Farooki
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zoe Quandt
- School of Medicine, University of California, San Francisco, CA, USA
| | - Laura Spring
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian Berman
- University of Miami School of Medicine and Center for Clinical and Cosmetic Research, Aventura, FL, USA
| | - Melanie Decker
- Woodland Memorial Hospital, Woodland, CA, and Kaiser Permanente, Sacramento, CA, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Bernice Y Kwong
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy Pluard
- St. Luke's Hospital Koontz Center for Advanced Breast Cancer, Kansas City, MO, USA
| | - Ruta Rao
- Rush Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
6
|
Das S, Halder D, Jeyaprakash RS. Computational-guided approach for identification of PI3K alpha inhibitor in the treatment of hepatocellular carcinoma by virtual screening and water map analysis. J Biomol Struct Dyn 2024:1-23. [PMID: 38197431 DOI: 10.1080/07391102.2023.2300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly disorders, with a relative survival rate of 36% in the last 5 years. After an extensive literature survey and pathophysiology analysis, PI3Kα was found to be a promising biological target as PIK3CA gene upregulation was observed in HCC, resulting in the loss of apoptosis of cells, which leads to uncontrollable growth and proliferation. Due to superior selectivity and promising therapeutic activity, the PI3K-targeted molecule library was selected, and the ligand preparation was executed. The study mainly focused on e-pharmacophore development, virtual screening and receptor-ligand docking analysis. Then, MMGBSA and ADME prediction analysis was performed with the top 10 molecules; for further analysis of ligand-receptor binding affinity at the catalytic binding site, induced fit docking was performed with the top two molecules. The analysis of quantum chemical stability descriptors, i.e., frontier molecular orbital analysis, was performed followed by molecular dynamics simulation of 100 ns to better understand the ligand-receptor binding. In this study, water map analysis played a significant role in the hit optimization and analysis of the thermodynamic properties of the receptor-ligand complex. The two hit molecules K894-1435 and K894-1045 represented superior docking scores, enhanced stability, and inhibitory action targeting Valine 851 amino acid residue at the catalytic binding site. Hence, the study has significance for the quest for selective PI3Kα inhibitors through the process of hit-to-lead optimization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - R S Jeyaprakash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Katsuragawa‐Taminishi Y, Mizutani S, Kawaji‐Kanayama Y, Onishi A, Okamoto H, Isa R, Mizuhara K, Muramatsu A, Fujino T, Tsukamoto T, Shimura Y, Taniwaki M, Miyagawa‐Hayashino A, Konishi E, Kuroda J. Triple targeting of RSK, AKT, and S6K as pivotal downstream effectors of PDPK1 by TAS0612 in B-cell lymphomas. Cancer Sci 2023; 114:4691-4705. [PMID: 37840379 PMCID: PMC10728023 DOI: 10.1111/cas.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.
Collapse
Affiliation(s)
- Yoko Katsuragawa‐Taminishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuka Kawaji‐Kanayama
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Akio Onishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Haruya Okamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
- Department of Blood TransfusionKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | | | - Eiichi Konishi
- Department of Surgical PathologyKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
9
|
Wang Y, Hacking SM, Li Z, Graff SL, Yang D, Tan L, Liu F, Zhang T, Zhao Z, Luo S, Du P, Jia S, Cheng L. Triple-negative Breast Carcinoma With Apocrine and Histiocytoid Features: A Clinicopathologic and Molecular Study of 18 Cases. Am J Surg Pathol 2023; 47:1011-1018. [PMID: 37310016 DOI: 10.1097/pas.0000000000002073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogenous group of tumors. Most TNBCs are high-grade aggressive tumors, but a minority of TNBCs are not high grade, with relatively indolent behavior and specific morphologic and molecular features. We performed a clinicopathologic and molecular assessment of 18 non-high-grade TNBCs with apocrine and/or histiocytoid features. All were grade I or II with low Ki-67 (≤20%). Thirteen (72%) showed apocrine features, and 5 (28%) showed histiocytoid and lobular features. In all, 17/18 expressed the androgen receptor, and 13/13 expressed gross cystic disease fluid protein 15. Four (22.2%) patients were treated with neoadjuvant chemotherapy, but none achieved a pathologic complete response. In all, 2/18 patients (11%) had lymph node metastasis at the time of surgery. None of the cases had a recurrence or disease-specific death, with an average follow-up time of 38 months. Thirteen cases were profiled by targeted capture-based next-generation DNA sequencing. Genomic alterations (GAs) were most significant for PI3K-PKB/Akt pathway (69%) genes, including PIK3R1 (23%), PIK3CA (38%), and PTEN (23%), and RTK-RAS pathway (62%) including FGFR4 (46%) and ERBB2 (15%). TP53 GA was seen in only 31% of patients. Our findings support those on high-grade TNBCs with apocrine and/or histiocytoid features as a clinicopathologic and genetically distinct subgroup of TNBC. They can be defined by features including tubule formation, rare mitosis, low Ki-67 (≤20%), triple-negative status, expression of androgen receptor and/or gross cystic disease fluid protein 15, and GA in the PI3K-PKB/Akt and/or RTK-RAS pathway. These tumors are not sensitive to chemotherapy but have favorable clinical behavior. Tumor subtype definitions are the first step to implementing future trial designs to select these patients.
