1
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
2
|
No time to die? Intrinsic apoptosis signaling in hematopoietic stem and progenitor cells and therapeutic implications. Curr Opin Hematol 2022; 29:181-187. [PMID: 35787546 DOI: 10.1097/moh.0000000000000717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Dysregulated apoptosis contributes to the pathogenesis of many hematologic malignancies. BH3-mimetics, antagonists of antiapoptotic BCL-2 proteins, represent novel, and promising cancer drugs. While the acute myelosuppressive effects of Venetoclax, the first Food and Drug Administration approved BCL-2 inhibitor, are fairly well described, little is known about side effects of novel BH3-mimetics and effects of chronic Venetoclax treatment. RECENT FINDINGS Highly relevant publications focused on the effects of acute and chronic Venetoclax therapy, with focus on cell-type specific adaptive mechanisms, the emergence of clonal hematopoiesis, and the selection of BAX-mutated hematopoietic cells in patients treated with Venetoclax for a long period. Important advances were made in understanding primary and secondary Venetoclax resistance and prediction of Venetoclax response. Combination therapies of BH3-mimetics targeting different BCL-2 proteins are highly anticipated. However, human stem and progenitors require both MCL-1 and BCL-XL for survival, and serious myelosuppressive effects of combined MCL-1/BCL-XL inhibition can be expected. SUMMARY Long-term studies are indispensable to profile the chronic side effects of Venetoclax and novel BH3-mimetics and better balance their risk vs. benefit in cancer therapy. Combination therapies will be powerful, but potentially limited by severe myelosuppression. For precision medicine, a better knowledge of BCL-2 proteins in the healthy and diseased hematopoietic system is required.
Collapse
|
3
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
4
|
Sihver L, Mortazavi SMJ. Biological Protection in Deep Space Missions. J Biomed Phys Eng 2021; 11:663-674. [PMID: 34904063 PMCID: PMC8649166 DOI: 10.31661/jbpe.v0i0.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/20/2019] [Indexed: 01/15/2023]
Abstract
During deep space missions, astronauts are exposed to highly ionizing radiation, incl. neutrons, protons and heavy ions from galactic cosmic rays (GCR), solar wind (SW) and solar energetic particles
(SEP). This increase the risks for cancerogenisis, damages in central nervous system (CNS), cardiovascular diseases, etc. Large SEP events can even cause acute radiation syndrome (ARS).
Long term manned deep space missions will therefor require unique radiation protection strategies. Since it has been shown that physical shielding alone is not sufficient, this paper
propose pre-flight screening of the aspirants for evaluation of their level of adaptive responses. Methods for boosting their immune system, should also be further investigated,
and the possibility of using radiation effect modulators are discussed. In this paper, especially, the use of vitamin C as a promising non-toxic, cost-effective, easily available
radiation mitigator (which can be used hours after irradiation), is described. Although it has previously been shown that vitamin C can decrease radiation-induced chromosomal damage in rodents,
it must be further investigated before any conclusions about its radiation mitigating properties in humans can be concluded.
Collapse
Affiliation(s)
- Lembit Sihver
- PhD, Department of Radiation Physics, Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- PhD, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | |
Collapse
|
5
|
Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112369. [PMID: 34579888 DOI: 10.1016/j.msec.2021.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Metal-organic frameworks (MOFs) are useful as drug delivery carriers with high loading capacity and excellent biocompatibility. We fabricated a new drug carrier based on MIL-101(Cr) environmentally and loaded it with 47.2 wt% WR-1065 (active metabolite of amifostine). Moreover, the permeability and stability of these nanoparticles increased after PEGylation by the N-hydroxysuccinimide active ester protocol. Then, a "green" continuous-flow system equipped with an ultrasound applicator was newly designed to prepare the nanoparticles under the effect of acoustic cavitation. Response surface methodology (RSM) was used to optimize the large-scale process conditions with Box-Behnken design to obtain high space-time yield (5785 kg m-3 day-1). These less toxic MOFs nanoparticles increased cell viability by scavenging the accumulated reactive oxygen species and resisting DNA damage after irradiation. They are capable of mitigating radiation injury, achieving a 30-d survival rate of 90% in mice after lethal total body irradiation (8.0 Gy). This countermeasure significantly improved the peripheral blood cell count, hematopoietic stem and progenitor cells frequency, and clonogenic function of hematopoietic progenitor cells. It probably prevents irradiation-induced hematopoietic damage through the p53-dependent apoptotic pathway. Therefore, ultrasound-assisted continuous-flow synthesis is a sustainable method to produce MOFs on a large scale for radioprotection.
