1
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Leone P, Solimando AG, Prete M, Malerba E, Susca N, Derakhshani A, Ditonno P, Terragna C, Cavo M, Silvestris N, Racanelli V. Unraveling the Role of Peroxisome Proliferator-Activated Receptor β/Δ (PPAR β/Δ) in Angiogenesis Associated with Multiple Myeloma. Cells 2023; 12:cells12071011. [PMID: 37048084 PMCID: PMC10093382 DOI: 10.3390/cells12071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Growing evidence suggests a role for peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in the angiogenesis, growth, and metastasis of solid tumors, but little is known about its role in multiple myeloma (MM). Angiogenesis in the bone marrow (BM) is characteristic of disease transition from monoclonal gammopathy of undetermined significance (MGUS) to MM. We examined the expression and function of PPAR β/δ in endothelial cells (EC) from the BM of MGUS (MGEC) and MM (MMEC) patients and showed that PPAR β/δ was expressed at higher levels in MMEC than in MGEC and that the overexpression depended on myeloma plasma cells. The interaction between myeloma plasma cells and MMEC promoted the release of the PPAR β/δ ligand prostaglandin I2 (PGI2) by MMEC, leading to the activation of PPAR β/δ. We also demonstrated that PPAR β/δ was a strong stimulator of angiogenesis in vitro and that PPAR β/δ inhibition by a specific antagonist greatly impaired the angiogenic functions of MMEC. These findings define PGI2-PPAR β/δ signaling in EC as a potential target of anti-angiogenic therapy. They also sustain the use of PPAR β/δ inhibitors in association with conventional drugs as a new therapeutic approach in MM.
Collapse
|
3
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
4
|
Hirao-Suzuki M, Takayuki K, Takiguchi M, Peters JM, Takeda S. Cannabidiolic acid activates the expression of the PPARβ/δ target genes in MDA-MB-231 cells. Arch Biochem Biophys 2022; 731:109428. [DOI: 10.1016/j.abb.2022.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
5
|
Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222413571. [PMID: 34948368 PMCID: PMC8703661 DOI: 10.3390/ijms222413571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.
Collapse
|
6
|
Li G, Zhou X, Tian L, Meng G, Li B, Yu H, Li Y, Huo Z, Du L, Ma X, Xu B. Identification of aberrantly methylated-differentially expressed genes and potential agents for Ewing sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1557. [PMID: 34790763 PMCID: PMC8576650 DOI: 10.21037/atm-21-4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Background Human DNA methylation is a common epigenetic regulatory mechanism, and it plays a critical role in various diseases. However, the potential role of DNA methylation in Ewing sarcoma (ES) is not clear. This study aimed to explore the regulatory roles of DNA methylation in ES. Methods The microarray data of gene expression and methylation were downloaded from the Gene Expression Omnibus (GEO) database, and analyzed via GEO2R. Venn analysis was then applied to identify aberrantly methylated-differentially expressed genes (DEGs). Subsequently, function and pathway enrichment analysis was conducted, a protein-protein interaction (PPI) network was constructed, and hub genes were determined. Besides, a connectivity map (CMap) analysis was performed to screen bioactive compounds for ES treatment. Results A total of 135 hypomethylated high expression genes and 523 hypermethylated low expression genes were identified. The hypomethylated high expression genes were enriched in signal transduction and the apoptosis process. Meanwhile, hypermethylated low expression genes were related to DNA replication and transcription regulation. The PPI network analysis indicated C3, TF, and TCEB1 might serve as diagnostic and therapeutic targets of ES. Furthermore, CMap analysis revealed 6 chemicals as potential options for ES treatment. Conclusions The introduction of DNA methylation characteristics over DEGs is helpful to understand the pathogenesis of ES. The identified hub aberrantly methylated DEGs and chemicals might provide some novel insights on ES treatment.
Collapse
Affiliation(s)
- Guowang Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xuan Zhou
- Department of Pediatrics, Haikou Hospital of The Maternal and Child Health, Haikou, China
| | - Lijun Tian
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Orthopedic, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gedong Meng
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yongjin Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Zhenxin Huo
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
7
|
Akimoto H, Takahashi Y, Asai S. [Effects of Fibrates on Risk of Development of Diabetic Retinopathy in Japanese Working Age Patients with Type 2 Diabetes and Dyslipidemia: a Retrospective Cohort Study]. YAKUGAKU ZASSHI 2021; 141:761-769. [PMID: 33952760 DOI: 10.1248/yakushi.20-00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of the present study were to investigate the effects of fenofibrate and bezafibrate on the risk of development of diabetic retinopathy (DR) in patients with type 2 diabetes and dyslipidemia. Japanese working age patients with type 2 diabetes and dyslipidemia were extracted from the Nihon University School of Medicine Clinical Data Warehouse. These patients were divided into three groups: control group (n=2549), fenofibrate group (n=40), and bezafibrate group (n=135). Multivariate logistic regression analysis was performed to assess the association between fibrates and the development of DR. After adjustment for covariates, fenofibrate showed no association with the risk of DR [adjusted odds ratio (OR), 0.160; 95% CI, 0.021-1.209; p=0.0758]. Bezafibrate also showed no association with the risk of DR (adjusted OR, 0.731; 95% CI, 0.411-1.299; p=0.2855). However, poor control of hemoglobin A1c (HbA1c ≥8.0%; adjusted OR, 3.623; 95% CI, 2.649-4.956; p<0.0001) and high low-density lipoprotein cholesterol (LDL-C ≥140 mg/dL; adjusted OR, 1.399; 95% CI, 1.013-1.932; p=0.0415) within the follow-up period of type 2 diabetes and dyslipidemia increased the risk of DR. Our results suggested that to prevent development of DR in patients with type 2 diabetes and dyslipidemia, controlling LDL-C levels as well as HbA1c levels under coexistence type 2 diabetes and dyslipidemia is more important than the selection of fibrate.
Collapse
Affiliation(s)
- Hayato Akimoto
- Department of Biomedical Sciences, Nihon University School of Medicine
| | - Yasuo Takahashi
- Clinical Trials Research Center, Nihon University School of Medicine
| | - Satoshi Asai
- Department of Biomedical Sciences, Nihon University School of Medicine
| |
Collapse
|
8
|
Nogueira TR, de Oliveira VA, Pereira IC, de Carvalho CMRG, Péres-Rodrigues G, do Carmo de Carvalho e Martins M, de Macedo G. Frota K, de Azevedo Paiva A, de Jesus e Silva de Almendra Freitas B. Vitamin A: Modulating Effect on Breast Carcinogenesis. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200706011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer has a multifactorial etiology and, among the main causal factors, the dietary
profile stands out, mainly the components of the pro-inflammatory diet and their interaction with genetic
characteristics. In this sense, deciphering the molecular networks involved in the proliferation
of cancer cells in breast tissue can determine ways of action of organic compounds that modulate the
pathogenesis of cancer, such as vitamin A and analogs, as well as their possible mechanisms of modulation
of breast tumorigenesis. This is a review study conducted according to the guidelines of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and by consulting
the PubMed and Web of Science databases including articles, published in Portuguese, English and
Spanish, in the last five years. 126 articles were obtained, of which 13 were selected for full analysis
and only 6 were included in the study for meeting the eligibility criteria. The results of the compiled
studies demonstrate the role of some retinol-binding proteins in metabolism, as well as in differentiation,
cell proliferation and inflammation. Although controversial, the results point to the use of these
proteins as possible prognostic markers. The need for further studies in humans is also emphasized in
order to assess the main effects of vitamin isoforms on tumor activity.
