1
|
Zamani SK, Wei J, Hathorn B, Robuck E, Kwan AC, Pepine CJ, Handberg E, Cipher DJ, Dey D, Bairey Merz CN, Nelson MD. Impact of epicardial fat on coronary vascular function, cardiac morphology, and cardiac function in women with suspected INOCA. Eur Heart J Cardiovasc Imaging 2024; 25:1360-1366. [PMID: 39129200 PMCID: PMC11441030 DOI: 10.1093/ehjci/jeae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
AIMS Epicardial fat is a metabolically active adipose tissue depot situated between the myocardium and visceral pericardium that covers ∼80% of the heart surface. While epicardial fat has been associated with the development of atherosclerotic coronary artery disease, less is known about the relationship between epicardial fat and coronary vascular function. Moreover, the relations between excess epicardial fat and cardiac morphology and function remain incompletely understood. METHODS AND RESULTS To address these knowledge gaps, we retrospectively analysed data from 294 individuals from our database of women with suspected ischaemia with no obstructive coronary disease (INOCA) who underwent both invasive coronary function testing and cardiac magnetic resonance imaging. Epicardial fat area, biventricular morphology, and function, as well as left atrial function, were assessed from cine images, per established protocols. The major novel findings were two-fold: first, epicardial fat area was not associated with coronary vascular dysfunction. Secondly, epicardial fat was associated with increased left ventricular concentricity (β = 0.15, P = 0.01), increased septal thickness (β = 0.17, P = 0.002), and reduced left atrial conduit fraction (β = -0.15, P = 0.02), even after accounting for age, BMI, and history of hypertension. CONCLUSION Taken together, these data do not support a measurable relationship between epicardial fat and coronary vascular dysfunction but do suggest that epicardial fat may be related to concentric remodelling and diastolic dysfunction in women with suspected INOCA. Prospective studies are needed to elucidate the long-term impact of epicardial fat in this patient population.
Collapse
Affiliation(s)
- Sauyeh K Zamani
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brandon Hathorn
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Erica Robuck
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Alan C Kwan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA
| | - Eileen Handberg
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, USA
| | - Daisha J Cipher
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
| | - Damini Dey
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Michael D Nelson
- College of Nursing and Health Innovation, University of Texas at Arlington, 701 S. Nedderman Drive Dr., Arlington, TX 76019, USA
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Clinical Imaging Research Center, University of Texas at Arlington, 655 W. Mitchell St. Arlington, TX 76019, USA
- Center for Healthy Living and Longevity, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX 76019, USA
| |
Collapse
|
2
|
Anaraki KT, Zahed Z, Javid RN, Shafiei S, Beiranvandi F, Kahrizsangi NG, Golafshan F, Arzhangzade A, Kojuri J, Almassian S, Hadi R, Gholizadeh P, Kazeminava F. Immune response following transcatheter aortic valve procedure. Vascul Pharmacol 2024; 154:107283. [PMID: 38340884 DOI: 10.1016/j.vph.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Aortic valve stenosis is the most common type of heart valve disease in the United States and Europe and calcific aortic stenosis (AS) affects 2-7% of people aged 65 years and older. Aortic valve replacement (AVR) is the only effective treatment for individuals with this condition. Transcatheter Aortic Valve Replacement (TAVR) has been widely accepted as a minimally invasive therapeutic approach for addressing symptomatic AS in patients who are considered to have a high risk for traditional surgical intervention. TAVR procedure may have a paradoxical effect on the immune system and inflammatory status. A major portion of these immune responses is regulated by activating or inhibiting inflammatory monocytes and the complement system with subsequent changes in inflammatory cytokines. TAVR has the potential to induce various concurrent exposures, including disruption of the native valve, hemodynamic changes, antigenicity of the bioprosthesis, and vascular damage, which finally lead to the development of inflammation. On the other hand, it is important to acknowledge that TAVR may also have anti-inflammatory effects by helping in the resolution of stenosis.The inflammation and immune response following TAVR are complex processes that significantly impact procedural outcomes and patient well-being. Understanding the underlying mechanisms, identifying biomarkers of inflammation, and exploring therapeutic interventions to modulate these responses are crucial for optimizing TAVR outcomes. Further research is warranted to elucidate the precise immunological dynamics and develop tailored strategies to attenuate inflammation and enhance post-TAVR healing while minimizing complications.