Collapse
|
6
|
Iqbal S, Shah MA, Rasul A, Saadullah M, Tabassum S, Ali S, Zafar M, Muhammad H, Uddin MS, Batiha GES, Vargas-De-La-Cruz C. Radioprotective Potential of Nutraceuticals and their Underlying Mechanism of Action. Anticancer Agents Med Chem 2021; 22:40-52. [PMID: 33622231 DOI: 10.2174/1871520621666210223101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations of synthetic radioprotectors have shown less effectiveness, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies are involved modulation of signaling transduction of pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory genes expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and mechanism of action of their radioprotective activities on a molecular level, DNA repair pathway, anti-inflammation, immunomodulatory effects, the effect on cellular signaling pathways, and regeneration of hematopoietic cells.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad. Pakistan
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013. China
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad. Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira. Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria (CLEIBA), Universidad Nacional Mayor de San Marcos, Lima15001. Peru
| |
Collapse
|
7
|
Maria ATJ, Bourgier C, Martinaud C, Borie R, Rozier P, Rivière S, Crestani B, Guilpain P. [From fibrogenesis towards fibrosis: Pathophysiological mechanisms and clinical presentations]. Rev Med Interne 2020; 41:325-329. [PMID: 32046868 DOI: 10.1016/j.revmed.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 12/24/2022]
Abstract
Fibrogenesis is a universal and ubiquitous process associated with tissue healing. The impairment of tissue homeostasis resulting from the deregulation of numerous cellular actors, under the effect of specific cytokine and pro-oxidative environments can lead to extensive tissue fibrosis, organ dysfunction and significant morbidity and mortality. This situation is frequent in internal medicine, since fibrosis is associated with most organ insufficiencies (i.e. cardiac, renal, or hepatic chronic failures), but also with cancer, a condition with common pathophysiological mechanisms. Finally, fibrosis is a hallmark of numerous systemic autoimmune diseases such as connective tissue disorders (in particular systemic sclerosis), vasculitides, granulomatoses, histiocytoses, and IgG4-associated disease. Although the process leading to tissue fibrosis may be in part irreversible, new pharmacological approaches or cell therapies bring hope in the field of fibrotic conditions.
Collapse
Affiliation(s)
- A T J Maria
- Service de médecine interne, maladies multi-organiques de l'adulte, hôpital Saint-Éloi, CHU de Montpellier, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Faculté de médecine, Université de Montpellier, 2, rue de l'École-de-Médecine, 34060 Montpellier cedex 2, France; Inserm U1183, IRMB, Inserm, université Montpellier, CHU de Montpellier, Montpellier, France
| | - C Bourgier
- Département de radiothérapie, ICM-Val d'Aurelle, Montpellier, France; Inserm U1194, IRCM, Montpellier, France
| | - C Martinaud
- Unité de médicaments de thérapie innovante, centre de transfusion sanguine des armées, 1, rue du lieutenant-Batany, 92140 Clamart, France
| | - R Borie
- Service de pneumologie A, centre de référence des maladies pulmonaires rares, hôpital Bichat, DHU Fire, AP-HP, Paris, France; Inserm U1152, Paris, France; Université Paris Diderot, Paris, France
| | - P Rozier
- Service de médecine interne, maladies multi-organiques de l'adulte, hôpital Saint-Éloi, CHU de Montpellier, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Faculté de médecine, Université de Montpellier, 2, rue de l'École-de-Médecine, 34060 Montpellier cedex 2, France; Inserm U1183, IRMB, Inserm, université Montpellier, CHU de Montpellier, Montpellier, France
| | - S Rivière
- Service de médecine interne, maladies multi-organiques de l'adulte, hôpital Saint-Éloi, CHU de Montpellier, 80, avenue Augustin-Fliche, 34295 Montpellier, France
| | - B Crestani
- Service de pneumologie A, centre de référence des maladies pulmonaires rares, hôpital Bichat, DHU Fire, AP-HP, Paris, France; Inserm U1152, Paris, France; Université Paris Diderot, Paris, France
| | - P Guilpain
- Service de médecine interne, maladies multi-organiques de l'adulte, hôpital Saint-Éloi, CHU de Montpellier, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Faculté de médecine, Université de Montpellier, 2, rue de l'École-de-Médecine, 34060 Montpellier cedex 2, France; Inserm U1183, IRMB, Inserm, université Montpellier, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Abu-Zaied MA, Loutfy SA, Hassan AE, Elgemeie GH. Novel purine thioglycoside analogs: synthesis, nanoformulation and biological evaluation in in vitro human liver and breast cancer models. Drug Des Devel Ther 2019; 13:2437-2457. [PMID: 31440030 PMCID: PMC6667681 DOI: 10.2147/dddt.s201249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