Collapse
Affiliation(s)
- Yihong Wang
- Departments of Pathology and Laboratory Medicine
| | | | - Zaibo Li
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH
| | - Stephanie L Graff
- Medical Oncology, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Lu Tan
- Predicine Inc., Hayward, CA
| | | | | | | | | | - Pan Du
- Predicine Inc., Hayward, CA
| | | | - Liang Cheng
- Departments of Pathology and Laboratory Medicine
| |
Collapse
|
10
|
Mehra A, Sangwan R, Mehra A, Sharma S, Wadhwa P, Mittal A. Therapeutic charisma of imidazo [2,1-b] [1,3,4]-thiadiazole analogues: a patent review. Pharm Pat Anal 2023; 12:177-191. [PMID: 37671908 DOI: 10.4155/ppa-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Imidazothiadiazole was discovered around the 1950s era, containing an imidazole ring fused to a thiadiazole ring. Imidazothiadiazole exhibit versatile pharmacological properties including anticonvulsant, cardiotonic, anti-inflammatory, diuretic, antifungal, antibacterial and anticancer. Despite of the being discovered in 1950s, the imidazothiadiazole derivatives are unable to being processed to clinical trials because of lack of bioavailability, efficacy and cytotoxicity. The recent patent literature focused on structural modification of imidazothiadiazole core to overcome these problems. This review limelight a disease-centric perspective on patented imidazothiadiazole from 2015-2023 and to understand their mechanism of action in related diseases. The relevant granted patent applications were located using patent databases, Google Patents, USPTO, EPO, WIPO, Espacenet and Lens.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Aryan Mehra
- Department of Mechanical Engineering, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Shivani Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, Punjab, 144411, India
| |
Collapse
|
11
|
Aarhus TI, Bjørnstad F, Wolowczyk C, Larsen KU, Rognstad L, Leithaug T, Unger A, Habenberger P, Wolf A, Bjørkøy G, Pridans C, Eickhoff J, Klebl B, Hoff BH, Sundby E. Synthesis and Development of Highly Selective Pyrrolo[2,3- d]pyrimidine CSF1R Inhibitors Targeting the Autoinhibited Form. J Med Chem 2023; 66:6959-6980. [PMID: 37191268 DOI: 10.1021/acs.jmedchem.3c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Colony-stimulating factor-1 receptor (CSF1R) is a receptor tyrosine kinase that controls the differentiation and maintenance of most tissue-resident macrophages, and the inhibition of CSF1R has been suggested as a possible therapy for a range of human disorders. Herein, we present the synthesis, development, and structure-activity relationship of a series of highly selective pyrrolo[2,3-d]pyrimidines, showing subnanomolar enzymatic inhibition of this receptor and with excellent selectivity toward other kinases in the platelet-derived growth factor receptor (PDGFR) family. The crystal structure of the protein and 23 revealed that the binding conformation of the protein is DFG-out-like. The most promising compounds in this series were profiled for cellular potency and subjected to pharmacokinetic profiling and in vivo stability, indicating that this compound class could be relevant in a potential disease setting. Additionally, these compounds inhibited primarily the autoinhibited form of the receptor, contrasting the behavior of pexidartinib, which could explain the exquisite selectivity of these structures.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Frithjof Bjørnstad
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Line Rognstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Trygve Leithaug
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Alexander Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bård H Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eirik Sundby
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
12
|