Collapse
Affiliation(s)
- Kasra Talebi Anaraki
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Sasan Shafiei
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Beiranvandi
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Faraz Golafshan
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Arzhangzade
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojuri
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samin Almassian
- Heart Valve Disease Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raha Hadi
- Department of Chemistry, Faculty of Basic Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Quarta S, Santarpino G, Carluccio MA, Calabriso N, Maffia M, Siculella L, Damiano F, Madonna R, Massaro M. Exploring the significance of epicardial adipose tissue in aortic valve stenosis and left ventricular remodeling: Unveiling novel therapeutic and prognostic markers of disease. Vascul Pharmacol 2023; 152:107210. [PMID: 37611727 DOI: 10.1016/j.vph.2023.107210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Aortic stenosis (AS) is a dynamic degenerative process that shares many pathophysiological features with atherogenesis, from initial proinflammatory calcification and focal thickening of the valve leaflets to obstruction of left ventricular outflow due to superimposed of severe calcification and immobilization of the valve leaflets. As the prevalence increases with age, AS is expected to become one of the most common heart diseases worldwide. In both obese and nonobese patients, persistent thickening of epicardial adipose tissue (EAT) is associated with a shift in its normal metabolic functions toward a dysmetabolic and proatherogenic phenotype that may impair the physiology of adjacent coronary arteries and promote the occurrence of coronary atherosclerosis. In tight analogy with atherosclerosis, recent clinical evidence indicates that EAT may also exert a deleterious role in promoting AS and contributing to myocardial dysfunction, leading to increased health risk for elderly patients with AS and an economic burden on the health care system. This review discusses the clinical and pathologic evidence for the association between EAT and AS and concomitant left ventricular hypertrophy, and provides new insights for the future direction of AS diagnosis and treatment.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; Department of Surgical, Medical, Molecular Pathology and Critical Care Sciences, University of Pisa, Via Savi 10, 56126 Pisa, Italy.
| | - Giuseppe Santarpino
- Cardiovascular Center, Paracelsus Medical University, 90471 Nuremberg, Germany; GVM Care & Research, Città di Lecce Hospital, 73100 Lecce, Italy; Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University "Magna Graecia", 88100 Catanzaro, Italy.
| | | | - Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy.
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Rosalinda Madonna
- Cardiology Division, Cardio-Thoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, Edificio 10, primo piano, 56124 Pisa, Italy.
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy.
| |
Collapse
|
4
|
Weferling M, Rolf A, Fischer-Rasokat U, Liebetrau C, Renker M, Choi YH, Hamm CW, Dey D, Kim WK. Epicardial fat volume is associated with preexisting atrioventricular conduction abnormalities and increased pacemaker implantation rate in patients undergoing transcatheter aortic valve implantation. Int J Cardiovasc Imaging 2022; 38:1399-1406. [PMID: 34954805 PMCID: PMC11143016 DOI: 10.1007/s10554-021-02502-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Epicardial fat tissue (EFT) is a highly metabolically active fat depot surrounding the heart and coronary arteries that is related to early atherosclerosis and adverse cardiac events. We aimed to investigate the relationship between the amount of EFT and preexisting cardiac conduction abnormalities (CCAs) and the need for new postinterventional pacemaker in patients with severe aortic stenosis planned for transcatheter aortic valve implantation (TAVI). A total of 560 consecutive patients (54% female) scheduled for TAVI were included in this retrospective study. EFT volume was measured via a fully automated artificial intelligence software (QFAT) using computed tomography (CT) performed before TAVI. Baseline CCAs [first-degree atrioventricular (AV) block, right bundle branch block (RBBB), and left bundle branch block (LBBB)] were diagnosed according to 12-lead ECG before TAVI. Aortic valve calcification was determined by the Agatston score assessed in the pre-TAVI CT. The median EFT volume was 129.5 ml [IQR 94-170]. Baseline first-degree AV block was present in 17%, RBBB in 10.4%, and LBBB in 10.2% of the overall cohort. In adjusted logistic regression analysis, higher EFT volume was associated with first-degree AV block (OR 1.006 [95% CI 1.002-1.010]; p = 0.006) and the need for new pacemaker implantation after TAVI (OR 1.005 [95% CI 1.0-1.01]; p = 0.035) but not with the presence of RBBB or LBBB. EFT volume did not correlate with the Agatston score of the aortic valve. Greater EFT volume is associated independently with preexisting first-degree AV block and new pacemaker implantation in patients undergoing TAVI. It may play a causative role in degenerative processes and the susceptibility of the AV conduction system.