Background: A series of novel pyrazolopyrimidine and pyrazololpyridine thioglycosides were synthesized and confirmed via their spectral analyses. Purpose: To evaluate the effect of these anti-metabolic compounds against proliferation of Huh-7 and Mcf-7 as in vitro models of human liver and breast cancers, respectively. Vero cells were used as an example of normal green monkey kidney cells. Methods: The most promising compound was subjected to a nanoformulation by its encapsulation into chitosan nanoparticles to increase its anti-cancerous activity. Nanoformulation was confirmed by TEM and FT-IR to ensure encapsulation and screened for their cytotoxicity against Huh-7 and Mcf-7 cells using MTT colorimetric assay and morphological examination. Genotoxic effect was performed by cellular DNA fragmentation assay. Simulated CompuSyn software (linear interaction effect) was conducted to predict the possible synergistic effect of nanocomposite as anticancerous activity. Apoptotic effect was further analyzed by detection of apoptotic proteins using ELISA assay. Results: The nano preparation was successfully prepared by encapsulation of compound 14 into chitosan nanoparticles, controlled to a size at 105 nm and zeta charges at 40.2 mV. Treatment of Huh-7 and Mcf-7 showed that compound 14 was the most cytotoxic compound on both cancer cell lines where IC50 was 24.59 (9.836 μg/mL) and 12.203 (4.8812 μg/mL) on Huh-7 and Mcf-7 respectively. But IC50 of the nano preparation was 37.19 and 30.68 μg/mL on Huh-7 and Mcf-7, respectively, indicating its aggressiveness on human breast cancer cells as confirmed by DNA fragmentation assay and theoretically by CompuSyn tool. Conclusion: A novel series of pyrazolopyrimidine thioglycosides and pyrazolopyridine thioglycosides were synthesized. Nanoformulation of compound 14 into chitosan nanoparticles demonstrated anticancer activity and can be used as a drug delivery system, but further studies are still required.
Collapse
Affiliation(s)
| | - Samah A Loutfy
- Virology & Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Ashraf E Hassan
- Virology & Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - Galal H Elgemeie
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| |
Collapse
|
9
|
Abstract
Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.
Collapse
|
10
|
Montay-Gruel P, Meziani L, Yakkala C, Vozenin MC. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br J Radiol 2018; 92:20180008. [PMID: 29694234 DOI: 10.1259/bjr.20180008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Normal tissue damages induced by radiation therapy remain dose-limiting factors in radiation oncology and this is still true despite recent advances in treatment planning and delivery of image-guided radiation therapy. Additionally, as the number of long-term cancer survivors increases, unacceptable complications emerge and dramatically reduce the patients' quality of life. This means that patients and clinicians expect discovery of new options for the therapeutic management of radiation-induced complications. Over the past four decades, research has enhanced our understanding of the pathophysiological, cellular and molecular processes governing normal tissue toxicity. Those processes are complex and involve the cross-talk between the various cells of a tissue, including fibroblasts, endothelial, immune and epithelial cells as well as soluble paracrine factors including growth factors and proteases. We will review the translatable pharmacological approaches that have been developed to prevent, mitigate, or reverse radiation injuries based upon the targeting of cellular and signalling pathways. We will summarize the different steps of the research strategy, from the definition of initial biological hypotheses to preclinical studies and clinical translation. We will also see how novel research and therapeutic hypotheses emerge along the way as well as briefly highlight innovative approaches based upon novel radiotherapy delivery procedures.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lydia Meziani
- INSERM, U1030, F-94805, Villejuif, Paris, France.,Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicêtre, Labex LERMIT, DHU TORINO, Paris, France
| | - Chakradhar Yakkala
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
11
|
Candidate immune biomarkers for radioimmunotherapy. Biochim Biophys Acta Rev Cancer 2017; 1868:58-68. [DOI: 10.1016/j.bbcan.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/25/2022]
|
12
|
Tschulakow AV, Dittmann K, Huber SM, Klumpp D, Stegen B, Schraermeyer U, Rodemann HP, Julien-Schraermeyer S. The radioprotector ortho-phospho-L-tyrosine (pTyr) attenuates the side effects of fractionated irradiation in retinoblastoma mouse models but also decreases the local tumour control. Radiother Oncol 2017; 124:462-467. [PMID: 28711224 DOI: 10.1016/j.radonc.2017.