Collapse
Affiliation(s)
- Thaís R. Nogueira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Victor A. de Oliveira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Irislene C. Pereira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Lack of PPAR β/ δ-Inactivated SGK-1 Is Implicated in Liver Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9563851. [PMID: 33083492 PMCID: PMC7556072 DOI: 10.1155/2020/9563851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/05/2022]
Abstract
Objective The present study examined the role of PPARβ/δ in hepatocellular carcinoma (HCC). Methods The effect of PPARβ/δ on HCC development was analyzed using PPARβ/δ-overexpressed liver cancer cells and PPARβ/δ-knockout mouse models. Results PPARβ/δ(-/-) mice were susceptible to diethylnitrosamine- (DEN-) induced HCC (87.5% vs. 37.5%, p < 0.05). In addition, PPARβ/δ-overexpressed HepG2 cells had reduced proliferation, migration, and invasion capabilities accompanied by increased apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, differential gene expression profiling uncovered that the levels of serine/threonine-protein kinase (SGK-1) mRNA and its encoded protein were reduced in PPARβ/δ-overexpressed HepG2 cells. Consistently, elevated SGK-1 levels were found in PPARβ/δ(-/-) mouse livers as well as PPARβ/δ-knockdown human SMMC-7721 HCC cells. Chromatin immunoprecipitation (ChIP) assays followed by real-time quantitative polymerase chain reaction (qPCR) assays further revealed the binding of PPARβ/δ to the SGK-1 regulatory region in HepG2 cells. Conclusions Due to the known tumor-promoting effect of SGK1, the present data suggest that PPARβ/δ-deactivated SGK1 is a novel pathway for inhibiting liver carcinogenesis.
Collapse
|
10
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). METHODS For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. RESULTS We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. CONCLUSIONS To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
11
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 10/11/2024] Open
Abstract
Objective This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). Methods For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. Results We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. Conclusions To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
12
|
The Emerging Role of PPAR Beta/Delta in Tumor Angiogenesis. PPAR Res 2020; 2020:3608315. [PMID: 32855630 PMCID: PMC7443046 DOI: 10.1155/2020/3608315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
PPARs are ligand-activated transcriptional factors that belong to the nuclear receptor superfamily. Among them, PPAR alpha and PPAR gamma are prone to exert an antiangiogenic effect, whereas PPAR beta/delta has an opposite effect in physiological and pathological conditions. Angiogenesis has been known as a hallmark of cancer, and our recent works also demonstrate that vascular-specific PPAR beta/delta overexpression promotes tumor angiogenesis and progression in vivo. In this review, we will mainly focus on the role of PPAR beta/delta in tumor angiogenesis linked to the tumor microenvironment to further facilitate tumor progression and metastasis. Moreover, the crosstalk between PPAR beta/delta and its downstream key signal molecules involved in tumor angiogenesis will also be discussed, and the network of interplay between them will further be established in the review.
Collapse
|
13
|
Peters JM, Walter V, Patterson AD, Gonzalez FJ. Unraveling the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) expression in colon carcinogenesis. NPJ Precis Oncol 2019; 3:26. [PMID: 31602402 PMCID: PMC6779880 DOI: 10.1038/s41698-019-0098-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
The peroxisome proliferator-activated-β/δ (PPARβ/δ) was identified in 1994, but not until 1999 was PPARβ/δ suggested to be involved in carcinogenesis. Initially, it was hypothesized that expression of PPARβ/δ was increased during colon cancer progression, which led to increased transcription of yet-to-be confirmed target genes that promote cell proliferation and tumorigenesis. It was also hypothesized at this time that lipid-metabolizing enzymes generated lipid metabolites that served as ligands for PPARβ/δ. These hypothetical mechanisms were attractive because they potentially explained how non-steroidal anti-inflammatory drugs inhibited tumorigenesis by potentially limiting the concentration of endogenous PPARβ/δ ligands that could activate this receptor that was increased in cancer cells. However, during the last 20 years, considerable research was undertaken describing expression of PPARβ/δ in normal and cancer cells that has led to a significant impact on the mechanisms by which PPARβ/δ functions in carcinogenesis. Whereas results from earlier studies led to much uncertainty about the role of PPARβ/δ in cancer, more recent analyses of large databases have revealed a more consistent understanding. The focus of this review is on the fundamental level of PPARβ/δ expression in normal tissues and cancerous tissue as described by studies during the past two decades and what has been delineated during this timeframe about how PPARβ/δ expression influences carcinogenesis, with an emphasis on colon cancer.
Collapse
Affiliation(s)
- Jeffrey M. Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, State College, PA 16801 USA
| | - Vonn Walter
- Departments of Public Health Sciences and Biochemistry, The Pennsylvania State University, College of Medicine, Hershey, State College, PA 16801 USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, State College, PA 16801 USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD USA
| |
Collapse
|
14
|
Koronowicz AA, Master A, Banks P, Piasna-Słupecka E, Domagała D, Drozdowska M, Leszczyńska T. PPAR Receptors Expressed from Vectors Containing CMV Promoter Can Enhance Self-Transcription in the Presence of Fatty Acids from CLA-Enriched Egg Yolks-A Novel Method for Studies of PPAR Ligands. Nutr Cancer 2019; 72:892-902. [PMID: 31403341 DOI: 10.1080/01635581.2019.1652332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PPAR receptors are ligand-dependent transcription factors activated in response to various small lipophilic ligands controlling the expression of different genes involved in cellular differentiation, development, metabolism, and tumorigenesis. Unexpectedly, our previous studies have shown that single plasmid-based expression of PPARs under the control of CMV promoter/enhancer was significantly elevated in the presence of PPAR agonists. Here we show that the PPAR reporters controlled by the CMV promoter/enhancer, that was shown to contain three internal non-canonical PPRE elements, can be used as a fast screening system for more effective PPAR ligands. This model allowed us to confirm our previous results indicating that fatty acids of CLA-enriched egg yolks (EFA-CLAs) are efficient PPAR ligands that can specifically upregulate the expression of PPARα and PPARγ leading to downregulation of MCF-7 cancer cell proliferation. We also show that synthetic cis9,trans11CLA is more effective in transactivation of PPARγ, while trans10,cis12CLA of PPARα receptor indicating the selectivity of the CLA isomers. This report presents a novel, fast, and reliable strategy for simple testing of PPAR ligands using PPAR expressing plasmids containing the CMV promoter/enhancer that can trigger the positive feedback loop of PPAR self-transcription in the presence of PPAR ligands.