Collapse
Affiliation(s)
- Maren Weferling
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| | - Andreas Rolf
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Ulrich Fischer-Rasokat
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Christoph Liebetrau
- Cardioangiological Center Bethanien (CCB), Department of Cardiology, Agaplesion Bethanien Hospital, Frankfurt, Germany
| | - Matthias Renker
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
- Department of Cardiac Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Yeoung-Hoon Choi
- Department of Cardiac Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Christian W Hamm
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
- Department of Cardiology, University Hospital of Giessen, Giessen, Germany
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Taper A238, Los Angeles, CA, 90048, USA
| | - Won-Keun Kim
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Benekestr. 2-8, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
- Department of Cardiac Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| |
Collapse
|
5
|
Conte M, Petraglia L, Poggio P, Valerio V, Cabaro S, Campana P, Comentale G, Attena E, Russo V, Pilato E, Formisano P, Leosco D, Parisi V. Inflammation and Cardiovascular Diseases in the Elderly: The Role of Epicardial Adipose Tissue. Front Med (Lausanne) 2022; 9:844266. [PMID: 35242789 PMCID: PMC8887867 DOI: 10.3389/fmed.2022.844266] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
Human aging is a complex phenomenon characterized by a wide spectrum of biological changes which impact on behavioral and social aspects. Age-related changes are accompanied by a decline in biological function and increased vulnerability leading to frailty, thereby advanced age is identified among the major risk factors of the main chronic human diseases. Aging is characterized by a state of chronic low-grade inflammation, also referred as inflammaging. It recognizes a multifactorial pathogenesis with a prominent role of the innate immune system activation, resulting in tissue degeneration and contributing to adverse outcomes. It is widely recognized that inflammation plays a central role in the development and progression of numerous chronic and cardiovascular diseases. In particular, low-grade inflammation, through an increased risk of atherosclerosis and insulin resistance, promote cardiovascular diseases in the elderly. Low-grade inflammation is also promoted by visceral adiposity, whose accumulation is paralleled by an increased inflammatory status. Aging is associated to increase in epicardial adipose tissue (EAT), the visceral fat depot of the heart. Structural and functional changes in EAT have been shown to be associated with several heart diseases, including coronary artery disease, aortic stenosis, atrial fibrillation, and heart failure. EAT increase is associated with a greater production and secretion of pro-inflammatory mediators and neuro-hormones, so that thickened EAT can pathologically influence, in a paracrine and vasocrine manner, the structure and function of the heart and is associated to a worse cardiovascular outcome. In this review, we will discuss the evidence underlying the interplay between inflammaging, EAT accumulation and cardiovascular diseases. We will examine and discuss the importance of EAT quantification, its characteristics and changes with age and its clinical implication.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Comentale
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Department of Medical Translational Sciences, Monaldi Hospital, University of Campania Luigi Vanvitelli, Campania, Italy
| | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Vach M, Luetkens JA, Faron A, Isaak A, Salam B, Thomas D, Attenberger UI, Sprinkart AM. Association between single-slice and whole heart measurements of epicardial and pericardial fat in cardiac MRI. Acta Radiol 2021:2841851211054192. [PMID: 34747661 DOI: 10.1177/02841851211054192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epicardial (ECF) and pericardial fat (PCF) are important prognostic markers for various cardiac diseases. However, volumetry of the fat compartments is time-consuming. PURPOSE To investigate whether total volume of ECF and PCF can be estimated by axial single-slice measurements and in a four-chamber view. MATERIAL AND METHODS A total of 113 individuals (79 patients and 34 healthy) were included in this retrospective magnetic resonance imaging (MRI) study. The total volume of ECF and PCF was determined using a 3D-Dixon sequence. Additionally, the area of ECF and PCF was obtained in single axial layers at five anatomical landmarks (left coronary artery, right coronary artery, right pulmonary artery, mitral valve, coronary sinus) of the Dixon sequence and in a four-chamber view of a standard cine sequence. Pearson's correlation coefficient was calculated between the total volume and each single-slice measurement. RESULTS Axial single-slice measurements of ECF and PCF correlated strongly with the total fat volumes at all landmarks (ECF: r = 0.85-0.94, P < 0.001; PCF: r = 0.89-0.94, P < 0.001). The best correlation was found at the level of the left coronary artery for ECF and PCF (r = 0.94, P < 0.001). Correlation between single-slice measurement in the four-chamber view and the total ECF and PCF volume was lower (r = 0.75 and r = 0.8, respectively, P < 0.001). CONCLUSION Single-slice measurements allow an estimation of ECF and PCF volume. This time-efficient analysis allows studies of larger patient cohorts and the opportunistic determination of ECF/PCF from routine examinations.
Collapse
Affiliation(s)
- Marius Vach
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Anton Faron
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Babak Salam
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Daniel Thomas
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, Quantitative Imaging Lab Bonn (QILaB), University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Conte M, Petraglia L, Campana P, Gerundo G, Caruso A, Grimaldi MG, Russo V, Attena E, Leosco D, Parisi V. The role of inflammation and metabolic risk factors in the pathogenesis of calcific aortic valve stenosis. Aging Clin Exp Res 2021; 33:1765-1770. [PMID: 32978752 PMCID: PMC8249252 DOI: 10.1007/s40520-020-01681-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Given the epidemiologic increase of aged population in the world, aortic stenosis (AS) represents now the most common valvular heart disease in industrialized countries. It is a very challenging disease, representing an important cause of morbidity, hospitalization and death in the elderly population. It is widely recognized that AS is the result of a very complex active process, driven by inflammation and involving multifactorial pathological mechanisms promoting valvular calcification and valvular bone deposition. Several evidence suggest that epicardial adipose tissue (EAT), the visceral fat depot of the heart, represents a direct source of cytokines and could mediate the deleterious effects of systemic inflammation on the myocardium. Importantly, obesity and metabolic disorders are associated with chronic systemic inflammation leading to a significant increase of EAT amount and to a pro-inflammatory phenotypic shift of this fat depot. It has been hypothesized that the EAT inflammatory state can influence the structure and function of the heart, thus contributing to the pathogenesis of several cardiac diseases, including calcific AS. The current review will discuss the recently discovered mechanisms involved in the pathogenesis of AS, with particular attention to the role of inflammation, metabolic risk factors and pro-fibrotic and pro-osteogenic signal pathways promoting the onset and progression of the disease. Moreover, it will be explored the potential role of EAT in the AS pathophysiology.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 8031, Naples, Italy
- Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 8031, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 8031, Naples, Italy
| | - Gerardo Gerundo
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 8031, Naples, Italy
| | | | | | | | | | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 8031, Naples, Italy.
- Casa di Cura San Michele, Maddaloni, Italy.