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Radiotherapy (RT) is used to treat retinoblastoma (Rb), the most frequent ocular tumour in children. Besides eradicating the tumour, RT can cause severe side effects including secondary malignancies. This study aimed to define whether the radioprotector ortho-phospho-L-tyrosine (pTyr) prevents RT-induced side effects and affects local tumour control in a xenograft and a genetic orthotopic Rb mouse model. METHODS B6;129-Rb1tm3Tyj/J (Rb+/-) and Y79-Rb cell-xenografted nude mice were fractionated external beam irradiated (15 fractions of 5Gy 6MV photons during 3weeks) with or without pTyr pre-treatment (100mg/kg BW, 16h prior to each irradiation). One, three, six and nine months after RT, tumour control and RT toxicity were evaluated using in vivo imaging and histology. We also analysed pTyr dependant post irradiation cell survival and p53 activity in vitro. RESULTS In vitro pTyr pre-treatment showed no radioprotection on Y79 cells, but led to p53 stabilisation in unirradiated Y79 cells and to a facilitation of radiation-induced p21 up-regulation, confirming a modulation of p53 activity by pTyr. In both mouse models, secondary tumours were undetectable. In Rb+/- mice, pTyr significantly lowered RT-induced greying of the fur, retinal thickness reduction and photoreceptor loss. However, in the xenografted Rb model, pTyr considerably decreased RT-mediated tumour control, which was observed in 16 out of 22 control eyes but in none of the 24 pTyr treated eyes. CONCLUSIONS In Rb+/- mice pTyr significantly prevents RT-induced greying of the fur as well as retinal degeneration. However, since non-irradiated control mice were not used in our study, a formal possibility exists that the effect shown in the retina of Rb+/- mice may be due to ageing of the animals and/or actions of pTyr alone. Unfortunately, as tested in a xenograft model, pTyr treatment reduced the control of Rb tumours.
Collapse
Affiliation(s)
- Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Germany
| | - Klaus Dittmann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tuebingen, Germany
| | - Dominik Klumpp
- Department of Radiation Oncology, University of Tuebingen, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University of Tuebingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Germany
| | - H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Germany.
| |
Collapse
|
13
|
Kim W, Kang J, Lee S, Youn B. Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy. Oncol Lett 2017; 13:4593-4601. [PMID: 28599460 DOI: 10.3892/ol.2017.6042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
The primary goal of radiotherapy in oncology is to enhance the efficacy of tumor cell death while decreasing damage to surrounding normal cells. Positive therapeutic outcomes may be accomplished by improved targeting, precisely targeting tumor cells or protecting normal cells against radiation-induced damage. The potential for antioxidants to decrease normal tissue damage induced by radiation has been investigated in animal models for a number of decades. In attempts for radioprotection, certain synthetic chemicals are suggested as antioxidants and normal tissue protectors against radiation-induced damage, but they have exhibited limitations in pharmacological application due to undesirable effects and high toxicities at clinical doses. The present review focuses on the radioprotective efficacy of traditional oriental medicines with the advantage of low toxicity at pharmacological doses and how such treatments may influence various harmful effects induced by radiation in vitro and in vivo. In addition, medicinal plants and their active constituents with biological activities that may be associated with alleviation of radiation-induced damage through antioxidant, anti-inflammatory, wound healing and immunostimulatory properties are discussed.
Collapse
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Jihoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Buhyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Gu J, Liu S, Mu N, Huang T, Zhang W, Zhao H, Shu Z, Zhang C, Hao Q, Li W, Xue X, Zhang W, Zhang Y. A DPP-IV-resistant glucagon-like peptide-2 dimer with enhanced activity against radiation-induced intestinal injury. J Control Release 2017; 260:32-45. [PMID: 28522195 DOI: 10.1016/j.jconrel.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Although radiotherapy is a highly effective treatment for abdominal or pelvic cancer patients, it can increase the incidence of severe gastrointestinal (GI) toxicity. As an intestinal growth factor, glucagon-like peptide 2 (GLP-2) has been shown to improve the preclinical models of both short bowel syndrome and inflammatory bowel disease by stimulating intestinal growth. Teduglutide ([Gly2]GLP-2), a recombinant human GLP-2 variant, has a prolonged half-life and stability as compared to the native GLP-2 peptide, but still requires daily application in the clinic. Here, we designed and prepared a new degradation-resistant GLP-2 analogue dimer, designated GLP-2②, with biotechnological techniques. The purity of GLP-2②reached 97% after ammonium sulphate precipitation and anion exchange chromatography purification, and the purification process was simple and cost-effective. We next confirmed that the GLP-2② exhibited enhanced activities compared with [Gly2]GLP-2, the long-acting, degradation-resistant analogue. Notably, GLP-2② offers a pharmacokinetic and therapeutic advantage in the treatment of radiation-induced intestinal injury over [Gly2]GLP-2. We further demonstrated that GLP-2② rapidly activates divergent intracellular signaling pathways involved in cell survival and apoptosis. Taken together, our data revealed a potential novel and safe peptide drug for limiting the adverse effect of radiotherapy on the gastrointestinal system.
