1
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
2
|
Chinreddy SR, Mashozhera NT, Rashrash B, Flores-Iga G, Nimmakayala P, Hankins GR, Harris RT, Reddy UK. Unraveling TRPV1's Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin. Molecules 2024; 29:4729. [PMID: 39407657 PMCID: PMC11477668 DOI: 10.3390/molecules29194729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer is a global health challenge with rising incidence and mortality rates, posing significant concerns. The World Health Organization reports cancer as a leading cause of death worldwide, contributing to nearly one in six deaths. Cancer pathogenesis involves disruptions in cellular signaling pathways, resulting in uncontrolled cell growth and metastasis. Among emerging players in cancer biology, Transient Receptor Potential (TRP) channels, notably TRPV1, have garnered attention due to their altered expression in cancer cells and roles in tumorigenesis and progression. TRPV1, also known as the capsaicin receptor, is pivotal in cancer cell death and pain mediation, offering promise as a therapeutic target. Activation of TRPV1 triggers calcium influx and affects cell signaling linked to growth and death. Additionally, TRPV1 is implicated in cancer-induced pain and chemo-sensitivity, with upregulation observed in sensory neurons innervating oral cancers. Also, when capsaicin, a compound from chili peppers, interacts with TRPV1, it elicits a "hot" sensation and influences cancer processes through calcium influx. Understanding TRPV1's multifaceted roles in cancer may lead to novel therapeutic strategies for managing cancer-related symptoms and improving patient outcomes. The current review elucidates the comprehensive role of capsaicin in cancer therapy, particularly through the TRPV1 channel, highlighting its effects in various cells via different signaling pathways and discussing its limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, WV 25112, USA; (S.R.C.); (N.T.M.); (B.R.); (G.F.-I.); (P.N.); (G.R.H.); (R.T.H.)
| |
Collapse
|
3
|
Deng J, Hua J, Zeng T, Que H, Zhang Q, Li Q, Xie J, Ouyang J. Associations between inflammatory burden index, prostate cancer, and mortality among middle-aged and elderly individuals. World J Urol 2024; 42:538. [PMID: 39325178 DOI: 10.1007/s00345-024-05241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Inflammation plays a crucial role in prostate cancer (PCa) progression and mortality. This study aimed to investigate the predictive value of the inflammatory burden index (IBI) and its components for mortality risk among men aged 40 years and older. METHODS A total of 7,344 participants from the NHANES 2001-2010 were included. High PCa risk was defined as a %fPSA greater than 25% and a tPSA level less than 4.0 ng/mL. Cox regression and logistic regression analyses were conducted to assess the association between IBI, PCa risk, and mortality. Receiver operating characteristic (ROC) curve analysis and random survival forest (RSF) model were utilized to evaluate the predictive value of IBI and its components for mortality. RESULTS Elevated IBI levels were significantly associated with an increased risk of all-cause mortality (HR = 1.08 [1.05-1.10]) and cancer mortality (HR = 1.11 [1.07-1.15]). High-risk PCa cases also exhibited elevated mortality risk (all-cause: HR = 1.35 [1.19-1.54]; cancer: HR = 1.65 [1.27-2.14]). Additionally, the combined effect of elevated IBI levels and high PCa risk showed a synergistic impact on mortality outcomes (all-cause: HR = 1.49 [1.27-1.74]; cancer: HR = 1.76 [1.29-2.40]). ROC curve analysis revealed that IBI had the highest AUC for predicting all-cause mortality (AUC = 0.690 at 3 years, 0.622 at 5 years, 0.634 at 10 years, and 0.632 at 15 years) compared to its individual components (CRP, NEU, LYM). RSF analysis highlighted IBI as the most significant predictor of all-cause and cancer mortality. CONCLUSION The combined effect of elevated IBI levels and high PCa risk demonstrated a synergistic impact on increased mortality risk among men aged 40 years and older. IBI demonstrated superior predictive performance for mortality outcomes compared to individual inflammatory markers. These findings underscore the potential utility of IBI as a prognostic biomarker for mortality risk assessment in individual with high PCa risk.
Collapse
Affiliation(s)
- Junpeng Deng
- Department of Urology, The First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China
| | - Jingqi Hua
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China
| | - Tengyue Zeng
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China
| | - Hongliang Que
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China
| | - Qijie Zhang
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China
| | - Quan Li
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China
| | - Jianjun Xie
- Department of Urology, Suzhou Municipal Hospital, No.16, Baita West Road, Gusu District, Suzhou, Jiangsu, 215001, China.
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Gusu District, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
4
|
Fu J, Yue X, Zou Y, Zhang J, Wang X, Zhang D. Association of hemoglobin, albumin, lymphocyte, and platelet score with risk of all-cause and cause-specific mortality among cancer survivors: NHANES 1999-2018. Front Oncol 2024; 14:1402217. [PMID: 39359427 PMCID: PMC11445657 DOI: 10.3389/fonc.2024.1402217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Background The HALP score, comprising hemoglobin, albumin, lymphocyte, and platelet levels, serves as an indicator of both nutritional and inflammatory status. However, its correlation with all-cause and cause-specific mortality among cancer survivors remains unclear. Therefore, this study aims to investigate the relationship between HALP scores and mortality outcomes in this population. Method We extracted cohort data spanning ten cycles (1999-2018) from the U.S. National Health and Nutrition Examination Survey (NHANES). Mortality rates, determined using the National Death Index (NDI) as of December 31, 2019, were assessed. Weighted multivariate logistic regression analyzed the association between HALP scores and cancer prevalence. Kaplan-Meier analyses and weighted multivariate-adjusted Cox analyses investigated the link between HALP scores and all-cause and cause-specific mortality in cancer survivors. Restricted cubic spline (RCS) analysis was employed to assess nonlinear relationships. Furthermore, multi-parametric subgroup analyses were conducted to ensure the robustness of the results. Results Our study included 41,231 participants, of whom 3,786 were cancer survivors (prevalence: 9.5%). Over a median follow-up of 91 months (range: 51-136), we observed 1,339 deaths, including 397 from cancer, 368 from cardio-cerebrovascular disease, and 105 from respiratory disease. Elevated HALP scores showed a consistent association with reduced cancer incidence (P for trend <0.001). In multivariable-adjusted Cox regression analyses, HALP scores were significantly inversely associated with all-cause mortality, cancer mortality, cardio-cerebrovascular disease mortality, and respiratory disease mortality in cancer survivors (P for trend < 0.05). Nonlinear relationships between HALP scores and all-cause and cause-specific mortality in cancer survivors were evident through RCS regression modeling (P for nonlinearity < 0.01). Kaplan-Meier analyses demonstrated that higher HALP scores were indicative of a poorer prognosis. Conclusion Our findings indicate a notable inverse correlation between HALP scores and both all-cause and cause-specific mortality among cancer survivors.
Collapse
Affiliation(s)
- Jixin Fu
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Qingdao University, Weihai, Shandong, China
| | - Xiaohan Yue
- Department of Pediatric Surgery, Weihai Central Hospital, Qingdao University, Weihai, Shandong, China
| | - Yanan Zou
- Department of Anesthesiology, Weihai Central Hospital, Qingdao University, Weihai, Shandong, China
| | - Jian Zhang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Pingdu, Shandong, China
| | - Xinjian Wang
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Qingdao University, Weihai, Shandong, China
| | - Dianliang Zhang
- Center of Colon and Rectum, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Tang W, Long G. Retrospective study of a novel hematological parameter for predicting the survival of patients with nasopharyngeal carcinoma. PeerJ 2024; 12:e17573. [PMID: 38915379 PMCID: PMC11195549 DOI: 10.7717/peerj.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose This study aims to explore the prognostic values of routine pre-treatment hematological parameters in patients with nasopharyngeal carcinoma (NPC). Methods The hematological parameters and clinical data of patients with NPC were collected from January 2012 to December 2013 at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. The survival statistics were obtained by regularly following-up the patients. The cut-off values for the hematological parameters were calculated using X-tile software. SPSS version 24.0 was used for the statistical analysis. The relationship between the hematological parameters and the prognosis of patients with NPC was analyzed using the Kaplan-Meier method and Cox multivariate regression. The discriminating abilities of the factors, which predict the prognosis, were evaluated by utilizing the receiver operating characteristic (ROC) area under the curve (AUC). Results This study included 179 patients with NPC. Multivariate analysis shows that pretreatment platelet-to-lymphocyte ratio (PLR; hazard ratio; HR = 0.44, 95% CI [0.21-0.91], p = 0.029), serum albumin (ALB; HR = 2.49, 95% CI [1.17-5.30], p = 0.018), and globulin (GLO; HR = 0.44, 95% CI [0.21-0.90], p = 0.024) are independent predictors for 5-year overall survival (OS) in patients with NPC. In addition, pre-treatment PLR (HR = 0.47, 95% CI [0.25-0.90], p = 0.022) and pre-treatment GLO (HR = 0.37, 95% CI [0.19-0.72], p = 0.001) are associated with 5-year progression-free survival (PFS) in patients with NPC. Based on the results of the multivariate analysis, we proposed a new biomarker GLO-PLR, which is observably correlated with the T stage, N stage and clinical stage in patients with NPC. The OS resolving ability of the GLO-PLR evaluated by AUC is 0.714, which is better than those of GLO and PLR. The PFS resolving ability of the GLO-PLR evaluated by AUC was 0.696, which is also better than those of GLO and PLR. Conclusion Pre-treatment PLR, ALB, and GLO are independent predictors of 5-year OS in patients with NPC, where PLR and GLO are also independent predictors of 5-year FPS. Compared with other hematological parameters, the proposed GLO-PLR is an inexpensive, effective, objective, and easy-to-measure marker for predicting the prognosis of NPC.