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini 5, 8031, Naples, Italy
- Casa di Cura San Michele, Maddaloni, Italy
| |
Collapse
|
8
|
de Wit-Verheggen VHW, Altintas S, Spee RJM, Mihl C, van Kuijk SMJ, Wildberger JE, Schrauwen-Hinderling VB, Kietselaer BLJH, van de Weijer T. Pericardial fat and its influence on cardiac diastolic function. Cardiovasc Diabetol 2020; 19:129. [PMID: 32807203 PMCID: PMC7430122 DOI: 10.1186/s12933-020-01097-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pericardial fat (PF) has been suggested to directly act on cardiomyocytes, leading to diastolic dysfunction. The aim of this study was to investigate whether a higher PF volume is associated with a lower diastolic function in healthy subjects. METHODS 254 adults (40-70 years, BMI 18-35 kg/m2, normal left ventricular ejection fraction), with (a)typical chest pain (otherwise healthy) from the cardiology outpatient clinic were retrospectively included in this study. All patients underwent a coronary computed tomographic angiography for the measurement of pericardial fat volume, as well as a transthoracic echocardiography for the assessment of diastolic function parameters. To assess the independent association of PF and diastolic function parameters, multivariable linear regression analysis was performed. To maximize differences in PF volume, the group was divided in low (lowest quartile of both sexes) and high (highest quartile of both sexes) PF volume. Multivariable binary logistic analysis was used to study the associations within the groups between PF and diastolic function, adjusted for age, BMI, and sex. RESULTS Significant associations for all four diastolic parameters with the PF volume were found after adjusting for BMI, age, and sex. In addition, subjects with high pericardial fat had a reduced left atrial volume index (p = 0.02), lower E/e (p < 0.01) and E/A (p = 0.01), reduced e' lateral (p < 0.01), reduced e' septal p = 0.03), compared to subjects with low pericardial fat. CONCLUSION These findings confirm that pericardial fat volume, even in healthy subjects with normal cardiac function, is associated with diastolic function. Our results suggest that the mechanical effects of PF may limit the distensibility of the heart and thereby directly contribute to diastolic dysfunction. Trial registration NCT01671930.
Collapse
Affiliation(s)
- Vera H W de Wit-Verheggen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sibel Altintas
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Romy J M Spee
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Casper Mihl
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vera B Schrauwen-Hinderling
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bas L J H Kietselaer
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tineke van de Weijer
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands.
| |
Collapse
|
9
|
Pérez LM, de Lucas B, Gálvez BG. BMPER is upregulated in obesity and seems to have a role in pericardial adipose stem cells. J Cell Physiol 2020; 236:132-145. [PMID: 32468615 DOI: 10.1002/jcp.29829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
Pericardial adipose tissue (PAT), a visceral fat depot enveloping the heart, is an active endocrine organ and a source of free fatty acids and inflammatory cytokines. As in other fat adult tissues, PAT contains a population of adipose stem cells; however, whether these cells and/or their environment play a role in physiopathology is unknown. We analyzed several stem cell-related properties of pericardial adipose stem cells (PSCs) isolated from obese and ex-obese mice. We also performed RNA-sequencing to profile the transcriptional landscape of PSCs isolated from the different diet regimens. Finally, we tested whether these alterations impacted on the properties of cardiac mesoangioblasts isolated from the same mice. We found functional differences between PSCs depending on their source: specifically, PSCs from obese PSC (oPSC) and ex-obese PSC (dPSC) mice showed alterations in apoptosis and migratory capacity when compared with lean, control PSCs, with increased apoptosis in oPSCs and blunted migratory capacity in oPSCs and dPSCs. This was accompanied by different gene expression profiles across the cell types, where we identified some genes altered in obese conditions, such as BMP endothelial cell precursor-derived regulator (BMPER), an important regulator of BMP-related signaling pathways for endothelial cell function. The importance of BMPER in PSCs was confirmed by loss- and gain-of-function studies. Finally, we found an altered production of BMPER and some important chemokines in cardiac mesoangioblasts in obese conditions. Our findings point to BMPER as a potential new regulator of PSC function and suggest that its dysregulation could be associated with obesity and may impact on cardiac cells.