Collapse
Affiliation(s)
- Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shuo Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Nan Mu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tonglie Huang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Shu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Alkhader E, Billa N, Roberts CJ. Mucoadhesive Chitosan-Pectinate Nanoparticles for the Delivery of Curcumin to the Colon. AAPS PharmSciTech 2017; 18:1009-1018. [PMID: 27582072 DOI: 10.1208/s12249-016-0623-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022] Open
Abstract
In the present study, we report the properties of a mucoadhesive chitosan-pectinate nanoparticulate formulation able to retain its integrity in the milieu of the upper gastrointestinal tract and subsequently, mucoadhere and release curcumin in colon conditions. Using this system, we aimed to deliver curcumin to the colon for the possible management of colorectal cancer. The delivery system comprised of a chitosan-pectinate composite nanopolymeric with a z-average of 206.0 nm (±6.6 nm) and zeta potential of +32.8 mV (±0.5 mV) and encapsulation efficiency of 64%. The nanoparticles mucoadhesiveness was higher at alkaline pH compared to acidic pH. Furthermore, more than 80% release of curcumin was achieved in pectinase-enriched medium (pH 6.4) as opposed to negligible release in acidic and enzyme-restricted media at pH 6.8. SEM images of the nanoparticles after exposure to the various media indicate a retained matrix in acid media as opposed to a distorted/fragmented matrix in pectinase-enriched medium. The data strongly indicates that the system has the potential to be applied as a colon-targeted mucoadhesive curcumin delivery system for the possible treatment of colon cancer.
Collapse
|
16
|
Mangoni M, Sottili M, Gerini C, Desideri I, Bastida C, Pallotta S, Castiglione F, Bonomo P, Meattini I, Greto D, Olmetto E, Terziani F, Becherini C, Delli Paoli C, Trombetta L, Loi M, Biti G, Livi L. A PPAR gamma agonist protects against oral mucositis induced by irradiation in a murine model. Oral Oncol 2016; 64:52-58. [PMID: 28024724 DOI: 10.1016/j.oraloncology.2016.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Due to its anti-inflammatory, antifibrotic and antineoplastic properties, the PPAR gamma agonist rosiglitazone is of interest in prevention and therapy of radiation-induced toxicities. We aimed to evaluate the radioprotective effect of rosiglitazone in a mouse model of radiation-induced oral mucositis. MATERIAL AND METHODS Oral mucositis was obtained by irradiation of the oral region of C57BL/6J mice, pretreated or not with rosiglitazone. Mucositis was assessed by macroscopic scoring, histology and molecular analysis. Tumor xenograft was obtained by s.c. injection of Hep-2 cells in CD1 mice. Tumor volume was measured twice a week to evaluate effect of rosiglitazone alone and combined with radiotherapy. RESULTS Irradiated mice showed typical features of oral mucositis, such as oedema and reddening, reaching the peak of damage after 12-15days. Rosiglitazone markedly reduced visible signs of mucositis and significantly reduced the peak. Histological analysis showed the presence of an inflammatory cell infiltrate after irradiation; the association with rosiglitazone noticeably reduced infiltration. Rosiglitazone significantly inhibited radiation-induced tnfα, Il-6 and Il-1β gene expression. Rosiglitazone controlled the increase of TGF-β and NF-kB p65 subunit proteins induced by irradiation, and enhanced the expression of catalase. Irradiation and rosiglitazone significantly reduced tumor volume as compared to control. Rosiglitazone did not protect tumor from the therapeutic effect of radiation. CONCLUSION Rosiglitazone exerted a protective action on normal tissues in radiation-induced mucositis. Moreover, it showed antineoplastic properties on head-neck carcinoma xenograft model and selective protection of normal tissues. Thus, PPAR gamma agonists should be further investigated as radioprotective agents in head and neck cancer.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Mariangela Sottili
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy.