Collapse
Affiliation(s)
- Wenhua Tang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Sulaimany S, Farahmandi K, Mafakheri A. Computational prediction of new therapeutic effects of probiotics. Sci Rep 2024; 14:11932. [PMID: 38789535 PMCID: PMC11126595 DOI: 10.1038/s41598-024-62796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Probiotics are living microorganisms that provide health benefits to their hosts, potentially aiding in the treatment or prevention of various diseases, including diarrhea, irritable bowel syndrome, ulcerative colitis, and Crohn's disease. Motivated by successful applications of link prediction in medical and biological networks, we applied link prediction to the probiotic-disease network to identify unreported relations. Using data from the Probio database and International Classification of Diseases-10th Revision (ICD-10) resources, we constructed a bipartite graph focused on the relationship between probiotics and diseases. We applied customized link prediction algorithms for this bipartite network, including common neighbors, Jaccard coefficient, and Adamic/Adar ranking formulas. We evaluated the results using Area under the Curve (AUC) and precision metrics. Our analysis revealed that common neighbors outperformed the other methods, with an AUC of 0.96 and precision of 0.6, indicating that basic formulas can predict at least six out of ten probable relations correctly. To support our findings, we conducted an exact search of the top 20 predictions and found six confirming papers on Google Scholar and Science Direct. Evidence suggests that Lactobacillus jensenii may provide prophylactic and therapeutic benefits for gastrointestinal diseases and that Lactobacillus acidophilus may have potential activity against urologic and female genital illnesses. Further investigation of other predictions through additional preclinical and clinical studies is recommended. Future research may focus on deploying more powerful link prediction algorithms to achieve better and more accurate results.
Collapse
Affiliation(s)
- Sadegh Sulaimany
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran.
| | - Kajal Farahmandi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Aso Mafakheri
- Social and Biological Network Analysis Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
7
|
Qu R, Du W, Li S, Li W, Wei G, Chen Z, Gao H, Shi S, Zou L, Li H. Destruction of vascular endothelial glycocalyx during formation of pre-metastatic niches. Heliyon 2024; 10:e29101. [PMID: 38601565 PMCID: PMC11004892 DOI: 10.1016/j.heliyon.2024.e29101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
A special microenvironment called the "pre-metastatic niche" is thought to help primary tumor cells migrate to new tissues and invade them, in part because the normal barrier function of the vascular endothelium is compromised. While the primary tumor itself can promote the creation of such niches by secreting pro-metastatic factors, the underlying molecular mechanisms are still poorly understood. Here, we show that the injection of primary tumor-secreted pro-metastatic factors from B16F10 melanoma or 4T1 breast cancer cells into healthy mice can induce the destruction of the vascular endothelial glycocalyx, which is a polysaccharide coating on the vascular endothelial lumen that normally inhibits tumor cell passage into and out of the circulation. However, when human umbilical vein endothelial cultures were treated in vitro with these secreted pro-metastatic factors, no significant destruction of the glycocalyx was observed, implying that this destruction requires a complex in vivo microenvironment. The tissue section analysis revealed that secreted pro-metastatic factors could clearly upregulate macrophage-related molecules such as CD11b and tumor necrosis factor-α (TNF-α) in the heart, liver, spleen, lung, and kidney, which is associated with the upregulation and activation of heparanase. In addition, macrophage depletion significantly attenuated the degradation of the vascular endothelial glycocalyx induced by secreted pro-metastatic factors. This indicates that the secreted pro-metastatic factors that destroy the vascular endothelial glycocalyx rely primarily on macrophages. Our findings suggest that the formation of pre-metastatic niches involves degradation of the vascular endothelial glycocalyx, which may hence be a useful target for developing therapies to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Rui Qu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wenxuan Du
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Shuyao Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangfei Wei
- Clinical Medical Research Center, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212004, China
| | - Zhoujiang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sanjun Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
8
|
Zhang C, Peng Q, Tang Y, Wang C, Wang S, Yu D, Hou S, Wang Y, Zhang L, Lin N. Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway. J Cancer Res Clin Oncol 2024; 150:168. [PMID: 38546908 PMCID: PMC10978631 DOI: 10.1007/s00432-024-05625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the anti-tumor effect of resveratrol (RSV) on glioblastoma (GBM) and its specific mechanism in improving the inflammatory response of the tumor microenvironment. The tumor microenvironment of GBM is highly neuroinflammatory, inducing tumor immunosuppression. Therefore, ameliorating the inflammatory response is an important focus for anti-tumor research. METHODS The anti-tumor effect of RSV on GBM was demonstrated through in vitro cellular assays, including CCK-8, EdU, PI staining, Transwell, wound healing assay, and flow cytometry. Potential mechanisms of RSV's anti-GBM effects were identified through network pharmacological analysis. In addition, the relationship of RSV with the JAK2/STAT3 signaling pathway and the inflammasome NLRP3 was verified using Western blot. RESULTS RSV significantly inhibited cell viability in GBM cell lines LN-229 and U87-MG. Furthermore, it inhibited the proliferation and invasive migration ability of GBM cells, while promoting apoptosis. Network pharmacological analysis revealed a close association between the anti-GBM effects of RSV and the JAK/STAT signaling pathway, as well as inflammatory responses. Western blot analysis confirmed that RSV inhibited the over-activation of the inflammasome NLRP3 through the JAK2/STAT3 signaling pathway. Partial reversal of RSV's inhibition of inflammasome NLRP3 was observed with the addition of the JAK/STAT agonist RO8191. CONCLUSIONS In vitro, RSV can exert anti-tumor effects on GBM and improve the inflammatory response in the GBM microenvironment by inhibiting the activation of the JAK2/STAT3 signaling pathway. These findings provide new insights into potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Qian Peng
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, China
| | - Yuhang Tang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Chengcheng Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shuai Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Dong Yu
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shiqiang Hou
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Yu Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Lanlan Zhang
- Department of Science and Education, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| | - Ning Lin
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| |
Collapse
|
9
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
10
|
Popiel D, Stańczak A, Skupińska M, Mikołajczyk A, Stańczak P, Mituła F, Hucz-Kalitowska J, Jastrzębska K, Smuga D, Dominowski J, Delis M, Mulewski K, Pietruś W, Zdżalik-Bielecka D, Dzwonek K, Lamparska-Przybysz M, Yamani A, Olejkowska P, Piórkowska N, Dubiel K, Wieczorek M, Pieczykolan J. Preclinical characterization of CPL304110 as a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3 for gastric, bladder, and squamous cell lung cancer. Front Oncol 2024; 13:1293728. [PMID: 38282676 PMCID: PMC10811212 DOI: 10.3389/fonc.2023.1293728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Fibroblast Growth Factor Receptors (FGFRs) are a family of receptor tyrosine kinases expressed on a plethora of cell membranes. They play crucial roles in both embryonic development and adult tissue functions. There is an increasing amount of evidence that FGFR-mediated oncogenesis is mainly related to gene amplification, activating mutations, or translocation in tumors of various histological types. Dysregulation of FGFRs has been implicated in a wide variety of neoplasms, such as bladder, gastric, and lung cancers. Given their functional significance, FGFRs emerge as promising targets for cancer therapy. Here, we introduce CPL304100, an innovative and highly potent FGFR1-3 kinase inhibitor demonstrating excellent in vitro biological activity. Comprehensive analyses encompassed kinase assays, cell line evaluations, PK/PD studies surface plasmon resonance studies, molecular docking, and in vivo testing in mouse xenografts. CPL304110 exhibited a distinctive binding profile to FGFR1/2/3 kinase domains, accompanied by a good safety profile and favorable ADMET parameters. Selective inhibition of tumor cell lines featuring active FGFR signaling was observed, distinguishing it from cell lines lacking FGFR aberrations (FGFR1, 2, and 3). CPL304110 demonstrated efficacy in both FGFR-dependent cell lines and patient-derived tumor xenograft (PDTX) in vivo models. Comparative analyses with FDA-approved FGFR inhibitors, erdafitinib and pemigatinib, revealed certain advantages of CPL304110 in both in vitro and in vivo assessments. Encouraging preclinical results led the way for the initiation of a Phase I clinical trial (01FGFR2018; NCT04149691) to further evaluate CPL304110 as a novel anticancer therapy.