Collapse
Affiliation(s)
- Aneta A Koronowicz
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Adam Master
- Division of Cancer Prevention, Health Science Center T17, The State University of New York at Stony Brook, Stony Brook, NY, USA.,DNAi - The Center of Genetic Information, Laboratory of Molecular Medical Biology, Krakow, Poland
| | - Paula Banks
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Mariola Drozdowska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| |
Collapse
|
15
|
Peters JM, Kim DJ, Bility MT, Borland MG, Zhu B, Gonzalez FJ. Regulatory mechanisms mediated by peroxisome proliferator-activated receptor-β/δ in skin cancer. Mol Carcinog 2019; 58:1612-1622. [PMID: 31062422 DOI: 10.1002/mc.23033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made during the past 20 years towards elucidating the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in skin cancer. In 1999, the original notion that PPARβ/δ was involved with epithelial cell function was postulated based on a correlation between PPARβ/δ expression and the induction of messenger RNAs encoding proteins that mediate terminal differentiation in keratinocytes. Subsequent studies definitively revealed that PPARβ/δ could induce terminal differentiation and inhibit proliferation of keratinocytes. Molecular mechanisms have since been discovered to explain how this nuclear receptor can be targeted for preventing and treating skin cancer. This includes the regulation of terminal differentiation, mitotic signaling, endoplasmic reticulum stress, and cellular senescence. Interestingly, the effects of activating PPARβ/δ can preferentially target keratinocytes with genetic mutations associated with skin cancer. This review provides the history and current understanding of how PPARβ/δ can be targeted for both nonmelanoma skin cancer and melanoma and postulates how future approaches that modulate PPARβ/δ signaling may be developed for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Dae J Kim
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas
| | - Moses T Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael G Borland
- Department of Chemistry & Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Zhang X, Yao J, Shi H, Gao B, Zhang L. LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem 2019; 400:663-675. [PMID: 30521471 DOI: 10.1515/hsz-2018-0236] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
Abstract
Abstract
The present study aims to determine the potential biomarkers and uncover the regulatory mechanisms of the long-noncoding RNA (lncRNA) TINCR/miR-107/CD36 axis in colorectal cancer (CRC). Aberrantly-expressed lncRNAs and differential-expressed genes were identified by analyzing the dataset GSE40967. Gene set enrichment analysis was employed, and Cytoscape software helped in establishing the co-expression network between lncRNAs and genes. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis contributes to examining the expression levels of lncRNA TINCR, miR-107 and CD36. The dual luciferase assay was used to validate the association between miR-107 and lncRNA TINCR or CD36. The EdU incorporation assay was employed, and flow cytometry was employed to detect cell apoptosis with the tumor xenograft model being utilized. Significantly dysregulated lncRNAs and mRNAs were identified. The peroxisome proliferator-activated receptor (PPAR) signaling pathway in CRC tissues was down-regulated. The loss of TINCR expression was associated with CRC progression. The expression levels of the TINCR and CD36 were down-regulated. We identified miR-107 as an inhibitory target of TINCR and CD36. Overexpression of TINCR could inhibit cell proliferation and promote apoptosis. MiR-107 overexpression in CRC cells induced proliferation and impeded apoptosis. A regulatory function of the lncRNA TINCR/miR-107/CD36 axis in CRC was revealed. LncRNA TINCR overexpression exerted suppressive influence on CRC progression through modulating the PPAR signaling pathway via the miR-107/CD36 axis.
Collapse
Affiliation(s)
- Xuexiu Zhang
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Jianning Yao
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Haoling Shi
- Department of General Surgery , The First People Hospital of Zhengzhou , Zhengzhou 450004, Henan , China
| | - Bing Gao
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Lianfeng Zhang
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| |
Collapse
|
17
|
Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem 2018; 9:1-15. [PMID: 30364769 PMCID: PMC6198288 DOI: 10.4331/wjbc.v9.i1.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease (NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS via the administration of antioxidants or by enhancing lipid-metabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
18
|
Ham SA, Kim E, Yoo T, Lee WJ, Youn JH, Choi MJ, Han SG, Lee CH, Paek KS, Hwang JS, Seo HG. Ligand-activated interaction of PPARδ with c-Myc governs the tumorigenicity of breast cancer. Int J Cancer 2018; 143:2985-2996. [DOI: 10.1002/ijc.31864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sun Ah Ham
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Eunsu Kim
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Ju Ho Youn
- Joslin Diabetes Center and Department of Medicine; Harvard Medical School; Boston
| | - Mi-Jung Choi
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Kyung Shin Paek
- Department of Nursing; Semyung University; Jechon South Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences; Konkuk University; Seoul South Korea
| |
Collapse
|
19
|
Li J, Liu YP. The roles of PPARs in human diseases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:361-382. [PMID: 30036119 DOI: 10.1080/15257770.2018.1475673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs), as members of nuclear hormone receptor superfamily, can be activated by binding natural or synthetic ligands. The use of related ligands has revealed many potential roles for PPARs in the pathogenesis of some human metabolic disorders and inflammatory-related disease. Based on the previous studies, this review primarily concluded the current progress of knowledge regarding the specific biological activity of PPARs in cancers, atherosclerosis, and type 2 diabetes mellitus, providing a foundation for the potential therapeutic use of PPAR ligands in human diseases.