Yeong J, Goh D, Tan TJ, Tan B, Sivaraj H, Koh V, Tatt Lim JC, Joseph CR, Ye J, Yong Tay TK, Chan Lau M, Chan JY, Ng C, Iqbal J, Teh BT, Dent RA, Tan PH. Early Triple-Negative Breast Cancers in a Singapore Cohort Exhibit High PIK3CA Mutation Rates Associated With Low PD-L1 Expression. Mod Pathol 2023; 36:100056. [PMID: 36788078 DOI: 10.1016/j.modpat.2022.100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Mutations in the PI3K pathway, particularly PIK3CA, were reported to be intimately associated with triple-negative breast cancer (TNBC) progression and the development of treatment resistance. We profiled PIK3CA and other genes on 166 early-stage TNBC tumors from Singapore for comparison to publicly available TNBC cohorts. These tumors were profiled transcriptionally using a NanoString panel of immune genes and multiplex immunohistochemistry, then manually scored for PD-L1-positivity using 2 clinically relevant clones, SP142 and 22C3. We discovered a higher rate of PIK3CA mutations in our TNBC cohort than in non-Asian cohorts, along with TP53, BRCA1, PTPN11, and MAP3K1 alterations. PIK3CA mutations did not affect overall or recurrence-free survival, and when compared with PIK3CAWT tumors, there were no differences in immune infiltration. Using 2 clinically approved antibodies, PIK3CAmut tumors were associated with PD-L1 negativity. Analysis of comutation frequencies further revealed that PIK3CA mutations tended to be accompanied by MAP kinase pathway mutation. The mechanism and impact of PIK3CA alterations on the TNBC tumor immune microenvironment and PD-L1 positivity warrant further study.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Tira J Tan
- Duke-NUS Medical School, Singapore; National Cancer Centre Singapore, Singapore
| | - Benedict Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Valerie Koh
- Division of Pathology, Singapore General Hospital, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Mai Chan Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Cedric Ng
- National Cancer Centre Singapore, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | | | | | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; KK Women's and Children's Hospital, Singapore; Luma Women's Imaging Centre/Medical Centre, Singapore.
| |
Collapse
|
13
|
Burnette SE, Poehlein E, Lee HJ, Force J, Westbrook K, Moore HN. Evaluation of alpelisib-induced hyperglycemia prophylaxis and associated risk factors in PIK3CA-mutated hormone-receptor positive, human epidermal growth factor-2 negative advanced breast cancer. Breast Cancer Res Treat 2023; 197:369-376. [PMID: 36409396 DOI: 10.1007/s10549-022-06798-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE SOLAR-1 investigated alpelisib-fulvestrant (ALP + FLV) in patients with HR + /HER2-, PIK3CA-mutated advanced breast cancer and demonstrated a clinically significant increase in all-grade and grade (G) 3-4 hyperglycemia (HG) compared to placebo-fulvestrant. Given high rates of HG, a preventative protocol and identification of associated risk factors was implemented. METHODS This single-center, retrospective study included patients receiving ALP + FLV. One week before ALP initiation, patients started an insulin-sensitizer. Patients had fasting plasma glucose (FPG) levels drawn day 8, 15, 28, then monthly. Primary outcome was incidence of G2-4 HG by day 28. Risk factors assessed included age, BMI, FPG, and HbA1c. Number of risk factors were compared between patients with and without HG. RESULTS Sixteen women were included with median age of 59 years. The cohort was 69% White, 25% Black, 75% with BMI ≥ 25 kg/m2, and 50% with history of diabetes. By day 28, 9 patients (56%) had G2-4 HG, with only 3 (19%) G3 and zero G4. Patients with G2-4 HG had a median of 2 risk factors compared to only 1 if no HG (p = 0.03). 5 patients (31%) required a temporary hold of ALP and 3 (19%) required dose reduction due to HG. 13 patients permanently discontinued ALP-9 due to disease progression and 4 from an adverse event (only 1 HG). CONCLUSION Implementation of a HG prophylaxis protocol with ALP in a single-center study demonstrated fewer G3-4 HG events compared to that seen in SOLAR-1 (19% vs 36.6%). An increase in HG-associated risk factors correlated with a higher incidence of G2-4 HG.