Collapse
Affiliation(s)
- Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | | | - Monika Skupińska
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Agata Mikołajczyk
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Paulina Stańczak
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Filip Mituła
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | | | - Kinga Jastrzębska
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Damian Smuga
- Medicinal Chemistry Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Jakub Dominowski
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Monika Delis
- Medicinal Chemistry Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | | | - Wojciech Pietruś
- Medicinal Chemistry Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | | | - Karolina Dzwonek
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | | | - Abdellah Yamani
- Medicinal Chemistry Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | | | | | - Krzysztof Dubiel
- Medicinal Chemistry Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| | - Jerzy Pieczykolan
- Preclinical Development Department, Celon Pharma S.A., Kazuń Nowy, Poland
| |
Collapse
|
11
|
Wu W, Zhang L, Wang C, Xu Z, Feng C, Zhang Z, Qin D, Zhang C, Lin F. The prognostic value of the preoperative albumin/globulin and monocyte ratio in resected early-stage non-small cell lung cancer. Asian J Surg 2024; 47:118-123. [PMID: 37419798 DOI: 10.1016/j.asjsur.2023.06.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE This study investigated the prognostic value of the preoperative albumin/globulin to monocyte ratio (AGMR) in patients with resected non-small cell lung cancer (NSCLC). METHODS The study retrospectively enrolled patients with resected NSCLC from the Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University from January 2016 to December 2017. Baseline demographic and clinicopathological data were collected. The preoperative AGMR was calculated. Propensity score matching (PSM) analysis was applied. The receiver operating characteristic curve was used to determine the optimal AGMR cut-off value. The Kaplan-Meier method was used to calculate the overall survival (OS) and disease-free survival (DFS). The Cox proportional hazards regression model was used to evaluate the prognostic value of the AGMR. RESULTS A total of 305 NSCLC patients were included. The optimal AGMR value was 2.80. Before PSM. The high AGMR (>2.80) group had a significantly longer OS (41.34 + 11.32 vs. 32.03 + 17.01 months; P < 0.01) and DFS (39.00 + 14.49 vs. 28.78 + 19.13 months; P < 0.01) compared with the low AGMR (≤2.80) group. Multivariate analyses showed that AGMR (P < 0.01) in addition to sex (P < 0.05), body mass index (P < 0.01), history of respiratory diseases (P < 0.01), lymph node metastasis (P < 0.01), and tumor size (P < 0.01) were associated with OS and DFS. After PSM, AGMR remained as an independent prognostic factor for OS (hazard ratio [HR] 2.572, 95% confidence interval [CI]: 1.470-4.502; P = 0.001) and DFS (HR 2.110, 95% CI: 1.228-3.626; P = 0.007). CONCLUSION The preoperative AGMR is a potential prognostic indicator for OS and DFS in resected early-stage NSCLC.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Chen Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhenan Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Chong Feng
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhe Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Dongliang Qin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Chen Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Fengwu Lin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
12
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
13
|
He X, You R, Shi Y, Zeng Z, Tang B, Yu J, Xiao Y, Xiao R. Pyroptosis: the potential eye of the storm in adult-onset Still's disease. Inflammopharmacology 2023; 31:2269-2282. [PMID: 37429997 DOI: 10.1007/s10787-023-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Pyroptosis, a form of programmed cell death with a high pro-inflammatory effect, causes cell lysis and leads to the secretion of countless interleukin-1β (IL-1β) and IL-18 cytokines, resulting in a subsequent extreme inflammatory response through the caspase-1-dependent pathway or caspase-1-independent pathway. Adult-onset Still's disease (AOSD) is a systemic inflammatory disease with extensive disease manifestations and severe complications such as macrophage activation syndrome, which is characterized by high-grade inflammation and cytokine storms regulated by IL-1β and IL-18. To date, the pathogenesis of AOSD is unclear, and the available therapy is unsatisfactory. As such, AOSD is still a challenging disease. In addition, the high inflammatory states and the increased expression of multiple pyroptosis markers in AOSD indicate that pyroptosis plays an important role in the pathogenesis of AOSD. Accordingly, this review summarizes the molecular mechanisms of pyroptosis and describes the potential role of pyroptosis in AOSD, the therapeutic practicalities of pyroptosis target drugs in AOSD, and the therapeutic blueprint of other pyroptosis target drugs.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal 2023; 21:239. [PMID: 37723542 PMCID: PMC10506313 DOI: 10.1186/s12964-023-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, and histological pathology of gliomas is characterized by high neuro-inflammation. The inflammatory microenvironment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological properties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for glioma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma and therapeutic insights. Video Abstract.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea.
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
15
|
Liu D, Yao L, Ding X, Zhou H. Multi-omics immune regulatory mechanisms in lung adenocarcinoma metastasis and survival time. Comput Biol Med 2023; 164:107333. [PMID: 37586202 DOI: 10.1016/j.compbiomed.2023.107333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer. Despite previous research on immune mechanisms and related molecules in LUAD, the specific regulatory mechanisms of these molecules in the immune microenvironment remain unclear. Furthermore, the impact of regulatory genes or RNA on LUAD metastasis and survival time is yet to be understood. To address these gaps, we collected a substantial amount of data, including 17,226 gene expression profiles from 1,018 samples, 370,640 methylation sites from 461 samples, and 248 miRNAs from 513 samples. Our aim was to explore the genes, miRNAs, and methylation sites associated with LUAD progression. Leveraging the regulatory functions of miRNAs and methylation sites, we identified target and regulated genes. Through the utilization of LASSO and survival analysis, we pinpointed 22 key genes that play pivotal roles in the immune regulatory mechanism of LUAD. Notably, the expression levels of these 22 genes demonstrated significant discriminatory power in predicting LUAD patient survival time. Additionally, our deep learning model accurately predicted distant metastasis in LUAD patients using the expression levels of these genes. Further pathway enrichment analysis revealed that these 22 genes are significantly enriched in pathways closely linked to LUAD progression. Through Immune Infiltration Assay, we observed that T cell CD4 memory resting, monocytes, and macrophages.M2 were the three most abundant cell types in the immune microenvironment of LUAD. These cells are known to play crucial roles in tumor growth, invasion, and metastasis. Single-cell data analysis further validated the functional significance of these genes, indicating their involvement not only in immune cells but also in epithelial cells, showcasing significant differential expression. Overall, this study sheds light on the regulatory mechanisms underlying the immune microenvironment of LUAD by identifying key genes associated with LUAD progression. The findings provide insights into potential prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lulu Yao
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Ding
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Huan Zhou
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
16
|
Barsoumian HB, He K, Hsu E, Bertolet G, Sezen D, Hu Y, Riad TS, Cortez MA, Welsh JW. NLRP3 agonist enhances radiation-induced immune priming and promotes abscopal responses in anti-PD1 resistant model. Cancer Immunol Immunother 2023; 72:3003-3012. [PMID: 37289257 PMCID: PMC10412467 DOI: 10.1007/s00262-023-03471-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. The NLRP3 inflammasome is a pattern recognition receptor which is activated by both exogenous and endogenous stimuli, leading to a downstream inflammatory response. Although NLRP3 is typically recognized for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also yield an effective antitumor response when used in proper dosing and sequencing with XRT. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced the control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gyx3 fractions of stereotactic XRT was better than 5Gyx3, while 1Gyx2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.
Collapse
Affiliation(s)
- Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas S Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Shi M, Liu X, Pan W, Li N, Tang B. Anti-inflammatory strategies for photothermal therapy of cancer. J Mater Chem B 2023. [PMID: 37326239 DOI: 10.1039/d3tb00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature generated by photothermal therapy (PTT) can trigger an inflammatory response at the tumor site, which not only limits the efficacy of PTT but also increases the risk of tumor metastasis and recurrence. In light of the current limitations posed by inflammation in PTT, several studies have revealed that inhibiting PTT-induced inflammation can significantly improve the efficacy of cancer treatment. In this review, we summarize the research progress made in combining anti-inflammatory strategies to enhance the effectiveness of PTT. The goal is to offer valuable insights for developing better-designed photothermal agents in clinical cancer therapy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
18
|
Turri G, Caligola S, Ugel S, Conti C, Zenuni S, Barresi V, Ruzzenente A, Lippi G, Scarpa A, Bronte V, Guglielmi A, Pedrazzani C. Pre-diagnostic prognostic value of leukocytes count and neutrophil-to-lymphocyte ratio in patients who develop colorectal cancer. Front Oncol 2023; 13:1148197. [PMID: 37342188 PMCID: PMC10277676 DOI: 10.3389/fonc.2023.1148197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Emerging evidence is pointing towards a relevant role of immunity in cancer development. Alterations in leukocytes count and neutrophil-to-lymphocyte ratio (NLR) at diagnosis of colorectal cancer (CRC) seems to predict poor prognosis, but no data is available for the pre-diagnostic values. Methods Retrospective analysis of patients who underwent surgery for CRC at our center (2005 - 2020). 334 patients with a complete blood count dating at least 24 months prior to diagnosis were included. Changes in pre-diagnosis values of leukocytes (Pre-Leu), lymphocytes (Pre-Lymph), neutrophils (Pre-Neut), and NLR (Pre-NLR) and their correlation with overall- (OS) and cancer-related survival (CRS) were analyzed. Results Pre-Leu, Pre-Neut and Pre-NLR showed an increasing trend approaching the date of diagnosis, while Pre-Lymph tended to decrease. The parameters were tested for associations with survival after surgery through multivariable analysis. After adjusting for potential confounding factors, Pre-Leu, Pre-Neut, Pre-Lymph and Pre-NLR resulted independent prognostic factors for OS and CRS. On sub-group analysis considering the interval between blood sampling and surgery, higher Pre-Leu, Pre-Neut, and Pre-NLR and lower Pre-Lymph were associated with worse CRS, and the effect was more evident when blood samples were closer to surgery. Conclusion To our knowledge, this is the first study showing a significant correlation between pre-diagnosis immune profile and prognosis in CRC.