| | - Chiara Gerini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Isacco Desideri
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Cinzia Bastida
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Stefania Pallotta
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Francesca Castiglione
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Pierluigi Bonomo
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Daniela Greto
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Emanuela Olmetto
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Francesca Terziani
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Carlotta Becherini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Camilla Delli Paoli
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Laura Trombetta
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Mauro Loi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Giampaolo Biti
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| |
Collapse
|
17
|
Raber J, Davis MJ, Pfankuch T, Rosenthal R, Doctrow SR, Moulder JE. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav Brain Res 2016; 320:457-463. [PMID: 27789343 DOI: 10.1016/j.bbr.2016.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
The brain could be exposed to irradiation as part of a nuclear accident, radiological terrorism (dirty bomb scenario) or a medical radiological procedure. In the context of accidents or terrorism, there is considerable interest in compounds that can mitigate radiation-induced injury when treatment is initiated a day or more after the radiation exposure. As it will be challenging to determine the radiation exposure an individual has received within a relatively short time frame, it is also critical that the mitigating agent does not negatively affect individuals, including emergency workers, who might be treated, but who were not exposed. Alterations in hippocampus-dependent cognition often characterize radiation-induced cognitive injury. The catalytic ROS scavenger EUK-207 is a member of the class of metal-containing salen manganese (Mn) complexes that suppress oxidative stress, including in the mitochondria, and have been shown to mitigate radiation dermatitis, promote wound healing in irradiated skin, and mitigate vascular injuries in irradiated lungs. As the effects of EUK-207 against radiation injury in the brain are not known, we assessed the effects of EUK-207 on sham-irradiated animals and the ability of EUK-207 to mitigate radiation-induced cognitive injury. The day following irradiation or sham-irradiation, the mice started to receive EUK-207 and were cognitively tested 3 months following exposure. Mice irradiated at a dose of 15Gy showed cognitive impairments in the water maze probe trial. EUK-207 mitigated these impairments while not affecting cognitive performance of sham-irradiated mice in the water maze probe trial. Thus, EUK-207 has attractive properties and should be considered an ideal candidate to mitigate radiation-induced cognitive injury.
Collapse
Affiliation(s)
- J Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, L470, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | - M J Davis
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - T Pfankuch
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - R Rosenthal
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - S R Doctrow
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - J E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Weitzel DH, Tovmasyan A, Ashcraft KA, Boico A, Birer SR, Roy Choudhury K, Herndon J, Rodriguiz RM, Wetsel WC, Peters KB, Spasojevic I, Batinic-Haberle I, Dewhirst MW. Neurobehavioral radiation mitigation to standard brain cancer therapy regimens by Mn(III) n-butoxyethylpyridylporphyrin-based redox modifier. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:372-381. [PMID: 27224425 DOI: 10.1002/em.22021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Combinations of radiotherapy (RT) and chemotherapy have shown efficacy toward brain tumors. However, therapy-induced oxidative stress can damage normal brain tissue, resulting in both progressive neurocognitive loss and diminished quality of life. We have recently shown that MnTnBuOE-2-PyP(5+) (Mn(III)meso-tetrakis(N-n-butoxyethylpyridinium -2-yl)porphyrin) rescued RT-induced white matter damage in cranially-irradiated mice. Radiotherapy is not used in isolation for treatment of brain tumors; temozolomide is the standard-of-care for adult glioblastoma, whereas cisplatin is often used for treatment of pediatric brain tumors. Therefore, we evaluated the brain radiation mitigation ability of MnTnBuOE-2-PyP(5+) after either temozolomide or cisplatin was used singly or in combination with 10 Gy RT. MnTnBuOE-2-PyP(5+) accumulated in brains at low nanomolar levels. Histological and neurobehavioral testing showed a drastic decrease (1) of axon density in the corpus callosum and (2) rotorod and running wheel performance in the RT only treatment group, respectively. MnTnBuOE-2-PyP(5+) completely rescued this phenotype in irradiated animals. In the temozolomide groups, temozolomide/ RT treatment resulted in further decreased rotorod responses over RT alone. Again, MnTnBuOE-2-PyP(5+) treatment rescued the negative effects of both temozolomide ± RT on rotorod performance. While the cisplatin-treated groups did not give similar results as the temozolomide groups, inclusion of MnTnBuOE-2-PyP(5+) did not negatively affect rotorod performance. Additionally, MnTnBuOE-2-PyP(5+) sensitized glioblastomas to either RT ± temozolomide in flank tumor models. Mice treated with both MnTnBuOE-2-PyP(5+) and radio-/chemo-therapy herein demonstrated brain radiation mitigation. MnTnBuOE-2-PyP(5+) may well serve as a normal tissue radio-/chemo-mitigator adjuvant therapy to standard brain cancer treatment regimens. Environ. Mol. Mutagen. 57:372-381, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Douglas H Weitzel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Alina Boico
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Samuel R Birer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kingshuk Roy Choudhury
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - James Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Katherine B Peters
- Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- PK/PD BioAnalytical DCI Shared Resource, Duke University Medical Center, Durham, North Carolina
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
19
|
Mangoni M, Sottili M, Gerini C, Bonomo P, Bottoncetti A, Castiglione F, Franzese C, Cassani S, Greto D, Masoni T, Meattini I, Pallotta S, Passeri A, Pupi A, Vanzi E, Biti G, Livi L. A PPAR-gamma agonist attenuates pulmonary injury induced by irradiation in a murine model. Lung Cancer 2015; 90:405-9. [PMID: 26791799 DOI: 10.1016/j.lungcan.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