Collapse
Affiliation(s)
- Jingjing Li
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province , Sichuan Agricultural University , Chengdu , China
| | - Yi-Ping Liu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
20
|
|
21
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
22
|
De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, Ammazzalorso A. The Anticancer Potential of Peroxisome Proliferator-Activated Receptor Antagonists. ChemMedChem 2018; 13:209-219. [PMID: 29276815 DOI: 10.1002/cmdc.201700703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 12/13/2022]
Abstract
The effects on cancer-cell proliferation and differentiation mediated by peroxisome proliferator-activated receptors (PPARs) have been widely studied, and pleiotropic outcomes in different cancer models and under different experimental conditions have been obtained. Interestingly, few studies report and little preclinical evidence supports the potential antitumor activity of PPAR antagonists. This review focuses on recent findings on the antitumor in vitro and in vivo effects observed for compounds able to inhibit the three PPAR subtypes in different tumor models, providing a rationale for the use of PPAR antagonists in the treatment of tumors expressing the corresponding receptors.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi (Aq), Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Serena Veschi
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | |
Collapse
|
23
|
Martín-Martín N, Zabala-Letona A, Fernández-Ruiz S, Arreal L, Camacho L, Castillo-Martin M, Cortazar AR, Torrano V, Astobiza I, Zúñiga-García P, Ugalde-Olano A, Loizaga-Iriarte A, Unda M, Valcárcel-Jiménez L, Arruabarrena-Aristorena A, Piva M, Sánchez-Mosquera P, Aransay AM, Gomez-Muñoz A, Barrio R, Sutherland JD, Carracedo A. PPARδ Elicits Ligand-Independent Repression of Trefoil Factor Family to Limit Prostate Cancer Growth. Cancer Res 2017; 78:399-409. [DOI: 10.1158/0008-5472.can-17-0908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
|
24
|
Choudhary M, Ding JD, Qi X, Boulton ME, Yao PL, Peters JM, Malek G. PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration. Aging (Albany NY) 2017; 8:1952-1978. [PMID: 27622388 PMCID: PMC5076447 DOI: 10.18632/aging.101031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 01/18/2023]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARβ/δ activation on ocular tissues affected in the disease. PPARβ/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARβ/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparβ/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARβ/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARβ/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARβ/δ may be a suitable strategy for treatment of different clinical sub-types of AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Xiaoping Qi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael E Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27703, USA
| |
Collapse
|
25
|
Yao PL, Chen L, Dobrzański TP, Zhu B, Kang BH, Müller R, Gonzalez FJ, Peters JM. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation. Mol Carcinog 2017; 56:1472-1483. [PMID: 27996177 DOI: 10.1002/mc.22607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients.
Collapse
Affiliation(s)
- Pei-Li Yao
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Liping Chen
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Tomasz P Dobrzański
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Bokai Zhu
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Boo-Hyon Kang
- Non-clinical Research Institute, Chemon, Jeil-Ri, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, Korea
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
26
|
Low- ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1840513. [PMID: 28074114 PMCID: PMC5203909 DOI: 10.1155/2016/1840513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
Abstract
Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways.
Collapse
|
27
|
Bugge A, Holst D. PPAR agonists, - Could tissue targeting pave the way? Biochimie 2016; 136:100-104. [PMID: 27916640 DOI: 10.1016/j.biochi.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 01/20/2023]
Abstract
Over the last couple of decades, the PPAR family of transcription factors has received much attention from the pharmaceutical industry due to their profound ability to improve glucose and lipid metabolism upon agonist activation. However, more recently the interest in these nuclear receptors has faded because several clinical trials have shown that it is difficult to develop a ligand that significantly ameliorates glucose and lipid metabolism disorders without concomitantly inducing unacceptable side-effects. Nevertheless, the data also suggests that tissue specific targeting could pave the way to renewed interest and clinical use of PPAR ligands. In this review we summarize the results and learnings from the clinical trials on PPAR agonism and discuss the possibilities for tissue targeting of PPAR ligands by using state of the art technology to fuse them to peptides homing selectively to tissues expressing the cognate surface receptor.
Collapse
Affiliation(s)
- Anne Bugge
- Department of Obesity Biology, Global Research, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark
| | - Dorte Holst
- Department of Obesity Biology, Global Research, Novo Nordisk A/S, Novo Nordisk Park, DK-2760, Måløv, Denmark.
| |
Collapse
|
28
|
Koga T, Yao PL, Goudarzi M, Murray IA, Balandaram G, Gonzalez FJ, Perdew GH, Fornace AJ, Peters JM. Regulation of Cytochrome P450 2B10 (CYP2B10) Expression in Liver by Peroxisome Proliferator-activated Receptor-β/δ Modulation of SP1 Promoter Occupancy. J Biol Chem 2016; 291:25255-25263. [PMID: 27765815 DOI: 10.1074/jbc.m116.755447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Indexed: 01/12/2023] Open
Abstract
Alcoholic liver disease is a pathological condition caused by overconsumption of alcohol. Because of the high morbidity and mortality associated with this disease, there remains a need to elucidate the molecular mechanisms underlying its etiology and to develop new treatments. Because peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) modulates ethanol-induced hepatic effects, the present study examined alterations in gene expression that may contribute to this disease. Chronic ethanol treatment causes increased hepatic CYP2B10 expression inPparβ/δ+/+ mice but not in Pparβ/δ-/- mice. Nuclear and cytosolic localization of the constitutive androstane receptor (CAR), a transcription factor known to regulate Cyp2b10 expression, was not different between genotypes. PPARγ co-activator 1α, a co-activator of both CAR and PPARβ/δ, was up-regulated in Pparβ/δ+/+ liver following ethanol exposure, but not in Pparβ/δ-/- liver. Functional mapping of the Cyp2b10 promoter and ChIP assays revealed that PPARβ/δ-dependent modulation of SP1 promoter occupancy up-regulated Cyp2b10 expression in response to ethanol. These results suggest that PPARβ/δ regulates Cyp2b10 expression indirectly by modulating SP1 and PPARγ co-activator 1α expression and/or activity independent of CAR activity. Ligand activation of PPARβ/δ attenuates ethanol-induced Cyp2b10 expression in Pparβ/δ+/+ liver but not in Pparβ/δ-/- liver. Strikingly, Cyp2b10 suppression by ligand activation of PPARβ/δ following ethanol treatment occurred in hepatocytes and was mediated by paracrine signaling from Kupffer cells. Combined, results from the present study demonstrate a novel regulatory role of PPARβ/δ in modulating CYP2B10 that may contribute to the etiology of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- From the Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Pei-Li Yao
- From the Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Maryam Goudarzi
- the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C., 20057, and
| | - Iain A Murray
- From the Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gayathri Balandaram
- From the Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Frank J Gonzalez
- the Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland 20892
| | - Gary H Perdew
- From the Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Albert J Fornace
- the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C., 20057, and
| | - Jeffrey M Peters
- From the Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802,
| |
Collapse
|
29
|
Increase of human prostate cancer cell (DU145) apoptosis by telmisartan through PPAR-delta pathway. Eur J Pharmacol 2016; 775:35-42. [PMID: 26852954 DOI: 10.1016/j.ejphar.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
The effect of telmisartan on prostate cancer DU145 cell survival and the underlying mechanism of apoptosis involving peroxisome proliferator-activated receptor (PPAR) pathway were investigated. Cultured DU145 cells were treated pharmacologically with telmisartan and GSK0660 (a PPAR-delta antagonist); or by RNA interference with siRNA of PPAR-delta. The treatment effects on cell survival were evaluated with cell viability assay, life and dead cell staining and flow cytometry. Western blot analysis for PPAR-delta protein expression was also performed. The results showed that telmisartan (0-80 µm) dose-dependently reduced DU145 cell survival. Flow cytometry demonstrated cancer cell cycle arrest with increase of sub-G1 phase. GSK0660 partially but significantly restored the telmisartan-treated cell viability. Similarly, siRNA of PPAR-delta significantly reversed the telmisartan-induced apoptosis. Western blot showed that telmisartan significantly increased DU145 cell PPAR-delta protein expression. Co-incubation with siRNA of PPAR-delta inhibited the telmisartan effect of PPAR-delta up-regulation. In conclusion, telmisartan induces prostate cancer DU145 cells apoptosis through the up-regulation of PPAR-delta protein expression. Pharmacological inhibition or genetic silencing of PPAR-delta activity can both reverse the telmisartan-induced apoptotic effect. Thus the PPAR-delta pathway might be a potential target for the treatment of prostate cancer.