Collapse
Affiliation(s)
- Giulia Turri
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | | | - Stefano Ugel
- Immunology Section, University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Cristian Conti
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Silvia Zenuni
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Department of Neurological, Biomedical and Movement Sciences, Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Corrado Pedrazzani
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
19
|
De Miglio MR, Mello-Thoms C. Editorial: Reviews in breast cancer. Front Oncol 2023; 13:1161583. [PMID: 37251923 PMCID: PMC10211262 DOI: 10.3389/fonc.2023.1161583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
| | - Claudia Mello-Thoms
- Department of Radiology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
20
|
Xie H, Ruan G, Wei L, Deng L, Zhang Q, Ge Y, Song M, Zhang X, Lin S, Liu X, Yang M, Song C, Zhang X, Shi H. The inflammatory burden index is a superior systemic inflammation biomarker for the prognosis of non-small cell lung cancer. J Cachexia Sarcopenia Muscle 2023; 14:869-878. [PMID: 36852672 PMCID: PMC10067487 DOI: 10.1002/jcsm.13199] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Systemic inflammation, the most representative tumour-host interaction, plays a crucial role in disease progression and prognosis in patients with non-small cell lung cancer (NSCLC). Few studies have compared the performance of existing haematological systemic inflammation biomarkers in predicting the prognosis of NSCLC patients. The purpose of this study was to compare the prognostic value of existing systemic inflammation biomarkers and determine the optimal systemic inflammation biomarker in patients with NSCLC through a multicentre prospective study. METHODS The predictive accuracy of systemic inflammation biomarkers for prognostic assessment in NSCLC was assessed using C-statistics. Inter-group differences in survival were assessed using the log-rank test and visualized using the Kaplan-Meier method. A restricted cubic spline (RCS) curve was used to explore the association between the biomarkers and survival. Independent prognostic biomarkers for overall survival were determined using multivariable Cox proportional hazards regression analysis. Logistic regression analysis was used to determine independent predictors of 90-day outcomes, length of hospitalization, hospitalization expenses and cachexia. RESULTS The inflammatory burden index (IBI) had the highest C-statistic for predicting the prognosis of patients with NSCLC, reaching 0.640 (0.617, 0.663). Patients with a high IBI had significantly worse outcomes than those with a low IBI (35.46% vs. 57.22%; log-rank P < 0.001). The IBI was also able to differentiate the prognosis of patients with NSCLC with the same pathological stage. The RCS curve showed an inverted L-shaped dose-response relationship between the IBI and survival of patients with NSCLC. Multivariable Cox proportional hazards regression analysis showed that a high IBI was an independent risk factor for death of patients with NSCLC (hazard ratio = 1.229, 95% confidence interval [CI]: 1.131-1.335, P < 0.001). A high IBI was an independent predictor of 90-day outcomes (odds ratio [OR] = 1.789, 95% CI: 1.489-2.151, P < 0.001), prolonged hospital stays (OR = 1.560, 95% CI: 1.256-1.938, P < 0.001), high hospitalization expenses (OR = 1.476, 95% CI: 1.195-1.822, P < 0.001) and cachexia (OR = 1.741, 95%CI = 1.374-2.207, P < 0.001) in patients with NSCLC. CONCLUSIONS The IBI was independently associated with overall survival, 90-day outcomes, length of hospitalization, hospitalization expenses and cachexia in NSCLC patients. As an optimal systemic inflammation biomarker, the IBI has broad clinical application prospects in predicting the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Guotian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Lishuang Wei
- Department of Geriatric Respiratory Disease Ward, the First Affiliated HospitalGuangxi Medical UniversityNanningGuangxiChina
| | - Li Deng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Qi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Yizhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Mengmeng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Xi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Shiqi Lin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Xiaoyue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Chunhua Song
- Department of Epidemiology, College of Public HealthZhengzhou UniversityZhenzhouChina
| | - Xiaowei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| |
Collapse
|
21
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
22
|
Ansari T, Dutta G, Srivastava AK, Jagetia A, Singh D, Singh H, Bharti R, Prakash A, Kumar A. Serum cytokines in astrocytic brain tumors: a prospective study. Br J Neurosurg 2023; 37:35-40. [PMID: 33349075 DOI: 10.1080/02688697.2020.1859461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Gliomas are the most aggressive form of brain tumors responsible for the majority of brain cancer related deaths. Interleukin (IL)-6, 10 and tumor necrosis factor (TNF)- α are tumor specific proteins that are expressed in gliomas. This study aims to estimate the pre- and postoperative levels of serum markers of these cytokines to evaluate any bearing with its grade and volume. METHODS Prospective analysis of 80 patients of newly-diagnosed gliomas of any grade was carried out. Pre- and postoperative blood samples day one, one month and at 3rd month of surgery was taken and levels of IL-6, 10 and TNF- α measured and matched with 20 healthy controls. RESULTS Of the 80 patients, 3 patients had pilocytic astrocytoma, 4 had ganglioglioma, 9 had oligodendroglioma, 17 had diffuse astrocytoma, 5 had anaplastic astrocytoma while 43 had glioblastoma. Preoperative levels of IL-6 and TNF- α was found to be markedly raised in high grade gliomas. Positive correlation was seen between IL-6 with the grade of tumor and high-grade tumors were seen to be more significantly correlated with IL-6. However, preoperative IL-10 in both low and high grade of gliomas did not show any correlation with the volume and grade of tumor. CONCLUSION High level of IL-6 and TNF-α in peripheral blood in patients of high-grade gliomas provides clue to the invasiveness of the disease which can be useful for understanding the premorbid development of tumor and perhaps extrapolating to ongoing tumor response to treatment.
Collapse
Affiliation(s)
- Tariq Ansari
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Gautam Dutta
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Arvind Kumar Srivastava
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Anita Jagetia
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Daljit Singh
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Hukum Singh
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Rohit Bharti
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Anand Prakash
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Anil Kumar
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| |
Collapse
|
23
|
Patil P, Doshi G. Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases. Curr Drug Targets 2023; 24:1166-1183. [PMID: 38164730 DOI: 10.2174/0113894501267496231102114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
24
|
Zhong Y, Li T, Zhu Y, Zhou J, Akinade TO, Lee J, Liu F, Bhansali D, Lao YH, Quek CH, Shao D, Leong KW. Targeting Proinflammatory Molecules Using Multifunctional MnO Nanoparticles to Inhibit Breast Cancer Recurrence and Metastasis. ACS NANO 2022; 16:20430-20444. [PMID: 36382718 DOI: 10.1021/acsnano.2c06713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) is an effective treatment modality that is highly selective for tumor suppression and is a hopeful alternative to traditional cancer therapy. However, PTT-induced inflammatory responses may result in undesirable side effects including increased risks of tumor recurrence and metastasis. Here we developed multifunctional MnO nanoparticles as scavengers of proinflammatory molecules to alleviate the PTT-induced inflammatory response. The MnO nanoparticles improve the PTT therapy by (1) binding and scavenging proinflammatory molecules to inhibit the proinflammatory molecule-induced Toll-like receptors (TLR) activation and nuclear factor kappa B (NF-κB) signaling; (2) inhibiting activated macrophage-induced macrophage recruitment; and (3) inhibiting tumor cell migration and invasion. In vivo experimental results showed that further treatment with MnO nanoparticles after laser therapy not only inhibited the PTT-induced inflammatory response and primary tumor recurrence but also significantly reduced tumor metastasis due to the scavenging activity. These findings suggest that MnO nanoparticles hold the potential for mitigating the therapy-induced severe inflammatory response and inhibiting tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511436, China
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jie Zhou
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Department of Breast Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Tolu O Akinade
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jounghyun Lee
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Feng Liu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Chai Hoon Quek
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Dan Shao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
26
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
27
|
Delprat V, Huart C, Feron O, Soncin F, Michiels C. The impact of macrophages on endothelial cells is potentiated by cycling hypoxia: Enhanced tumor inflammation and metastasis. Front Oncol 2022; 12:961753. [PMID: 36248978 PMCID: PMC9554541 DOI: 10.3389/fonc.2022.961753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cycling hypoxia (cyH), neo-angiogenesis, and tumor-associated macrophages are key features of the tumor microenvironment. In this study, we demonstrate that cyH potentiates the induction by unpolarized and M1-like macrophages of endothelial inflammatory phenotype and adhesiveness for monocytes and cancer cells. This process triggers a positive feedback loop sustaining tumor inflammation. This work opens the door for innovative therapeutic strategies to treat tumor inflammation and metastasis. In cancers, the interaction between macrophages and endothelial cells (ECs) regulates tumor inflammation and metastasis. These cells are both affected by cycling hypoxia (cyH), also called intermittent hypoxia, a feature of the tumor microenvironment. cyH is also known to favor tumor inflammation and metastasis. Nonetheless, the potential impact of cyH on the dialog between macrophages and ECs is still unknown. In this work, the effects of unpolarized, M1-like, and M2-like macrophages exposed to normoxia, chronic hypoxia (chH), and cyH on endothelial adhesion molecule expression, pro-inflammatory gene expression, and EC adhesiveness for monocytes and cancer cells were investigated. cyH increased the ability of unpolarized and M1-like macrophages to induce EC inflammation and to increase the expression of the EC endothelial adhesion molecule ICAM1, respectively. Unpolarized, M1-like, and M2-like macrophages were all able to promote EC adhesive properties toward cancer cells. Furthermore, the ability of macrophages (mostly M1-like) to shift EC phenotype toward one allowing cancer cell and monocyte adhesion onto ECs was potentiated by cyH. These effects were specific to cyH because they were not observed with chH. Together, these results show that cyH amplifies the effects of macrophages on ECs, which may promote tumor inflammation and metastasis.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Camille Huart
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH 5349), Institut de recherche expérimentale et clinique, UCLouvain, Brussels, Belgium
| | - Fabrice Soncin
- Laboratory for Integrated Micro Mechatronics Systems/Centre National de la Recherche scientifique- International Collaborative Research Center (LIMMS/CNRS-IIS) (Unité Mixte Internationale (UMI) 2820), Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Centre National de la Recherche Scientifique/International Collaborative Research Center (CNRS/IIS/COL) Lille University Seeding Microsystems in Medecine in Lille (SMMiL) – European-Japanese Technologies against Cancer-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, Cedex, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de Lille, CNRS, Lille, France
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
- *Correspondence: Carine Michiels,
| |
Collapse
|
28
|
Song C, Pan S, Li D, Hao B, Lu Z, Lai K, Li N, Geng Q. Comprehensive analysis reveals the potential value of inflammatory response genes in the prognosis, immunity, and drug sensitivity of lung adenocarcinoma. BMC Med Genomics 2022; 15:198. [PMID: 36117156 PMCID: PMC9484176 DOI: 10.1186/s12920-022-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although the relationship between inflammatory response and tumor has been gradually recognized, the potential implications of of inflammatory response genes in lung adenocarcinoma (LUAD) remains poorly investigated. Methods RNA sequencing and clinical data were obtained from multiple independent datasets (GSE29013, GSE30219, GSE31210, GSE37745, GSE42127, GSE50081, GSE68465, GSE72094, TCGA and GTEx). Unsupervised clustering analysis was used to identify different tumor subtypes, and LASSO and Cox regression analysis were applied to construct a novel scoring tool. We employed multiple algorithms (ssGSEA, CIBERSORT, MCP counter, and ESTIMATE) to better characterize the LUAD tumor microenvironment (TME) and immune landscapes. GSVA and Metascape analysis were performed to investigate the biological processes and pathway activity. Furthermore, ‘pRRophetic’ R package was used to evaluate the half inhibitory concentration (IC50) of each sample to infer drug sensitivity. Results We identified three distinct tumor subtypes, which were related to different clinical outcomes, biological pathways, and immune characteristics. A scoring tool called inflammatory response gene score (IRGS) was established and well validated in multiple independent cohorts, which could well divide patients into two subgroups with significantly different prognosis. High IRGS patients, characterized by increased genomic variants and mutation burden, presented a worse prognosis, and might show a more favorable response to immunotherapy and chemotherapy. Additionally, based on the cross-talk between TNM stage, IRGS and patients clinical outcomes, we redefined the LUAD stage, which was called ‘IRGS-Stage’. The novel staging system could distinguish patients with different prognosis, with better predictive ability than the conventional TNM staging. Conclusions Inflammatory response genes present important potential value in the prognosis, immunity and drug sensitivity of LUAD. The proposed IRGS and IRGS-Stage may be promising biomarkers for estimating clinical outcomes in LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01340-7.