PURPOSE/OBJECTIVE(S) Due to its anti-inflammatory, antifibrotic and antineoplastic properties, the PPAR-γ agonist rosiglitazone is of interest in the prevention and therapy of radiation-induced pulmonary injury. We evaluated the radioprotective effects of rosiglitazone in a murine model of pulmonary damage to determine whether radioprotection was selective for normal and tumor tissues. METHODS Lungs in C57BL/6J mice were irradiated (19 Gy) with or without rosiglitazone (RGZ, 5mg/kg/day for 16 weeks, oral gavage). Computed tomography (CT) was performed and Hounsfield Units (HU) were determined during the observation period. Histological analysis and evaluation of fibrosis/inflammatory markers by western blot were performed at 16 weeks. A549 tumor-bearing CD1 mice were irradiated (16 Gy) with or without RGZ, and tumor volumes were measured at 35 days. RESULTS Rosiglitazone reduced radiologic and histologic signs of fibrosis, inflammatory infiltrate, alterations to alveolar structures, and HU lung density that was increased due to irradiation. RGZ treatment also significantly decreased Col1, NF-kB and TGF-β expression and increased Bcl-2 protein expression compared to the irradiation group and reduced A549 clonogenic survival and xenograft tumor growth. CONCLUSIONS Rosiglitazone exerted a protective effect on normal tissues in radiation-induced pulmonary injury, while irradiated lung cancer cells were not protected in vivo and in vitro. Thus, rosiglitazone could be proposed as a radioprotective agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Mariangela Sottili
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Chiara Gerini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Pierluigi Bonomo
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Anna Bottoncetti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesca Castiglione
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Ciro Franzese
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Sara Cassani
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniela Greto
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Tatiana Masoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Stefania Pallotta
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandro Passeri
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alberto Pupi
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eleonora Vanzi
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giampaolo Biti
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
20
|
Georgakilas AG, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias CE, Bagos PG, Michalopoulos I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 2015; 368:164-72. [DOI: 10.1016/j.canlet.2015.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022]
|
21
|
Levy A, Martelli H, Fayech C, Minard-Colin V, Dumas I, Gensse MC, Le Deley MC, Oberlin O, Haie-Meder C. Late toxicity of brachytherapy after female genital tract tumors treated during childhood: Prospective evaluation with a long-term follow-up. Radiother Oncol 2015; 117:206-12. [PMID: 26463838 DOI: 10.1016/j.radonc.2015.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
PURPOSE To prospectively assess the long-term toxicities of brachytherapy in female survivors with localized genital tract tumors. PATIENTS AND METHODS The data concerning 42 patients treated at Gustave Roussy between 1971 and 2004, were both retrospectively and prospectively analyzed. Strictly confidential constructed surveys based on the LENT SOMA/SF-36v2 questionnaires were mailed and 51% were completed. Complications were recorded throughout the follow-up period and graded according to CTCAE, version 4.0. RESULTS The median age at diagnosis was 1.7 years (range, 0.6-16.6) and most patients (69%) had rhabdomyosarcomas. Treatments included brachytherapy delivered in all patients, chemotherapy (88%), surgery (31%), and external beam radiotherapy (5%). At a median follow-up of 15.5 years, 41/42 patients were alive. A total of 160 late effects were identified in 32/42 (76%) patients: 72% G1-2, and 28% G3-4 (the mean number of all grade late effects per patient: 4 [median: 2.5; range, 0-16] and the mean number of G3-4 late effects per patient: 1[median: 0; range, 0-8]). The most common all grade late toxicities were gynecological (75/160; 47%) and G3-4 were urinary (24/45; 53%). Sixteen patients (38%) required surgical treatment of late complications. The 15-year actuarial incidence rate of G3-4 late effects was 51%. The total number of all grade and G3-4 late effects was significantly increased in patients treated before 1990 (p=0.005 and p=0.008), when the cumulative dose was higher (p=0.03 and p=0.02), when the maximal dose was delivered to the ovaries (p=0.002 and p=0.04), and when the brachytherapy volume was larger (p=0.03 and p=0.02). Quality of life was good or very good in 91% of patients who completed the surveys. CONCLUSION Long-term effects decreased with advances in treatment. Stringently controlled brachytherapy parameters should allow us to pursue improvements in order to prevent or minimize long-term sequelae.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, France; Paris Sud University, France
| | | | | | | | - Isabelle Dumas
- Department of Radiation Oncology, Gustave Roussy, France
| | | | | | | | | |
Collapse
|
22
|
Cohen EP, Fish BL, Imig JD, Moulder JE. Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0222-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy: future trends. Future Oncol 2015; 10:2345-57. [PMID: 25525844 DOI: 10.2217/fon.14.175] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Only two radioprotective compounds, amifostine and palifermin, currently have the US FDA approval for use in radiation therapy. However, several agents have been reported that show therapeutic promise. Many of these agents are free radical scavengers/antioxidants. Superoxide dismutase and superoxide dismutase mimetics, nitroxides and dietary antioxidants are all being investigated. Recently, alternative strategies of drug development have been evolving, which focus on targeting the series of cellular insult recognition/repair responses initiated following radiation. These agents, which include cytokines/growth factors, angiotensin-converting enzyme inhibitors and apoptotic modulators, show promise of having significant impact on the mitigation of radiation injury. Herein, we review current literature on the development of radioprotectors with emphasis on compounds with proven or potential usefulness in radiation therapy.