Collapse
Affiliation(s)
- Laura M Pérez
- Health and Biomedical Sciences Faculty, European University, Madrid, Spain
| | - Beatriz de Lucas
- Health and Biomedical Sciences Faculty, European University, Madrid, Spain
| | - Beatriz G Gálvez
- Health and Biomedical Sciences Faculty, European University, Madrid, Spain
| |
Collapse
|
10
|
El Hajj MC, Litwin SE. Echocardiography in the Era of Obesity. J Am Soc Echocardiogr 2020; 33:779-787. [PMID: 32359803 DOI: 10.1016/j.echo.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
Abstract
Patients with obesity are at increased risk for coronary artery disease and heart failure and often present with symptoms of dyspnea, fatigue, edema, or chest pain. Echocardiography is frequently used to help distinguish whether these symptoms are due to cardiac disease. Unfortunately, obesity has a significant impact on image quality because of signal attenuation. Ultrasound-enhancing agents may improve the detection of structural remodeling and subclinical left ventricular dysfunction in patients with obesity. Assessment of chamber sizes and cardiac remodeling in severely obese subjects must be interpreted with caution, however, as the current recommendations for indexing cardiac chamber sizes to body size may lead to false conclusions about chamber volumes or mass, particularly in settings in which weight is changing. As a result of increases in stroke volume and cardiac output, obesity may exacerbate hemodynamic compromise in obstructive structural or valvular disease. With regard to assessment of ischemic heart disease, stress echocardiography can effectively risk-stratify patients with obesity and may have advantages over other noninvasive modalities. In general, transesophageal echocardiography is safe in patients with obesity, although some precautions should be observed. Stress echocardiography using the transesophageal approach is an alternative for preoperative or ischemia evaluation in patients with suboptimal transthoracic views.
Collapse
Affiliation(s)
- Milad C El Hajj
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sheldon E Litwin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Cardiology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina.
| |
Collapse
|
11
|
Lu Y, Wang T, Zhan R, Wang X, Ruan X, Qi R, Huang S. Effects of epicardial adipose tissue volume and density on cardiac structure and function in patients free of coronary artery disease. Jpn J Radiol 2020; 38:666-675. [PMID: 32193792 DOI: 10.1007/s11604-020-00951-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine the association of epicardial adipose tissue (EAT) volume and density with cardiac geometry and function. METHODS We included 178 consecutive patients who performed coronary computed tomography angiography but were not diagnosed with coronary artery disease (CAD). The EAT volume, density, and following cardiac structure and function parameters were measured: left ventricular ejection fraction, left ventricular mass (LVM), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), left ventricular stroke volume (LVSV), left ventricular end-diastolic diameter (LVEDD), interventricular septal thickness (IVST) and posterior wall thickness (PWT). All the parameters were standardized using the height2.7. RESULTS A significant correlation was found between larger EAT volume and increased LVM, LVEDV, LVESV, LVSV, LVEDD, IVST and corresponding standardized indexes (P < 0.05 for all). Higher EAT density significantly correlated with increased LVM, LVEDV, LVESV, LVSV, LVEDD, IVST, PWT and corresponding standardized indexes (P < 0.05 for all). The largest cardiac structure and function parameters were observed in the population with above-median EAT volume and density. CONCLUSION Both large EAT volume and high EAT density were associated with cardiac structure and function in patients with no CAD. The EAT density may render complementary information to EAT volume regarding cardiac geometry changes.