Collapse
|
29
|
Zhuo S, Yang L, Chen S, Tang C, Li W, Gao Z, Feng J, Yang K. Ferroptosis: A potential opportunity for intervention of pre-metastatic niche. Front Oncol 2022; 12:980620. [PMID: 36158661 PMCID: PMC9500500 DOI: 10.3389/fonc.2022.980620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
It is widely thought that the tumor microenvironment (TME) provides the "soil" for malignant tumors to survive. Prior to metastasis, the interaction at the host site between factors secreted by primary tumors, bone-marrow-derived cells, with stromal components initiates and establishes a pre-metastatic niche (PMN) characterized by immunosuppression, inflammation, angiogenesis and vascular permeability, as well as lymphangiogenesis, reprogramming and organotropism. Ferroptosis is a non-apoptotic cell death characterized by iron-dependent lipid peroxidation and metabolic constraints. Ferroptotic cancer cells release various signal molecules into the TME to either suppress or promote tumor progression. This review highlights the important role played by ferroptosis in PMN, focusing on the relationship between ferroptosis and PMN characteristics, and discusses future research directions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Caiying Tang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weicheng Li
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhenzhong Gao
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jigao Feng
- Department of Neurosurgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kun Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
30
|
Chen J, Wei Y, Yang W, Huang Q, Chen Y, Zeng K, Chen J. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front Oncol 2022; 12:903800. [PMID: 35924148 PMCID: PMC9341216 DOI: 10.3389/fonc.2022.903800] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is one of the leading causes of mortality in females. Over the past decades, intensive efforts have been made to uncover the pathogenesis of breast cancer. Interleukin-6 (IL-6) is a pleiotropic factor which has a vital role in host defense immunity and acute stress. Moreover, a wide range of studies have identified the physiological and pathological roles of IL-6 in inflammation, immune and cancer. Recently, several IL-6 signaling pathway-targeted monoclonal antibodies have been developed for cancer and immune therapy. Combination of IL-6 inhibitory antibody with other pathways blockage drugs have demonstrated promising outcome in both preclinical and clinical trials. This review focuses on emerging studies on the strong linkages of IL-6/IL-6R mediated regulation of inflammation and immunity in cancer, especially in breast cancer.
Collapse
Affiliation(s)
- Juan Chen
- Department of Medicine and Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, Hong Kong SAR, China
| | - Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yanghui Wei, ; Jiawei Chen,
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingnan Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kai Zeng
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yanghui Wei, ; Jiawei Chen,
| |
Collapse
|
31
|
Lu Y, Guan T, Xu S, Chen YE, Shen Q, Zhu S, Liu Y, Liang J, Hou S. Asperuloside inhibited epithelial-mesenchymal transition in colitis associated cancer via activation of vitamin D receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154070. [PMID: 35523114 DOI: 10.1016/j.phymed.2022.154070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Asperuloside is a natural compound extracted from various herbs with several bioactivities. Its effects on anti-inflammation and anti-tumor indicated that asperuloside might prevent colorectal cancer developing from inflammatory bowel diseases (IBD). But there were few reports about the efficacy and mechanism of asperuloside on improving colorectal cancer. It has been reported that vitamin D receptor (VDR) could regulate the expression of SMAD3. In previous study, asperuloside could significantly improve the expression of VDR and reduced Smad3 mRNA in IEC-6 cell. PURPOSE The present study was aimed to investigate the potential mechanism of asperuloside on inhibiting epithelial-mesenchymal transition (EMT) in colitis associated cancer. STUDY DESIGN First, in LPS-injured IEC-6 cell, asperuloside inhibited phosphorylated p65 (p-p65) level, improved VDR expression and reduced Smad3 mRNA. Second, we wonder the relationship between VDR signaling and nucleus factor-kappaB (NF-κB) signaling during asperuloside on reducing Smad3 mRNA. And then, the effect of asperuloside on inhibiting EMT development through VDR/Smad3 was investigated. Finally, we testified the effect of asperuloside on protecting against colitis associated cancer (CAC) by inhibiting EMT development through VDR/Smad3. METHODS Pyrrolidinedithiocarbamate ammonium (PDTC) was used for established NF-κB-inhibited IEC-6 cell. This cell was applied for investigating the relationship between NF-κB and VDR of asperuloside on inhibiting Smad3. VDR-inhibited cell was established by small interfering RNA (siRNA) of VDR and was employed to investigate the role of VDR for asperuloside on decreasing Smad3. Transforming growth factor β1 (TGFβ1) was used for inducing EMT/fibrosis in IEC-6 cell. TGFβ1-stimulated cell was used for testifying the effect of asperuloside on inhibiting EMT development. AOM/DSS-induced CAC was established to investigate the effect of asperuloside on suppressing cancer development. RESULTS Asperuloside inhibited the level of p-p65 which was up-regulated by LPS. Asperuloside could up-regulate VDR signaling and reduce Smad3 mRNA in NF-κB-knockdown IEC-6 cells. Asperuloside failed to reduce Smad3 mRNA due to VDR knockdown, which implied that asperuloside might down-regulate Smad3 mRNA dependently on activation of VDR signaling and independently on inhibiting NF-κB signaling. Asperuloside exhibited significant prevention of EMT development in TGFβ1-induced IEC-6 cell (EMT cell) and mice CAC. Asperuloside reduced the transform of epithelial phenotype into motile mesenchymal phenotype in EMT cell along with decreasing levels of EMT markers by inhibiting Smad3 mRNA via activation of VDR. In mice with CAC, expression of VDR in colon was improved by asperuloside. Symptoms of colitis, tumor number and tumor size were significantly inhibited by asperuloside. Suppressed EMT development was determined by reduced α-SMA expression and decreased mRNAs of several EMT markers. CONCLUSION Asperuloside might prevent CAC through inhibiting EMT development via regulation of VDR/Smad3 pathway.
Collapse
Affiliation(s)
- Yingyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuoxi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Er Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
32
|
Identification of an inflammatory response signature associated with prognostic stratification and drug sensitivity in lung adenocarcinoma. Sci Rep 2022; 12:10110. [PMID: 35710585 PMCID: PMC9203558 DOI: 10.1038/s41598-022-14323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has confirmed the close connection between inflammatory response and tumorigenesis. However, the relationship between inflammatory response genes (IRGs) and the prognosis of lung adenocarcinoma (LUAD) as well as the response to drug therapy remains poorly investigated. Here, we comprehensively analyzed IRGs RNA expression profiling and clinical features of over 2000 LUAD patients from 12 public datasets. The Cox regression method and LASSO analysis were combined to develop a novel IRG signature for risk stratification and drug efficacy prediction in LUAD patients. Enriched pathways, tumor microenvironment (TME), genomic and somatic mutation landscape in different subgroups were evaluated and compared with each other. This established IRG signature including 11 IRGs (ADM, GPC3, IL7R, NMI, NMURI, PSEN1, PTPRE, PVR, SEMA4D, SERPINE1, SPHK1), could well categorize patients into significantly different prognostic subgroups, and have better predictive in independently assessing survival as compared to a single clinical factor. High IRG scores (IRGS) patients might benefit more from immunotherapy and chemotherapy. Comprehensive analysis uncovered significant differences in enriched pathways, TME, genomic and somatic mutation landscape between the two subgroups. Additionally, integrating the IRGS and TNM stage, a reliable prognostic nomogram was developed to optimize survival prediction, and validated in an independent external dataset for clinical application. Take together, the proposed IRG signature in this study is a promising biomarker for risk stratification and drug efficacy prediction in LUAD patients. This study may be meaningful for explaining the responses of clinical therapeutic drugs and providing new strategies for administrating sufferer of LUAD.