Collapse
Affiliation(s)
- Sarah E Burnette
- Department of Pharmacy, Atrium Health Wake Forest Baptist, 1 Medical Center Blvd, Winston Salem, NC, 27157, USA
| | - Emily Poehlein
- Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, Hock Plaza Suite 1102, Durham, NC, 27710, USA
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, Hock Plaza Suite 1102, Durham, NC, 27710, USA
| | - Jeremy Force
- Department of Breast Oncology, Duke University Cancer Institute, Durham, NC, USA
| | - Kelly Westbrook
- Department of Breast Oncology, Duke University Cancer Institute, Durham, NC, USA
| | - Heather N Moore
- Department of Pharmacy, Duke University Medical Center, 20 Duke Medicine Circle, Clinic 2-1, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Huang Y, Qiang Y, Jian L, Jin Z, Lang Q, Sheng C, Shichong Z, Cai C. Ultrasonic Features and Molecular Subtype Predict Somatic Mutations in TP53 and PIK3CA Genes in Breast Cancer. Acad Radiol 2022; 29:e261-e270. [PMID: 35450798 DOI: 10.1016/j.acra.2022.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023]
Abstract
RATIONALE AND OBJECTIVES To predict mutations in TP53 and PIK3CA genes in breast cancer using ultrasound (US) signatures and clinicopathology. MATERIALS AND METHODS In this study, we developed and trained a model in 386 breast cancer patients to predict TP53 and PIK3CA mutations. The clinicopathological and US characteristics (including two-dimensional and color Doppler US) were investigated. Statistically significant variables were used to build predictive models, then a combined model was developed using the multivariate logistic regression analysis. RESULTS Univariate and multivariate analyses revealed that calcifications on US was an independent predictor of TP53 mutation (p < 0.05), whereas diameter on US and US type were independent predictors of PIK3CA mutation in breast cancer (all p < 0.05). Meanwhile, Luminal B/Human epidermal growth factor receptor two-positive (HER2+), HER2+/estrogen receptor-negative (ER-), and triple-negative breast cancer (TNBC) subtypes were strong predictors of TP53 mutation (odds ratio [OR] = 3.13, 3.18, 3.44, respectively, all p < 0.05). HER2+/ER- and TNBC subtypes were negative predictors of PIK3CA mutation (OR = 0.223, 0.241, respectively, all p < 0.05). The areas under curves (AUCs) for PIK3CA mutation in the training set increased from 0.553-0.610 to 0.741 in the multivariate model that combined US features and molecular subtype, with a sensitivity and specificity of 80.6% and 58.7%, respectively. The application of the multivariate model in the validation set achieved acceptable discrimination (AUC = 0.715). For TP53 mutation, the AUC was 0.653. CONCLUSION US is a non-invasive modality to recognize the presence of TP53 and PIK3CA mutation. The models combined with US features and molecular subtype have implications for the practical application of predicting gene mutation for individual decision-making regarding treatment planning.
Collapse
Affiliation(s)
- Yunxia Huang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Sanghai, 200032, China
| | - Yu Qiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le Jian
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Sanghai, 200032, China
| | - Zhou Jin
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Sanghai, 200032, China
| | - Qian Lang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Sanghai, 200032, China
| | - Chen Sheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhou Shichong
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Sanghai, 200032, China.