Collapse
|
30
|
Peters JM, Gonzalez FJ, Müller R. Establishing the Role of PPARβ/δ in Carcinogenesis. Trends Endocrinol Metab 2015; 26:595-607. [PMID: 26490384 PMCID: PMC4631629 DOI: 10.1016/j.tem.2015.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022]
Abstract
The role of the nuclear hormone receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in carcinogenesis is controversial because conflicting studies indicate that it both inhibits and promotes tumorigenesis. In this review, we focus on recent studies on PPARβ/δ including the significance of increased or decreased PPARβ/δ expression in cancers; a range of opposing mechanisms describing how PPARβ/δ agonists, antagonists, and inverse agonists regulate tumorigenesis and/or whether there may be cell context-specific mechanisms; and whether activating or inhibiting PPARβ/δ is feasible for cancer chemoprevention and/or therapy. Research questions that need to be addressed are highlighted to establish whether PPARβ/δ can be effectively targeted for cancer chemoprevention.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
31
|
Yao PL, Chen L, Hess RA, Müller R, Gonzalez FJ, Peters JM. Peroxisome Proliferator-activated Receptor-D (PPARD) Coordinates Mouse Spermatogenesis by Modulating Extracellular Signal-regulated Kinase (ERK)-dependent Signaling. J Biol Chem 2015; 290:23416-31. [PMID: 26242735 DOI: 10.1074/jbc.m115.664508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Ppard(-/-) mice exhibit smaller litter size compared with Ppard(+/+) mice. To determine whether peroxisome proliferator-activated receptor-D (PPARD) could possibly influence this phenotype, the role of PPARD in testicular biology was examined. Atrophic testes and testicular degeneration were observed in Ppard(-/-) mice compared with Ppard(+/+) mice, indicating that PPARD modulates spermatogenesis. Higher expression of p27 and decreased expression of proliferating cellular nuclear antigen in Sertoli cells were observed in Ppard(+/+) mice as compared with Ppard(-/-) mice, and these were associated with decreased Sertoli cell number in Ppard(+/+) mice. Cyclin D1 and cyclin D2 expression was lower in Ppard(+/+) as compared with Ppard(-/-) mice. Ligand activation of PPARD inhibited proliferation of a mouse Sertoli cell line, TM4, and an inverse agonist of PPARD (DG172) rescued this effect. Temporal inhibition of extracellular signal-regulated kinase (ERK) activation by PPARD in the testis was observed in Ppard(+/+) mice and was associated with decreased serum follicle-stimulating hormone and higher claudin-11 expression along the blood-testis barrier. PPARD-dependent ERK activation also altered expression of claudin-11, p27, cyclin D1, and cyclin D2 in TM4 cells, causing inhibition of cell proliferation, maturation, and formation of tight junctions in Sertoli cells, thus confirming a requirement for PPARD in accurate Sertoli cell function. Combined, these results reveal for the first time that PPARD regulates spermatogenesis by modulating the function of Sertoli cells during early testis development.
Collapse
Affiliation(s)
- Pei-Li Yao
- From the Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802,
| | - LiPing Chen
- From the Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rex A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61802
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor and Immunobiology, Philipps University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany, and
| | - Frank J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey M Peters
- From the Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802,
| |
Collapse
|
32
|
Hiatt WR, Armstrong EJ, Larson CJ, Brass EP. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease. Circ Res 2015; 116:1527-39. [PMID: 25908726 DOI: 10.1161/circresaha.116.303566] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with peripheral artery disease have a marked reduction in exercise performance and daily ambulatory activity irrespective of their limb symptoms of classic or atypical claudication. This review will evaluate the multiple pathophysiologic mechanisms underlying the exercise impairment in peripheral artery disease based on an evaluation of the current literature and research performed by the authors. Peripheral artery disease results in atherosclerotic obstructions in the major conduit arteries supplying the lower extremities. This arterial disease process impairs the supply of oxygen and metabolic substrates needed to match the metabolic demand generated by active skeletal muscle during walking exercise. However, the hemodynamic impairment associated with the occlusive disease process does not fully account for the reduced exercise impairment, indicating that additional pathophysiologic mechanisms contribute to the limb manifestations. These mechanisms include a cascade of pathophysiological responses during exercise-induced ischemia and reperfusion at rest that are associated with endothelial dysfunction, oxidant stress, inflammation, and muscle metabolic abnormalities that provide opportunities for targeted therapeutic interventions to address the complex pathophysiology of the exercise impairment in peripheral artery disease.
Collapse
Affiliation(s)
- William R Hiatt
- From the Division of Cardiology, Department of Medicine (W.R.H., E.J.A.), CPC Clinical Research (W.R.H.), University of Colorado School of Medicine, Aurora; Cardiovascular & Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, CA (C.J.L.); and Department of Medicine, Harbor-UCLA Center for Clinical Pharmacology, Torrance, CA (E.P.B.).
| | - Ehrin J Armstrong
- From the Division of Cardiology, Department of Medicine (W.R.H., E.J.A.), CPC Clinical Research (W.R.H.), University of Colorado School of Medicine, Aurora; Cardiovascular & Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, CA (C.J.L.); and Department of Medicine, Harbor-UCLA Center for Clinical Pharmacology, Torrance, CA (E.P.B.)
| | - Christopher J Larson
- From the Division of Cardiology, Department of Medicine (W.R.H., E.J.A.), CPC Clinical Research (W.R.H.), University of Colorado School of Medicine, Aurora; Cardiovascular & Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, CA (C.J.L.); and Department of Medicine, Harbor-UCLA Center for Clinical Pharmacology, Torrance, CA (E.P.B.)
| | - Eric P Brass
- From the Division of Cardiology, Department of Medicine (W.R.H., E.J.A.), CPC Clinical Research (W.R.H.), University of Colorado School of Medicine, Aurora; Cardiovascular & Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, CA (C.J.L.); and Department of Medicine, Harbor-UCLA Center for Clinical Pharmacology, Torrance, CA (E.P.B.)
| |
Collapse
|
33
|
Giordano Attianese GMP, Desvergne B. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. NUCLEAR RECEPTOR SIGNALING 2015; 13:e001. [PMID: 25945080 PMCID: PMC4419664 DOI: 10.1621/nrs.13001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the systemic level, and describing the global and unbiased approaches that combine a systems view with molecular understanding.