Collapse
|
33
|
Zeng Z, Liu Y, Wen Q, Li Y, Yu J, Xu Q, Wan W, He Y, Ma C, Huang Y, Yang H, Jiang O, Li F. Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages. Drug Deliv 2021; 28:943-956. [PMID: 33988472 PMCID: PMC8128207 DOI: 10.1080/10717544.2021.1921076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
This study aimed to develop an effective therapy against M2 macrophages and to investigate the effects of imidazole and mannose modified carboxymethyl chitosan-nanoparticles (MIC-NPs) on tumor growth and antitumor immune responses. MIC-NPs were constructed and analyzed through 1H NMR, nano-laser particle size analyzer, and transmission electron microscopy. The nanoparticles were mainly distributed in 75-85 nm, and zeta potential was 1.5 mV. Cytotoxicity studies in vitro and in vivo indicated that MIC-NPs were safe. The targeting effect of MIC-NPs on M2 macrophages was observed through fluorescence microscope and microplate system. The results demonstrated the uptake of a large amount of FITC-loaded MIC-NPs by M2. Cell growth inhibition experiments showed that MIC-NPs significantly inhibited M2 through cell apoptosis. The evaluation of anti-tumor activity in vivo showed that MIC-NPs could accumulate in the tumor site to exert an anti-tumor effect. Flow cytometry showed that the proportion of M2 macrophages at the tumor site in the experimental group was significantly lower than that in the control group, while the Treg cells and cytotoxic T cells (CTL) were found to be increased. PCR detection showed that the cDNA of FIZZ, MR, TGF-β, and arginase, closely related to M2 macrophages, in the experimental group, was significantly lower than that in the control group, but there was no significant difference in the cDNA of Treg cell characteristic Foxp3 between the two groups. These results suggest that MIC-NPs are expected to provide a new and effective treatment for tumor.
Collapse
Affiliation(s)
- Zheng Zeng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Liu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yixian Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Qiang Xu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Wenwu Wan
- Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Yu He
- Department of Oncology, The Fourth People's Hospital of Neijiang, Neijiang, China
| | - Chen Ma
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yan Huang
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Helin Yang
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Ou Jiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Joung EJ, Cao L, Lee B, Gwon WG, Park SH, Kim HR. Sargahydroquinoic Acid, a Cyclooxygenase-2 Inhibitor, Attenuates Inflammatory Responses by Regulating NF-κB Inactivation and Nrf2 Activation in Lipopolysaccharide-Stimulated Cells. Inflammation 2021; 44:2120-2131. [PMID: 34050497 DOI: 10.1007/s10753-021-01488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Sargahydroquinoic acid (SHQA) is a major plastoquinone in Sargassum macrocarpum and has shown the capacity to prevent inflammation and oxidative stress. However, the protective mechanisms were unclear. The molecular mechanisms of SHQA on ameliorating inflammation and oxidative stress have been investigated, using lipopolysaccharide (LPS)-stimulated macrophages. SHQA was isolated and purified from S. macrocarpum and the anti-inflammatory mechanisms were explored using LPS-stimulated murine macrophage RAW 264.7 cells. SHQA did not change the expression of cyclooxygenase-2 (COX-2) but inhibited the activity of COX-2. As a result, SHQA significantly diminished the secretions of nitric oxide (NO), prostaglandin E2 (PGE2), and multiple pro-inflammatory cytokines. LPS-induced activation of nuclear factor-κB (NF-κB) was inhibited by SHQA by preventing the degradation of inhibitor κB-α (IκBα). NF-κB activation was also downregulated by the inhibition of Akt phosphorylation in LPS-stimulated cells. Furthermore, SHQA induced the expression of heme oxygenase 1 via Nrf2 activation. These results indicated that SHQA inhibited LPS-induced expressions of inflammatory mediators via suppressing the Akt-mediated NF-κB pathway as well as upregulating the Nrf2/HO-1 pathway. Our findings suggest that SHQA might be a potential therapeutic agent in various inflammatory diseases.
Collapse
Affiliation(s)
- Eun-Ji Joung
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Lei Cao
- Institute of Marine Life Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Wi-Gyeong Gwon
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
35
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
36
|
Yan P, Shu X, Zhong H, Chen P, Gong H, Han S, Tu Y, Shuai X, Li J, Liu LH, Wang P. A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy. Biomater Sci 2021; 9:5025-5034. [PMID: 34109950 DOI: 10.1039/d1bm00576f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photothermal therapy (PTT) has drawn great attention in cancer treatment because of its minimal invasiveness and high spatiotemporal selectivity, but it still encounters severe obstacles like heat-resistance, metastasis and recurrence. A key reason for the treatment failure is the highly inflammatory tumor microenvironment caused by hyperthermia. A simultaneous anti-inflammatory therapy alongside the PTT has great potential for overcoming the drawbacks of PTT; however, it has been less reported and further study is urgently needed. In addition, as many inorganic photothermal agents have no inherent imaging capability, diagnostic strategies should be introduced to help identify cancerous lesions and find the best treatment time period for PTT. Herein, we developed a versatile theranostic nanoagent (named T-lipos-CPAuNCs) for synergistic multimodal imaging-guided photothermal/anti-inflammatory cancer therapy. Perfluorohexane (PFH) loaded AuNCs and the anti-inflammatory drug celecoxib were encapsulated into the tumor-targeting cyclic Arg-Gly-Asp (cRGD) peptide modified liposomes to form T-lipos-CPAuNCs. The T-lipos-CPAuNCs accumulated in the tumor tissue and selectively targeted the cancer cells, and converted photo to thermal energy under near-infrared (NIR) laser irradiation to kill the cancer cells by PTT. The high temperature further accelerated the release of celecoxib to exert an anti-inflammatory effect, while on the other hand led to liquid to gas phase transition of PFH to facilitate ultrasound (US) imaging. The T-lipos-CPAuNCs also exhibited photoacoustic (PA) imaging capability. In vitro and in vivo experiments established that under the guidance of multimodal imaging, T-lipos-CPAuNCs significantly suppressed the tumor growth by PTT and prevented tumor metastasis with non-apparent tumor inflammation. The developed theranostic nanosystem (T-lipos-CPAuNCs) shows great potential for PA/US multimodal imaging guided photothermal/anti-inflammatory combination cancer therapy.
Collapse
Affiliation(s)
- Ping Yan
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Xian Shu
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Hao Zhong
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Peiling Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Haiyan Gong
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Shisong Han
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yingfeng Tu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Li
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Li-Han Liu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| |
Collapse
|
37
|
Lo B, Zhao M, Vind I, Burisch J. The Risk of Extraintestinal Cancer in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis of Population-based Cohort Studies. Clin Gastroenterol Hepatol 2021; 19:1117-1138.e19. [PMID: 32801010 DOI: 10.1016/j.cgh.2020.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with Crohn's disease (CD) and ulcerative colitis (UC) are at increased risk of developing intestinal cancer. However, less is known about the risk of extraintestinal cancers (EICs). The aim of this study was to conduct a systematic review and meta-analysis of population-based cohorts assessing the risk of EICs in inflammatory bowel disease (IBD) patients. METHODS Only population-based studies reporting on the prevalence or incidence of EICs were included. In total, 884 studies were screened and those included were assessed for quality. Eligible studies were pooled for length of follow-up evaluation, events in the IBD population, and events or expected events in a control population for the meta-analyses. RESULTS In total, 40 studies were included in the systematic review and 15 studies were included in the meta-analysis. The overall risk of EICs was found to be increased in both CD (incidence rate ratio [IRR]: 1.43 [CI, 1.26, 1.63]) and UC (IRR: 1.15 [1.02, 1.31]) patients. Both CD and UC patients presented with an increased risk of skin (IRR: CD, 2.22 [1.41-3.48]; UC, 1.38 [1.12-1.71]) and hepatobiliary (IRR: CD, 2.31 [1.25-4.28]; UC, 2.05 [1.52-2.76]) malignancies. Furthermore, CD patients showed an increased risk of hematologic (IRR, 2.40 [1.81-3.18]) and lung (IRR, 1.53 [1.23-1.91]) cancers. These increased risks were present despite treatment with immunosuppressives. CONCLUSIONS This systematic review and meta-analysis shows that both CD and UC patients are at an increased risk of developing EICs, both overall and at specific sites. However, additional studies with longer follow-up evaluation are needed to assess the true risk of EICs posed by IBD.