Collapse
Affiliation(s)
- Yang Lu
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Tianle Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Rui Zhan
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Xiaoyu Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Xiwu Ruan
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Rongxing Qi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| | - Sheng Huang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, No. 6 HaiErXiang (North) Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Vianello E, Dozio E, Bandera F, Froldi M, Micaglio E, Lamont J, Tacchini L, Schmitz G, Corsi Romanelli MM. Correlative Study on Impaired Prostaglandin E2 Regulation in Epicardial Adipose Tissue and its Role in Maladaptive Cardiac Remodeling via EPAC2 and ST2 Signaling in Overweight Cardiovascular Disease Subjects. Int J Mol Sci 2020; 21:ijms21020520. [PMID: 31947646 PMCID: PMC7014202 DOI: 10.3390/ijms21020520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022] Open
Abstract
There is recent evidence that the dysfunctional responses of a peculiar visceral fat deposit known as epicardial adipose tissue (EAT) can directly promote cardiac enlargement in the case of obesity. Here, we observed a newer molecular pattern associated with LV dysfunction mediated by prostaglandin E2 (PGE2) deregulation in EAT in a cardiovascular disease (CVD) population. A series of 33 overweight CVD males were enrolled and their EAT thickness, LV mass, and volumes were measured by echocardiography. Blood, plasma, EAT, and SAT biopsies were collected for molecular and proteomic assays. Our data show that PGE2 biosynthetic enzyme (PTGES-2) correlates with echocardiographic parameters of LV enlargement: LV diameters, LV end diastolic volume, and LV masses. Moreover, PTGES-2 is directly associated with EPAC2 gene (r = 0.70, p < 0.0001), known as a molecular inducer of ST2/IL-33 mediators involved in maladaptive heart remodelling. Furthermore, PGE2 receptor 3 (PTEGER3) results are downregulated and its expression is inversely associated with ST2/IL-33 expression. Contrarily, PGE2 receptor 4 (PTGER4) is upregulated in EAT and directly correlates with ST2 molecular expression. Our data suggest that excessive body fatness can shift the EAT transcriptome to a pro-tissue remodelling profile, may be driven by PGE2 deregulation, with consequent promotion of EPAC2 and ST2 signalling.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50315342
| | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
- Cardiology University Department, Heart Failure Unit, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Marco Froldi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Internal Medicine Unit IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Emanuele Micaglio
- U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| | - John Lamont
- Randox Laboratories LTD, R&D, Crumlin-Antrim, Belfast, BT29, Northen Ireland, UK
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (E.D.); (F.B.); (L.T.); (M.M.C.R.)
- U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy;
| |
Collapse
|
13
|
Arangalage D, Mathieu T, Nguyen V, Cimadevilla C, Kerneis C, Duval X, Tubiana S, Hyafil F, Ou P, Tribouilloy C, Vahanian A, Messika-Zeitoun D. Epicardial adipose tissue volume is associated with left ventricular remodelling in calcific aortic valve stenosis. Arch Cardiovasc Dis 2019; 112:594-603. [DOI: 10.1016/j.acvd.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/02/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
|
14
|
Vianello E, Marrocco-Trischitta Massimiliano M, Dozio E, Bandera F, Tacchini L, Canciani E, Dellavia C, Schmitz G, Lorenzo M, Corsi Romanelli Massimiliano M. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling. J Mol Cell Cardiol 2019; 132:210-218. [PMID: 31102584 DOI: 10.1016/j.yjmcc.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
AIMS Genetic and environmental factors all interact in the risk of progression of valvular dysfunctions. Previous studies reported a relation between valve diseases and epicardial adipose tissue (EAT) thickness. The aim of this study was to verify the possible relationship between the molecular pattern of EAT related to IL-13 fibrogenic cytokine expression and valve dysfunction. METHODS AND RESULTS A valvular heart disease (VHD) population was stratified according to their median EAT thickness (7 mm). The molecular expression of IL-13 in EAT is directly related to the molecular expression of genes associated with extracellular matrix (ECM) turnover, macrophage infiltration and promotion of the formation of ectopic calcific nodules involved in aorta coarctation and calcification. CONCLUSION IL-13 gene expression in altered EAT is directly related to the expression of genes involved in ECM turnover and the formation of ectopic calcific nodules, suggesting measurements of EAT as a stratification risk factor for valve instability in the VHD patients.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Canciani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Menicanti Lorenzo
- Department of Cardio-Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco Corsi Romanelli Massimiliano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|