Collapse
|
34
|
Xue H, Ren W, Denkinger M, Schlotzer E, Wischmeyer PE. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids. JPEN J Parenter Enteral Nutr 2015; 40:52-66. [PMID: 25888676 DOI: 10.1177/0148607115581838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. METHODS Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). RESULTS Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. CONCLUSIONS Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis.
Collapse
Affiliation(s)
- Hongyu Xue
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Wenhua Ren
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | | | | | - Paul E Wischmeyer
- Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
35
|
Abstract
The role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cancer remains contentious due in large part to divergent publications indicating opposing effects in different rodent and human cell culture models. During the past 10 years, some facts regarding PPARβ/δ in cancer have become clearer, while others remain uncertain. For example, it is now well accepted that (1) expression of PPARβ/δ is relatively lower in most human tumors as compared to the corresponding non-transformed tissue, (2) PPARβ/δ promotes terminal differentiation, and (3) PPARβ/δ inhibits pro-inflammatory signaling in multiple in vivo models. However, whether PPARβ/δ is suitable to target with natural and/or synthetic agonists or antagonists for cancer chemoprevention is hindered because of the uncertainty in the mechanism of action and role in carcinogenesis. Recent findings that shed new insight into the possibility of targeting this nuclear receptor to improve human health will be discussed.
Collapse
|
36
|
Barbosa-da-Silva S, Souza-Mello V, Magliano DC, Marinho TDS, Aguila MB, Mandarim-de-Lacerda CA. Singular effects of PPAR agonists on nonalcoholic fatty liver disease of diet-induced obese mice. Life Sci 2015; 127:73-81. [PMID: 25748419 DOI: 10.1016/j.lfs.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
AIMS To assess the effects of peroxisome proliferator-activated receptor (PPAR) agonists on glucose tolerance and hepatic lipid metabolism in diet-induced obese mice. MAIN METHODS Male C57BL/6 mice received a standard chow diet (SC, 10% energy as lipids) or high-fat diet (HF, 50% energy as lipids) for 10 weeks, after which treatment was initiated, forming the groups: SC group, HF group, HF-BZ group (HF + bezafibrate, pan-PPAR agonist), HF-WY group (HF + WY-14643, PPARalpha agonist) and HF-GW group (HF + GW1929, PPARgamma agonist). Treatments lasted for four weeks. Insulin resistance and liver remodeling were evaluated by biochemical and molecular approaches. KEY FINDINGS The HF and HF-GW mice were overweight. Conversely, the HF-BZ and HF-WY mice presented with body masses equal to those of the SC mice. All treatments restored insulin sensitivity and blood lipid and adiponectin levels. Hepatic steatosis was prevented in the HF-WY and HF-BZ mice as shown by the elevated mRNA levels of PPARalpha and Carnitine palmitoyl transferase-1a in both groups, which favored enhanced beta-oxidation. Marked decreases in liver triacylglycerol levels confirmed these findings. In contrast, the HF-GW mice exhibited increased PPARgamma and fatty acid translocase/CD136 mRNA levels, contributing to enhanced hepatic lipogenesis. SIGNIFICANCE The WY14643 and bezafibrate treatments most effectively improved the adverse metabolic and hepatic effects caused by obesity and IR. The results reinforce the central role of PPARalpha, as well as its contrary relationship to PPARgamma in the regulation of metabolic homeostasis and lipolytic pathways in the liver.
Collapse
Affiliation(s)
- Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - D'Angelo Carlo Magliano
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Ham SA, Yoo T, Hwang JS, Kang ES, Lee WJ, Paek KS, Park C, Kim JH, Do JT, Lim DS, Seo HG. Ligand-activated PPARδ modulates the migration and invasion of melanoma cells by regulating Snail expression. Am J Cancer Res 2014; 4:674-682. [PMID: 25520859 PMCID: PMC4266703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) δ is implicated in the carcinogenesis of several types of cancer. However, the therapeutic efficacy of PPARδ ligands against cancer progression is unclear. Here, we showed that PPARδ modulates the migration and invasion of melanoma cells by up-regulating Snail expression. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly increased the migration and invasion of highly metastatic A375SM cells, but not that of low metastatic A375P cells. The migration- and invasion-promoting effects of PPARδ on A375SM cells was associated with increased Snail expression, which was accompanied by a decrease in E-cadherin expression. Furthermore, a significant concentration- and time-dependent increase in the levels of Snail mRNA and protein was observed in A375SM cells (but not A375P cells) treated with GW501516. The effects of GW501516 were almost completely abrogated by a small interfering RNA against PPARδ, suggesting that PPARδ mediates the effects of GW501516. Activation of PPARδ in SK-MEL-2 and SK-MEL-5 (but not SK-MEL-3) melanoma cell lines also led to significant increases in the expression of Snail mRNA and protein, which mirrored the invasive and migratory potential of these cell lines. These results suggest that PPARδ promotes the aggressive phenotype observed in highly metastatic melanoma cells by up-regulating Snail.
Collapse
Affiliation(s)
- Sun Ah Ham
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Taesik Yoo
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Jung Seok Hwang
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Eun Sil Kang
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Won Jin Lee
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University65 Semyung-ro, Jecheon 390-711, Republic of Korea
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, College of Life Science, CHA University30 Beolmal-ro, Bundang-gu, Seongnam 463-712, Republic of Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
38
|
Thulasiraman P, McAndrews DJ, Mohiudddin IQ. Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells. BMC Cancer 2014; 14:724. [PMID: 25260874 PMCID: PMC4192446 DOI: 10.1186/1471-2407-14-724] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022] Open
Abstract
Background A major obstacle in the use of retinoid therapy in cancer is the resistance to this agent in tumors. Retinoic acid facilitates the growth of mammary carcinoma cells which express high levels of fatty acid-binding protein 5 (FABP5). This protein delivers retinoic acid to peroxisome proliferator-activated receptor β/δ (PPARβ/δ) that targets genes involved in cell proliferation and survival. One approach to overcome resistance of mammary carcinoma cells to retinoic acid is to target and suppress the FABP5/ PPARβ/δ pathway. The objective of this research was to investigate the effect of curcumin, a polyphenol extract from the plant Curcuma longa, on the FABP5/ PPARβ/δ pathway in retinoic acid resistant triple negative breast cancer cells. Methods Cell viability and proliferation of triple negative breast cancer cell lines (MDA-MB-231 and MD-MB-468) treated with curcumin and/or retinoic was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2’-deoxyuridine (BrdU). Expression level of FABP5 and PPARβ/δ in these cells treated with curcumin was examined by Western Blotting analysis and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Effect of curcumin and retinoic acid on PPARβ/δ target genes, PDK1and VEGF-A were also examined using qRT-PCR. Western Blotting was utilized to examine the protein expression level of the p65 subunit of NF-κB. Results Treatment of retinoic acid resistant triple negative breast cancer cells with curcumin sensitized these cells to retinoic acid mediated growth suppression, as well as suppressed incorporation of BrdU. Further studies demonstrated that curcumin showed a marked reduction in the expression level of FABP5 and PPARβ/δ. We provide evidence that curcumin suppresses p65, a transcription factor known to regulate FABP5. The combination of curcumin with retinoic acid suppressed PPARβ/δ target genes, VEGF-A and PDK1. Conclusions Curcumin suppresses the expression level of FABP5 and PPARβ/δ in triple negative mammary carcinoma cells. By targeting the FABP5/PPARβ/δ pathway, curcumin prevents the delivery of retinoic acid to PPARβ/δ and suppresses retinoic acid-induced PPARβ/δ target gene, VEGF-A. Our data demonstrates that suppression of the FABP5/ PPARβ/δ pathway by curcumin sensitizes retinoic acid resistant triple negative breast cancer cells to retinoic acid mediated growth suppression.