| | - Chang Cai
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Xuhui, Sanghai, 200032, China
| |
Collapse
|
15
|
Akinnusi PA, Olubode SO, Adebesin AO, Nana TA, Shodehinde SA. Discovery of Promising Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), Estrogen Receptor (ER), and Phosphatidylinositol-3-kinase a (PI3Ka) for Personalized Breast Cancer Treatment. Cancer Inform 2022; 21:11769351221127862. [PMID: 36213305 PMCID: PMC9536107 DOI: 10.1177/11769351221127862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the rapid developments and advancements to improve treatments, Breast cancer remains one of the deadliest health challenges and the most frequently diagnosed tumor. One of the major problems with treatment is the unique difference that each cancerous cell exhibits. As a result, treatment of breast cancer has now become more personalized based on the specific features of the tumor such as overexpression of growth factor receptors (Epidermal growth factor receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2)), hormone receptors (Human Estrogen receptor alpha (ER)) and kinases involved in pivotal signaling associated with growth (Phosphatidylinositol 3-kinase (PI3K)). Several chemotherapeutic agents have been developed to curb the menace, but the associated adverse drug effects cannot be overlooked. To this end, this study employed a molecular modeling approach to identify novel compounds of natural origin that can potentially antagonize the receptors (mentioned above) associated with the pathophysiology of breast cancer and at the same time pose very little or no side effects. The results of the molecular model of biological interactions between a library of 118 anthocyanins and the binding pockets of the protein targets identified 5 compounds (Pelargonin, Delphinidin 3-O-rutinoside, Malvin, Cyanidin-3-(6-acetylglucoside), and Peonidin 3-O-rutinoside) with good binding affinities to the protein targets. Further MM-GBSA calculations returned high binding energies. The specific molecular interactions between the compounds and the targets were analyzed and reported herein. Also, all the compounds exhibited good pharmacokinetic profiles and are therefore recommended for further analyses as they could be explored as new treatment options for a broad range and personalized breast cancer treatments.
Collapse
Affiliation(s)
- Precious A Akinnusi
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria,Precious A Akinnusi, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo 342111, Nigeria.
| | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ayomide O Adebesin
- Department of Biochemistry, Cancer Genomics Lab, Covenant University, Ota, Nigeria
| | | | | |
Collapse
|
16
|
Fuso P, Muratore M, D’Angelo T, Paris I, Carbognin L, Tiberi G, Pavese F, Duranti S, Orlandi A, Tortora G, Scambia G, Fabi A. PI3K Inhibitors in Advanced Breast Cancer: The Past, The Present, New Challenges and Future Perspectives. Cancers (Basel) 2022; 14:2161. [PMID: 35565291 PMCID: PMC9103982 DOI: 10.3390/cancers14092161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death in the female population and despite significant efforts made in diagnostic approaches and treatment strategies adopted for advanced breast cancer, the disease still remains incurable. Therefore, development of more effective systemic treatments constitutes a crucial need. Recently, several clinical trials were performed to find innovative predictive biomarkers and to improve the outcome of metastatic breast cancer through innovative therapeutic algorithms. In the pathogenesis of breast cancer, the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of rapamycin (mTOR) axis is a key regulator of cell proliferation, growth, survival, metabolism, and motility, making it an interest and therapeutic target. Nevertheless, the PI3K/AKT/mTOR cascade includes a complex network of biological events, needing more sophisticated approaches for their use in cancer treatment. In this review, we described the rationale for targeting the PI3K pathway, the development of PI3K inhibitors and the future treatment directions of different breast cancer subtypes in the metastatic setting.
Collapse
Affiliation(s)
- Paola Fuso
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Margherita Muratore
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Tatiana D’Angelo
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (T.D.); (A.O.); (G.T.)
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Luisa Carbognin
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Giordana Tiberi
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Francesco Pavese
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
| | - Simona Duranti
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Armando Orlandi
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (T.D.); (A.O.); (G.T.)
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Unit of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (T.D.); (A.O.); (G.T.)
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.M.); (I.P.); (L.C.); (G.T.); (F.P.); (G.S.)
- Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Istituto di Ginecologia e Ostetricia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Fabi
- Precision Medicine in Breast Cancer Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
17
|
Piazzi M, Bavelloni A, Cenni V, Salucci S, Bartoletti Stella A, Tomassini E, Scotlandi K, Blalock WL, Faenza I. Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells. Molecules 2022; 27:molecules27092742. [PMID: 35566091 PMCID: PMC9104989 DOI: 10.3390/molecules27092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring in human cancers and serves to disconnect the control of cell growth, survival, and metabolism from exogenous growth stimuli. In the study reported here, a panel of five compounds targeting the catalytic subunits of the four class I PI3K isoforms (p110α, BYL-719 inhibitor; p110β, TGX-221 inhibitor; p110γ, CZC24832; p110δ, CAL-101 inhibitor) and the dual p110α/p110δ, AZD8835 inhibitor, were tested on the RMS cell lines RD, A204, and SJCRH30. Cytotoxicity, cell cycle, apoptosis, and the activation of downstream targets were analyzed. Of the individual inhibitors, BYL-719 demonstrated the most anti-tumorgenic properties. BYL-719 treatment resulted in G1/G0 phase cell cycle arrest and apoptosis. When combined with CAL-101, BYL-719 decreased cell viability and induced apoptosis in a synergistic manner, equaling or surpassing results achieved with AZD8835. In conclusion, our findings indicate that BYL-719, either alone or in combination with the p110δ inhibitor, CAL-101, could represent an efficient treatment for human rhabdomyosarcoma presenting with aberrant upregulation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - Vittoria Cenni
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Enrica Tomassini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40138 Bologna, Italy; (A.B.S.); (E.T.)