Collapse
Affiliation(s)
- Bobby Lo
- Gastrounit, Medical Section, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Mirabella Zhao
- Gastrounit, Medical Section, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Ida Vind
- Gastrounit, Medical Section, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Johan Burisch
- Gastrounit, Medical Section, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
38
|
Fonseca LRS, Silva GR, Luís Â, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. Sweet Cherries as Anti-Cancer Agents: From Bioactive Compounds to Function. Molecules 2021; 26:2941. [PMID: 34063349 PMCID: PMC8156356 DOI: 10.3390/molecules26102941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sweet cherries (Prunus avium L.) are among the most appreciated fruits worldwide because of their organoleptic properties and nutritional value. The accurate phytochemical composition and nutritional value of sweet cherries depends on the climatic region, cultivar, and bioaccessibility and bioavailability of specific compounds. Nevertheless, sweet cherry extracts are highly enriched in several phenolic compounds with relevant bioactivity. Over the years, technological advances in chemical analysis and fields as varied as proteomics, genomics and bioinformatics, have allowed the detailed characterization of the sweet cherry bioactive phytonutrients and their biological function. In this context, the effect of sweet cherries on suppressing important events in the carcinogenic process, such as oxidative stress and inflammation, was widely documented. Interestingly, results from our research group and others have widened the action of sweet cherries to many hallmarks of cancer, namely metabolic reprogramming. The present review discusses the anticarcinogenic potential of sweet cherries by addressing their phytochemical composition, the bioaccessibility and bioavailability of specific bioactive compounds, and the existing knowledge concerning the effects against oxidative stress, chronic inflammation, deregulated cell proliferation and apoptosis, invasion and metastization, and metabolic alterations. Globally, this review highlights the prospective use of sweet cherries as a dietary supplement or in cancer treatment.
Collapse
Affiliation(s)
- Lara R. S. Fonseca
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Gonçalo R. Silva
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Ângelo Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Henrique J. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Sara Correia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Cátia V. Vaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Ana P. Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| | - Sílvia Socorro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-501 Covilhã, Portugal; (L.R.S.F.); (Â.L.); (H.J.C.); (S.C.); (C.V.V.)
| |
Collapse
|
39
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1123] [Impact Index Per Article: 280.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Fan Y, Guan W, Huang R, Lin SY, Song Y, Lu S, Kang L, Yang Q, Lang J, Zhang P. Clinical characteristics and survival outcomes of ascending, descending and mixed types of nasopharyngeal carcinoma in the non-endemic areas of china: A propensity score matching analysis. Cancer Med 2020; 9:9315-9325. [PMID: 33058559 PMCID: PMC7774743 DOI: 10.1002/cam4.3537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare the clinical characteristics and survival outcomes of patients with ascending type (type A), descending type (type D), and mixed type (type AD) of nasopharyngeal carcinoma (NPC) in non‐endemic areas. Materials and methods The cohort included 628 patients diagnosed with type A, type D, and type AD of NPC between January 2009 and December 2014. Type A was defined as T3‐4 N0‐1, type D as T0‐1 N2‐3, and type AD as T3‐4 N2‐3. Propensity score matching (PSM) was performed to balance clinical factors and match patients. Kaplan‐Meier methods and Cox proportional hazards models were used to evaluate the impact of different NPC types on survival outcomes. Results There were 145 patients with type A, 194 with type D, and 289 with type AD. However, after PSM, there were only 130 patients with each type. Compared with patients with type A, those with type D had lower 5‐year disease‐specific survival (96.9% vs 91.5%) and distant metastasis‐free survival (92.3% vs 77.7%) and higher local relapse‐free survival (88.5% vs 96.9%) (p < 0.05 for all). Patients with type AD may have an increased risk of disease progression (progression‐free survival, 56.9% vs 74.6% and 66.2%) and death (overall survival [OS], 76.9% vs 85.4% and 85.4%) (p < 0.05 for all) compared to patients with the other two types of tumors. We further analyzed the metastasis trend. Similar metastasis patterns were observed in types AD and D, and types AD and A had similar recurrence trends. The mortality rate of patients with types AD and D in the first 3 years after metastasis was remarkably higher than that of patients with type A. Conclusions In non‐endemic areas of China, metastases and recurrence patterns differed across tumor types. Type AD has the worst OS, and the clinical process is more radical. Type D has a lower recurrence rate, higher metastasis, and disease‐related mortality rates, and poorer prognosis after metastasis than type A.
Collapse
Affiliation(s)
- Yixin Fan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Wenqiang Guan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Rui Huang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Stefan Yujie Lin
- Department of Computer Science and Engineering, Office for Student Affairs, University of Minnesota-Twin Cities, Economics Institute, School of Statistics, Minneapolis, MN, USA.,Viterbi School of Engineering Applied Data Science, University of Southern California, Los Angeles, CA, USA
| | - Yanqiong Song
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Le Kang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Qin Yang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
41
|
Sonnessa M, Cioffi A, Brunetti O, Silvestris N, Zito FA, Saponaro C, Mangia A. NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer. Front Oncol 2020; 10:1587. [PMID: 33014808 PMCID: PMC7498644 DOI: 10.3389/fonc.2020.01587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer onset, progression and response to treatment. It is characterized by an intricate interaction of immune cells and cytokines involved in tumor development. Among these, inflammasomes are oligomeric molecular platforms and play a key role in inflammatory response and immunity. Inflammasome activation is initiated upon triggering of pattern recognition receptors (Toll-like receptors, NOD-like receptors, and Absent in melanoma like receptors), on the surface of immune cells with the recruitment of caspase-1 by an adaptor apoptosis-associated speck-like protein. This structure leads to the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and participates in different biological processes exerting its effects. To date, the Nod-Like Receptor Protein 3 (NLRP3) inflammasome has been well studied and its involvement has been established in different cancer diseases. In this review, we discuss the structure, biology and mechanisms of inflammasomes with a special focus on the specific role of NLRP3 in breast cancer (BC) and in the sub-group of triple negative BC. The NLRP3 inflammasome and its down-stream pathways could be considered novel potential tumor biomarkers and could open new frontiers in BC treatment.
Collapse
Affiliation(s)
- Margherita Sonnessa
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Antonella Cioffi
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco A. Zito
- Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| |
Collapse
|
42
|
Li CC, Lin CB, Chu SC, Huang WH, Lee JJ, Yang GG, Wang TF, Wu YF. Lymphocyte percentage and platelet count correlate with the treatment outcome to tyrosine kinase inhibitors in epidermal growth factor receptor-mutated lung adenocarcinoma. Medicine (Baltimore) 2020; 99:e21275. [PMID: 32702917 PMCID: PMC7373628 DOI: 10.1097/md.0000000000021275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This observational study evaluated the treatment outcomes of clinical factors on the patients with lung adenocarcinoma with epidermal growth factor receptor mutations who received tyrosine kinase inhibitors as first-line treatment.Patients with stage IIIb or IV lung adenocarcinoma with mutated epidermal growth factor receptor were enrolled retrospectively between March 2010 and December 2017. The hematologic markers on progression-free survival (PFS) and overall survival (OS) were analyzed.Totally 190 patients were enrolled. In univariate analysis by hematologic markers, lower lymphocyte percentage and higher platelet count were associated with significantly poor PFS and OS. Multivariate analysis showed lower lymphocyte percentage was independent poor prognostic factors for PFS and OS. Higher platelet count was an independent poor prognostic factor for OS only.Patients with lung adenocarcinoma receiving tyrosine kinase inhibitors with lower lymphocyte percentage and higher platelet count had poorer prognoses compared with other patients.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology
- Center of Stem Cell & Precision Medicine
| | - Chih-Bin Lin
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- Department of Medicine, College of Medicine, Tzu Chi University
| | - Sung-Chao Chu
- Department of Hematology and Oncology
- Department of Medicine, College of Medicine, Tzu Chi University
| | - Wei-Han Huang
- Department of Hematology and Oncology
- Department of Clinical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Jen-Jyh Lee
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- Department of Medicine, College of Medicine, Tzu Chi University
| | - Gee-Gwo Yang
- Division of Chest Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- Department of Medicine, College of Medicine, Tzu Chi University
| | - Tso-Fu Wang
- Department of Hematology and Oncology
- Department of Medicine, College of Medicine, Tzu Chi University
| | - Yi-Feng Wu
- Department of Hematology and Oncology
- Department of Medicine, College of Medicine, Tzu Chi University
| |
Collapse
|
43
|
Cirotti C, Contadini C, Barilà D. SRC Kinase in Glioblastoma News from an Old Acquaintance. Cancers (Basel) 2020; 12:cancers12061558. [PMID: 32545574 PMCID: PMC7352599 DOI: 10.3390/cancers12061558] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most recalcitrant brain tumors characterized by a tumor microenvironment (TME) that strongly supports GBM growth, aggressiveness, invasiveness, and resistance to therapy. Importantly, a common feature of GBM is the aberrant activation of receptor tyrosine kinases (RTKs) and of their downstream signaling cascade, including the non-receptor tyrosine kinase SRC. SRC is a central downstream intermediate of many RTKs, which triggers the phosphorylation of many substrates, therefore, promoting the regulation of a wide range of different pathways involved in cell survival, adhesion, proliferation, motility, and angiogenesis. In addition to the aforementioned pathways, SRC constitutive activity promotes and sustains inflammation and metabolic reprogramming concurring with TME development, therefore, actively sustaining tumor growth. Here, we aim to provide an updated picture of the molecular pathways that link SRC to these events in GBM. In addition, SRC targeting strategies are discussed in order to highlight strengths and weaknesses of SRC inhibitors in GBM management, focusing our attention on their potentialities in combination with conventional therapeutic approaches (i.e., temozolomide) to ameliorate therapy effectiveness.
Collapse
Affiliation(s)
- Claudia Cirotti
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.C.); (C.C.)
- Laboratory of Signal Transduction, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
| | - Claudia Contadini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.C.); (C.C.)
- Laboratory of Signal Transduction, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
| | - Daniela Barilà
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.C.); (C.C.)