Collapse
Affiliation(s)
- Padmamalini Thulasiraman
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, Mobile, Al, USA.
| | | | | |
Collapse
|
39
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
40
|
Yao PL, Morales JL, Zhu B, Kang BH, Gonzalez FJ, Peters JM. Activation of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) inhibits human breast cancer cell line tumorigenicity. Mol Cancer Ther 2014; 13:1008-17. [PMID: 24464939 DOI: 10.1158/1535-7163.mct-13-0836] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of activation and overexpression of the nuclear receptor PPAR-β/δ in human MDA-MB-231 (estrogen receptor-negative; ER(-)) and MCF7 (estrogen-receptor-positive; ER(+)) breast cancer cell lines was examined. Target gene induction by ligand activation of PPAR-β/δ was increased by overexpression of PPAR-β/δ compared with controls. Overexpression of PPAR-β/δ caused a decrease in cell proliferation in MCF7 and MDA-MB-231 cells compared with controls, whereas ligand activation of PPAR-β/δ further inhibited proliferation of MCF7 but not MDA-MB-231 cells. Overexpression and/or ligand activation of PPAR-β/δ in MDA-MB-231 or MCF7 cells had no effect on experimental apoptosis. Decreased clonogenicity was observed in both MDA-MB-231 and MCF7 overexpressing PPAR-β/δ in response to ligand activation of PPAR-β/δ as compared with controls. Ectopic xenografts developed from MDA-MB-231 and MCF7 cells overexpressing PPAR-β/δ were significantly smaller, and ligand activation of PPAR-β/δ caused an even greater reduction in tumor volume as compared with controls. Interestingly, the decrease in MDA-MB-231 tumor size after overexpressing PPAR-β/δ and ligand activation of PPAR-β/δ correlated with increased necrosis. These data show that ligand activation and/or overexpression of PPAR-β/δ in two human breast cancer cell lines inhibits relative breast cancer tumorigenicity and provide further support for the development of ligands for PPAR-β/δ to specifically inhibit breast carcinogenesis. These new cell-based models will be invaluable tools for delineating the role of PPAR-β/δ in breast cancer and evaluating the effects of PPAR-β/δ agonists.
Collapse
Affiliation(s)
- Pei-Li Yao
- Authors' Affiliations: Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania; and Non-clinical Research Institute, Chemon, Jeil-Ri, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, Korea; and Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
41
|
Ticha I, Gnosa S, Lindblom A, Liu T, Sun XF. Variants of the PPARD gene and their clinicopathological significance in colorectal cancer. PLoS One 2013; 8:e83952. [PMID: 24391853 PMCID: PMC3877104 DOI: 10.1371/journal.pone.0083952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/10/2013] [Indexed: 01/01/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor delta (PPARD) is nuclear hormone receptor involved in colorectal cancer (CRC) differentiation and progression. The purpose of this study was to determine prevalence and spectrum of variants in the PPARD gene in CRC, and their contribution to clinicopathological endpoints. Methods and Findings Direct sequencing of the PPARD gene was performed in 303 primary tumors, in blood samples from 50 patients with ≥3 affected first-degree relatives, 50 patients with 2 affected first-degree relatives, 50 sporadic patients, 360 healthy controls, and in 6 colon cancer cell lines. Mutation analysis revealed 22 different transversions, 7 of them were novel. Three of all variants were somatic (c.548A>G, p.Y183C, c.425-9C>T, and c.628-16G>A). Two missense mutations (p.Y183C and p.R258Q) were pathogenic using in silico predictive program. Five recurrent variants were detected in/adjacent to the exons 4 (c.1-87T>C, c.1-67G>A, c.130+3G>A, and c.1-101-8C>T) and exon 7 (c.489T>C). Variant c.489C/C detected in tumors was correlated to worse differentiation (P = 0.0397). Conclusions We found 7 novel variants among 22 inherited or acquired PPARD variants. Somatic and/or missense variants detected in CRC patients are rare but indicate the clinical importance of the PPARD gene.
Collapse
Affiliation(s)
- Ivana Ticha
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, County Council of Östergötland, University of Linköping, Linköping, Sweden
- * E-mail: (IT); (XFS)
| | - Sebastian Gnosa
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, County Council of Östergötland, University of Linköping, Linköping, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tao Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Feng Sun
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, County Council of Östergötland, University of Linköping, Linköping, Sweden
- * E-mail: (IT); (XFS)
| |
Collapse
|
42
|
Mackenzie LS, Lione L. Harnessing the benefits of PPARβ/δ agonists. Life Sci 2013; 93:963-7. [DOI: 10.1016/j.lfs.2013.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
|
43
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
44
|
Zhu B, Ferry CH, Blazanin N, Bility MT, Khozoie C, Kang BH, Glick AB, Gonzalez FJ, Peters JM. PPARβ/δ promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. Oncogene 2013; 33:5348-59. [PMID: 24213576 PMCID: PMC4017002 DOI: 10.1038/onc.2013.477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/23/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits skin tumorigenesis through mechanisms that may be dependent on HRAS signaling. The present study examined the hypothesis that PPARβ/δ promotes HRAS-induced senescence resulting in suppression of tumorigenesis. PPARβ/δ expression increased p-ERK and decreased p-AKT activity. Increased p-ERK activity results from the dampened HRAS-induced negative feedback response mediated in part through transcriptional upregulation of RAS guanyl-releasing protein 1 (RASGRP1) by PPARβ/δ. Decreased p-AKT activity results from repression of integrin-linked kinase (ILK) and phosphoinositide-dependent protein kinase-1 (PDPK1) expression. Decreased p-AKT activity in turn promotes cellular senescence through upregulation of p53 and p27 expression. Both over-expression of RASGRP1 and shRNA-mediated knockdown of ILK partially restore cellular senescence in Pparβ/δ-null cells. Higher PPARβ/δ expression is also correlated with increased senescence observed in human benign neurofibromas and colon adenoma lesions in vivo. These results demonstrate that PPARβ/δ promotes senescence to inhibit tumorigenesis and provide new mechanistic insights into HRAS-induced cellular senescence.