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.B.); (K.S.)
| | - William L. Blalock
- Istituto di Genetica Molecolare ‘‘Luigi Luca Cavalli-Sforza’’, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (W.L.B.); (I.F.)
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40138 Bologna, Italy;
- Correspondence: (W.L.B.); (I.F.)
| |
Collapse
|
18
|
Goncalves MD, Farooki A. Management of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia. Integr Cancer Ther 2022; 21:15347354211073163. [PMID: 35075945 PMCID: PMC8793384 DOI: 10.1177/15347354211073163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/15/2022] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) pathway hyperactivation has been associated with the development of cancer and treatment resistance. PI3K inhibitors are now used to treat hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-), PIK3CA-mutated advanced breast cancer. Hyperglycemia, a frequently observed adverse event with PI3K inhibitors (PI3Ki), is regarded as an on-target effect because inhibition of the PI3K pathway has been shown to decrease glucose transport and increase glycogenolysis and gluconeogenesis. PI3Ki-induced hyperglycemia results in a compensatory increase in insulin release, which has been shown to reduce the efficacy of treatment by reactivating the PI3K pathway in preclinical models. Patients with an absolute or relative deficiency in insulin, and those with insulin resistance or pancreatic dysfunction, may experience exacerbated or prolonged hyperglycemia. Therefore, the effective management of PI3Ki-associated hyperglycemia depends on early identification of patients at risk, frequent monitoring to allow prompt recognition of hyperglycemia and its sequelae, and initiating appropriate management strategies. Risk factors for the development of hyperglycemia include older age (≥75 years), overweight/obese at baseline, and family history of diabetes. Consultation with an endocrinologist is recommended for patients considered high risk. The management of PI3Ki-induced hyperglycemia requires an integrative approach that combines diets low in carbohydrates and glucose-lowering medications. Medications that do not affect the PI3K pathway are preferred as the primary and secondary agents for the management of hyperglycemia. These include metformin, sodium-glucose co-transporter 2 inhibitors, thiazolidinediones, and α-glucosidase inhibitors. Insulin should only be considered as a last-line agent for PI3Ki-associated hyperglycemia due to its stimulatory effect of PI3K signaling. Clinical studies show that alpelisib-associated hyperglycemia is reversible and manageable, rarely leading to treatment discontinuation. Management of PI3Ki-associated hyperglycemia in patients with breast cancer should focus on the prevention of acute and subacute complications of hyperglycemia, allowing patients to remain on anticancer treatment longer.
Collapse
Affiliation(s)
| | - Azeez Farooki
- Memorial Sloan Kettering Cancer Center,
New York, NY, USA
| |
Collapse
|
19
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
20
|
Zhang Z, Richmond A. The Role of PI3K Inhibition in the Treatment of Breast Cancer, Alone or Combined With Immune Checkpoint Inhibitors. Front Mol Biosci 2021; 8:648663. [PMID: 34026830 PMCID: PMC8139556 DOI: 10.3389/fmolb.2021.648663] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of phosphoinositide 3-kinase (PI3K) signaling is highly implicated in tumorigenesis, disease progression, and the development of resistance to the current standard of care treatments in breast cancer patients. This review discusses the role of PI3K pathway in breast cancer and evaluates the clinical development of PI3K inhibitors in both early and metastatic breast cancer settings. Further, this review examines the evidence for the potential synergistic benefit for the combination treatment of PI3K inhibition and immunotherapy in breast cancer treatment.