- Laboratory of Signal Transduction, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-065-0170-3168
| |
Collapse
|
44
|
Chen QG, Zhang L, Sun F, Li SQ, You XH, Jiang YH, Yang WM, Zhong QH, Wang XZ, Ying HQ. Elevated FPR confers to radiochemoresistance and predicts clinical efficacy and outcome of metastatic colorectal cancer patients. Aging (Albany NY) 2020; 11:1716-1732. [PMID: 30897064 PMCID: PMC6461181 DOI: 10.18632/aging.101864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Association of chronic inflammation, primary tumor sidedness, adjuvant therapy and survival of metastatic colorectal cancer (mCRC) remains unclear. Circulating inflammatory cell, fibrinogen (Fib), albumin (Alb), pre-albumin (pAlb), Alb/Fib (AFR) and Fib/pAlb (FPR) were detected, and clinical outcome was obtained to determine the predictive, prognostic and monitoring roles of them in discovery and validation cohort. We found that elevated FPR, low AFR and poor survival was observed in right-sided mCRC comparing to the left-sided disease, elevated FPR harbored the highest areas under curve to independently predict poor progression-free survival and overall survival in overall and left-sided mCRC case in two cohorts. No survival difference was examined between the two-sided patients in subgroups stratified by FPR. Radiochemoresistance was observed in high FPR case. However, the patient could benefit from bevacizumab plus radiochemotherapy. Low FPR patient showed the best survival with treatment of palliative resection plus radiochemotherapy. Moreover, circulating FPR was significantly increased ahead imaging confirmed progression and it reached up to the highest value within three months before death. Additionally, c-indexes of the prognostic nomograms including FPR were significantly higher than those without it. These findings indicated that FPR was an effective and independent factor to predict progression, prognosis and to precisely identify the patient to receive optimal therapeutic regimen.
Collapse
Affiliation(s)
- Qing-Gen Chen
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Lei Zhang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Fan Sun
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Shu-Qi Li
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Xia-Hong You
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Yu-Huan Jiang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Wei-Ming Yang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Qiong-Hui Zhong
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| | - Hou-Qun Ying
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchan, Jiangxi 330006, China
| |
Collapse
|
45
|
Wang SB, Zhang C, Ye JJ, Zou MZ, Liu CJ, Zhang XZ. Near-Infrared Light Responsive Nanoreactor for Simultaneous Tumor Photothermal Therapy and Carbon Monoxide-Mediated Anti-Inflammation. ACS CENTRAL SCIENCE 2020; 6:555-565. [PMID: 32342005 PMCID: PMC7181317 DOI: 10.1021/acscentsci.9b01342] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 05/06/2023]
Abstract
Photothermal therapy (PTT) is an effective treatment modality with high selectivity for tumor suppression. However, the inflammatory responses caused by PTT may lead to adverse reactions including tumor recurrence and therapeutic resistance, which are regarded as major problems for PTT. Here, a near-infrared (NIR) light-responsive nanoreactor (P@DW/BC) is fabricated to simultaneously realize tumor PTT and carbon monoxide (CO)-mediated anti-inflammatory therapy. Defective tungsten oxide (WO3) nanosheets (DW NSs) are decorated with bicarbonate (BC) via ferric ion-mediated coordination and then modified with polyethylene glycol (PEG) on the surface to fabricate PEG@DW/BC or P@DW/BC nanosheets. Upon 808 nm NIR laser irradiation, the DW content in P@DW/BC can serve as not only a photothermal agent to realize photothermal conversion but also a photocatalyst to convert carbon dioxide (CO2) to CO. In particular, the generated heat can also trigger the decomposition of BC to produce CO2 near the NSs, thus enhancing the photocatalytic CO generation. Benefiting from the efficient hyperthermia and CO generation under single NIR laser irradiation, P@DW/BC can realize effective thermal ablation of tumor and simultaneous inhibition of PTT-induced inflammation.
Collapse
Affiliation(s)
- Shi-Bo Wang
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute
for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Cheng Zhang
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jing-Jie Ye
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Mei-Zhen Zou
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute
for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Chuan-Jun Liu
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute
for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
46
|
Sikpa D, Whittingstall L, Fouquet JP, Radulska A, Tremblay L, Lebel R, Paquette B, Lepage M. Cerebrovascular inflammation promotes the formation of brain metastases. Int J Cancer 2020; 147:244-255. [PMID: 32011730 DOI: 10.1002/ijc.32902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022]
Abstract
Brain metastases are the most prevalent intracranial malignancy. Patient outcome is poor and treatment options are limited. Hence, new avenues must be explored to identify potential therapeutic targets. Inflammation is a known critical component of cancer progression. Intratumoral inflammation drives progression and leads to the release of circulating tumor cells (CTCs). Inflammation at distant sites promotes adhesion of CTCs to the activated endothelium and then initiates the formation of metastases. These interactions mostly involve cell adhesion molecules expressed by activated endothelial cells. For example, the vascular cell adhesion molecule-1 (VCAM-1) is known to promote transendothelial migration of cancer cells in different organs. However, it is unclear whether a similar mechanism occurs within the specialized environment of the brain. Our objective was therefore to use molecular imaging to assess the potential role of VCAM-1 in promoting the entry of CTCs into the brain. First, magnetic resonance imaging (MRI) and histological analyses revealed that cerebrovascular inflammation induced by intracranial injection of lipopolysaccharide significantly increased the expression of VCAM-1 in the Balb/c mouse brain. Next, intracardiac injection of 4T1 mammary carcinoma cancer cells in animals with cerebrovascular inflammation yielded a higher brain metastasis burden than in the control animals. Finally, blocking VCAM-1 prior to 4T1 cells injection prevented this increased metastatic burden. Here, we demonstrated that by contributing to CTCs adhesion to the activated cerebrovascular endothelium, VCAM-1 improves the capacity of CTCs to form metastatic foci in the brain.
Collapse
Affiliation(s)
- Dina Sikpa
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lisa Whittingstall
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jérémie P Fouquet
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Adrianna Radulska
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Tremblay
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Réjean Lebel
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Paquette
- Centre de Recherche en Radiothérapie, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Lepage
- Centre d'Imagerie Moléculaire de Sherbrooke, Département de Médecine Nucléaire et Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
47
|
Targeting the IL-1β/EHD1/TUBB3 axis overcomes resistance to EGFR-TKI in NSCLC. Oncogene 2019; 39:1739-1755. [DOI: 10.1038/s41388-019-1099-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
|
48
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
49
|
lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging (Albany NY) 2019; 11:7098-7122. [PMID: 31503007 PMCID: PMC6756895 DOI: 10.18632/aging.102240] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths and lacks effective therapies. Cellular senescence acts as a barrier against cancer progression and plays an important role in tumor suppression. Senescence associated long noncoding RNAs (SAL-RNAs) are thought to be critical regulators of cancer development. Here, the long noncoding RNA (lncRNA) myocardial infarction-associated transcript (miat) was first identified as an HCC specific SALncRNA. Knockdown of miat significantly promoted cellular senescence and inhibited HCC progression. Mechanistic study revealed that SAL-miat acted as a competitive endogenous RNA (ceRNA) that upregulated the expression of sirt1 by sponging miR-22-3p. Moreover, miat downregulation activated the tumor suppressor pathway (p53/p21 and p16/pRb) and stimulated senescent cancer cells to secrete senescence-associated secretory phenotype (SASP), which contributed to inhibition of tumor cell proliferation, and resulted in the suppression of HCC tumorigenesis. Together, our study provided mechanistic insights into a critical role of miat as a miRNA sponge in HCC cellular senescence, which might offer a potential therapeutic strategy for HCC treatment.
Collapse
|
50
|
Zhao L, Cao J, Hu K, Wang P, Li G, He X, Tong T, Han L. RNA-binding protein RPS3 contributes to hepatocarcinogenesis by post-transcriptionally up-regulating SIRT1. Nucleic Acids Res 2019; 47:2011-2028. [PMID: 30517713 PMCID: PMC6393244 DOI: 10.1093/nar/gky1209] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022] Open
Abstract
Although several studies indicate that RNA-binding proteins (RBPs) contribute to key steps in a variety of physiological processes and cancer, the detailed biological functions and mechanisms remain to be determined. By performing bioinformatics analysis using well-established hepatocellular carcinoma (HCC) datasets, we identified a set of HCC progression-associated RBPs (HPARBPs) and found that the global expression of HPARBPs was significantly correlated with patient prognosis. Among the 42 HPARBPs, human ribosomal protein S3 (RPS3) was one of the most abundant genes whose role remains uncharacterized in HCC. Gain- and loss-of-function analyses demonstrated that RPS3 promoted HCC tumorigenesis both in vitro and in vivo. Mechanistically, we revealed that silent information regulator 1 (SIRT1) was a critical target of RPS3 and was essential for sustaining the RPS3-induced malignant phenotypes of HCC cells. RPS3 stabilized SIRT1 mRNA by binding to AUUUA motifs in the 3448–3530 region of the 3′ untranslated region (UTR) of SIRT1 mRNA. In addition, we found that (5-formylfuran-2-yl) methyl 4-hydroxy-2-methylenebutanoate (FMHM) inhibited HCC progression by repressing the RPS3/SIRT1 pathway. Our study unveils a novel extra-ribosomal role of RPS3 in facilitating hepatocarcinogenesis via the post-transcriptional regulation of SIRT1 expression and proposes that the RPS3/SIRT1 pathway serves as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Lijun Zhao
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, P.R. China
| | - Jianzhong Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Kexin Hu
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, P.R. China
| | - Penghui Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Guodong Li
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, P.R. China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Tanjun Tong
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, P.R. China
| | - Limin Han
- Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing 100191, P.R. China
| |
Collapse
|