Collapse
Affiliation(s)
- B Zhu
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - C H Ferry
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - N Blazanin
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - M T Bility
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - C Khozoie
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - B-H Kang
- Preclinical Research Center, Chemon, Yongin-Si, Korea
| | - A B Glick
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| | - F J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - J M Peters
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
45
|
Derry MM, Raina K, Agarwal C, Agarwal R. Identifying molecular targets of lifestyle modifications in colon cancer prevention. Front Oncol 2013; 3:119. [PMID: 23675573 PMCID: PMC3653120 DOI: 10.3389/fonc.2013.00119] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/28/2013] [Indexed: 12/17/2022] Open
Abstract
One in four deaths in the United States is cancer-related, and colorectal cancer (CRC) is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; approximately 20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological, and behavioral processes that could influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.
Collapse
Affiliation(s)
- Molly M Derry
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | | | | | | |
Collapse
|
46
|
Khozoie C, Borland MG, Zhu B, Baek S, John S, Hager GL, Shah YM, Gonzalez FJ, Peters JM. Analysis of the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) cistrome reveals novel co-regulatory role of ATF4. BMC Genomics 2012; 13:665. [PMID: 23176727 PMCID: PMC3556323 DOI: 10.1186/1471-2164-13-665] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/22/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The present study coupled expression profiling with chromatin immunoprecipitation sequencing (ChIP-seq) to examine peroxisome proliferator-activated receptor-β/δ (PPARβ/δ)-dependent regulation of gene expression in mouse keratinocytes, a cell type that expresses PPARβ/δ in high concentration. RESULTS Microarray analysis elucidated eight different types of regulation that modulated PPARβ/δ-dependent gene expression of 612 genes ranging from repression or activation without an exogenous ligand, repression or activation with an exogenous ligand, or a combination of these effects. Bioinformatic analysis of ChIP-seq data demonstrated promoter occupancy of PPARβ/δ for some of these genes, and also identified the presence of other transcription factor binding sites in close proximity to PPARβ/δ bound to chromatin. For some types of regulation, ATF4 is required for ligand-dependent induction of PPARβ/δ target genes. CONCLUSIONS PPARβ/δ regulates constitutive expression of genes in keratinocytes, thus suggesting the presence of one or more endogenous ligands. The diversity in the types of gene regulation carried out by PPARβ/δ is consistent with dynamic binding and interactions with chromatin and indicates the presence of complex regulatory networks in cells expressing high levels of this nuclear receptor such as keratinocytes. Results from these studies are the first to demonstrate that differences in DNA binding of other transcription factors can directly influence the transcriptional activity of PPARβ/δ.
Collapse
Affiliation(s)
- Combiz Khozoie
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael G Borland
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
- Present address: Department of Chemistry and Biochemistry, Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| | - Bokai Zhu
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sam John
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, 20892, USA
- Present address: Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Yatrik M Shah
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20892, USA
- Present address: Department of Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
47
|
Genini D, Garcia-Escudero R, Carbone GM, Catapano CV. Transcriptional and Non-Transcriptional Functions of PPARβ/δ in Non-Small Cell Lung Cancer. PLoS One 2012; 7:e46009. [PMID: 23049921 PMCID: PMC3457940 DOI: 10.1371/journal.pone.0046009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/23/2012] [Indexed: 01/14/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a nuclear receptor involved in regulation of lipid and glucose metabolism, wound healing and inflammation. PPARβ/δ has been associated also with cancer. Here we investigated the expression of PPARβ/δ and components of the prostaglandin biosynthetic pathway in non-small cell lung cancer (NSCLC). We found increased expression of PPARβ/δ, Cox-2, cPLA2, PGES and VEGF in human NSCLC compared to normal lung. In NSCLC cell lines PPARβ/δ activation increased proliferation and survival, while PPARβ/δ knock-down reduced viability and increased apoptosis. PPARβ/δ agonists induced Cox-2 and VEGF transcription, suggesting the existence of feed-forward loops promoting cell survival, inflammation and angiogenesis. These effects were seen only in high PPARβ/δ expressing cells, while low expressing cells were less or not affected. The effects were also abolished by PPARβ/δ knock-down or incubation with a PPARβ/δ antagonist. Induction of VEGF was due to both binding of PPARβ/δ to the VEGF promoter and PI3K activation through a non-genomic mechanism. We found that PPARβ/δ interacted with the PI3K regulatory subunit p85α leading to PI3K activation and Akt phosphorylation. Collectively, these data indicate that PPARβ/δ might be a central element in lung carcinogenesis controlling multiple pathways and representing a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Davide Genini
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Carlo V. Catapano
- Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
- * E-mail:
| |
Collapse
|
48
|
PPARs Signaling and Cancer in the Gastrointestinal System. PPAR Res 2012; 2012:560846. [PMID: 23028383 PMCID: PMC3458283 DOI: 10.1155/2012/560846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/23/2012] [Accepted: 08/07/2012] [Indexed: 12/27/2022] Open
Abstract
Nowadays, the study of the peroxisome proliferators activated receptors (PPARs) as potential targets for cancer prevention and therapy has gained a strong interest. From a biological point of view, the overall responsibility of PPARs in cancer development and progression is still controversial since several studies report both antiproliferative and tumor-promoting actions for these signaling molecules in human cancer cells and animal models. In this paper, we discuss PPARs functions in the context of different types of gastrointestinal cancer.
Collapse
|
49
|
Peroxisome proliferator-activated receptor β/δ cross talks with E2F and attenuates mitosis in HRAS-expressing cells. Mol Cell Biol 2012; 32:2065-82. [PMID: 22473992 DOI: 10.1128/mcb.00092-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G₂/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis.
Collapse
|
50
|
Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 2012; 12:181-95. [PMID: 22318237 PMCID: PMC3322353 DOI: 10.1038/nrc3214] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in regulating glucose and lipid homeostasis, inflammation, proliferation and differentiation. Although all of these functions might contribute to the influence of PPARs in carcinogenesis, there is a distinct need for a review of the literature and additional experimentation to determine the potential for targeting PPARs for cancer therapy and cancer chemoprevention. As PPAR agonists include drugs that are used for the treatment of metabolic diseases, a more complete understanding of the roles of PPARs in cancer will aid in determining any increased cancer risk for patients undergoing therapy with PPAR agonists.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|