Collapse
Affiliation(s)
- Zhizhu Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
21
|
Javadian P, Washington C, Mukasa S, Benbrook DM. Histopathologic, Genetic and Molecular Characterization of Endometrial Cancer Racial Disparity. Cancers (Basel) 2021; 13:cancers13081900. [PMID: 33920951 PMCID: PMC8071317 DOI: 10.3390/cancers13081900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Black patients are diagnosed and die earlier of endometrial cancer in comparison with their White counterparts. Factors that have been implicated in this racial disparity, such as socioeconomic status, increased frequencies of more aggressive tumor histology, and comorbid conditions, do not account for all of the disparity. Molecular defects in the endometrial tumors likely also contribute to the more aggressive tumor biology and the patient disparities. In this study, we reviewed the published data of molecular characteristics of endometrial cancer in different races. The majority of the publications compare Black and White patients, and identify molecules and pathways that can be targeted with existing drugs. These findings encourage molecular profile studies comparing additional races and ethnicities, and development of race-specific treatments. Abstract In contrast to the decline in incidence and mortality of most other cancers, these rates are rising for endometrial cancer. Black women with endometrial cancer have earlier diagnosis, more aggressive histology, advanced stage and worse outcomes compared with their White counterparts. Socioeconomic status, a higher incidence of aggressive histology, and comorbid conditions are known factors leading to racial disparity in patients with endometrial cancer; nevertheless, they do not account for the entire racial disparity; which emphasizes the roles of molecular, histopathological and genetic factors. We performed a comprehensive review of all published scientific literature up to January 2021 reporting histopathologic, genetic and molecular factors associated with racial disparities in patients with endometrial cancer. The interactions and pathways of molecules reported to have significant differential expression in endometrial cancers from Black and White patients were identified with Ingenuity Pathway Analysis. The majority of studies compared Black and White patients; however, limited data are available for other racial and ethnic groups. Reported differences that could account for the worse survival of Black endometrial cancer patients include more aggressive histopathologies and molecular alterations, including upregulation of molecules driving cell cycle progression, and p53 and HER2/NEU signaling. Several of these molecules are targeted by existing pharmaceuticals. These findings encourage further study and the development of race-specific treatment strategies.
Collapse
Affiliation(s)
- Pouya Javadian
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: (P.J.); (D.M.B.)
| | - Christina Washington
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Shylet Mukasa
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Doris Mangiaracina Benbrook
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: (P.J.); (D.M.B.)
| |
Collapse
|
22
|
Jafari L, Akhter N. Heart failure prevention and monitoring strategies in HER2-positive breast cancer: a narrative review. Breast Cancer Res Treat 2021; 186:295-303. [PMID: 33481134 PMCID: PMC7820093 DOI: 10.1007/s10549-021-06096-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Cardiotoxicity from anti-human epidermal growth factor receptor 2 (HER2) therapy carries a short- and long-term risk of incident heart failure and increased cardiovascular mortality in patients with breast cancer. Interruptions in anti-HER2 therapy due to cardiotoxicity can lead to suboptimal cancer treatment. The purpose of this narrative review is to outline opportunities to optimize cardiovascular care in patients with HER2-positive breast cancer to prevent interruptions in therapy. METHODS This case-based review presents the current literature on evidence-based strategies for personalized cardiotoxicity risk assessment, risk mitigation interventions, cardiac function surveillance tools, and management of asymptomatic left ventricular dysfunction in breast cancer patients receiving anti-HER2 therapy. RESULTS Pretreatment cardiac risk assessment incorporates both treatment-related risk factors and patient-related risk factors for the development of cardiac dysfunction. Prevention and monitoring strategies while on treatment utilize risk factor modification, imaging and biomarker surveillance. Management of asymptomatic left ventricular dysfunction due to anti-HER2 therapy is evolving. Permissive cardiotoxicity in asymptomatic patients while starting cardioprotective therapies requires close collaboration between oncology and cardiology, and referral to cardio-oncology if available. CONCLUSIONS Patient-centered, multimodal strategies to prevent, detect, and manage cardiotoxicity from anti-HER2 therapy are necessary to improve outcomes in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Lua Jafari
- Division of Cardiology, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Nausheen Akhter
- Division of Cardiology, Northwestern University Feinberg School of Medicine, 675 N St. Clair St, Suite 19-100, Chicago, IL, 60611, USA.
| |
Collapse
|