Collapse
Affiliation(s)
- Roberta M Johnke
- Department of Radiation Oncology, East Carolina University Brody School of Medicine, Greenville, NC 27834, USA
| | | | | |
Collapse
|
24
|
Allison RR. Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 2015; 10:2359-79. [PMID: 25525845 DOI: 10.2217/fon.14.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy can successfully ablate tumors. However, the same ionization process that destroys a cancer can also permanently damage surrounding organs resulting in unwanted clinical morbidity. Therefore, modern radiation therapy attempts to minimize dose to normal tissue to prevent side effects. Still, as tumors and normal tissues intercalate, the risk of normal tissue injury often may prevent tumoricidal doses of radiation therapy to be delivered. This paper will review current outcomes and limitations of radiobiological modifiers that may selectively enhance the radiosensitivity of tumors as well as parallel techniques that may protect normal tissues from radiation injury. Future endeavors based in part upon newly elucidated genetic pathways will be highlighted.
Collapse
|
25
|
Bourgier C, Lacombe J, Solassol J, Mange A, Pèlegrin A, Ozsahin M, Azria D. Late side-effects after curative intent radiotherapy: Identification of hypersensitive patients for personalized strategy. Crit Rev Oncol Hematol 2015; 93:312-9. [DOI: 10.1016/j.critrevonc.2014.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022] Open
|
26
|
Slezak J, Kura B, Ravingerová T, Tribulova N, Okruhlicova L, Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol 2015; 93:737-53. [PMID: 26030720 DOI: 10.1139/cjpp-2015-0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In addition to cytostatic treatment and surgery, the most common cancer treatment is gamma radiation. Despite sophisticated radiological techniques however, in addition to irradiation of the tumor, irradiation of the surrounding healthy tissue also takes place, which results in various side-effects, depending on the absorbed dose of radiation. Radiation either damages the cell DNA directly, or indirectly via the formation of oxygen radicals that in addition to the DNA damage, react with all cell organelles and interfere with their molecular mechanisms. The main features of radiation injury besides DNA damage is inflammation and increased expression of pro-inflammatory genes and cytokines. Endothelial damage and dysfunction of capillaries and small blood vessels plays a particularly important role in radiation injury. This review is focused on summarizing the currently available data concerning the mechanisms of radiation injury, as well as the effectiveness of various antioxidants, anti-inflammatory cytokines, and cytoprotective substances that may be utilized in preventing, mitigating, or treating the toxic effects of ionizing radiation on the heart.
Collapse
Affiliation(s)
- Jan Slezak
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Branislav Kura
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Narcisa Tribulova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Ludmila Okruhlicova
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| | - Miroslav Barancik
- Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic.,Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 842 33 Bratislava, Slovak Republic
| |
Collapse
|
27
|
Burdak-Rothkamm S, Smith A, Lobachevsky P, Martin R, Prise KM. Radioprotection of targeted and bystander cells by methylproamine. Strahlenther Onkol 2014; 191:248-55. [PMID: 25245467 PMCID: PMC4338360 DOI: 10.1007/s00066-014-0751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Introduction Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. Methods T98G glioma cells were treated with 15 μM methylproamine and exposed to 137Cs γ-ray/X-ray irradiation and He2+ microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. Results Radioprotection of directly targeted T98G cells by methylproamine was observed for 137Cs γ-rays and X-rays but not for He2+ charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He2+ ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. Discussion and conclusion Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He2+ ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received.
Collapse
|
28
|
Abdollahi H. Probiotic-based protection of normal tissues during radiotherapy. Nutrition 2014; 30:495-6. [DOI: 10.1016/j.nut.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/03/2013] [Accepted: 09/10/2013] [Indexed: 10/25/2022]
|
29
|
Radioprotection of normal tissue cells. Strahlenther Onkol 2014; 190:745-52. [DOI: 10.1007/s00066-014-0637-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
|
30
|
Fullerenols as a new therapeutic approach in nanomedicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:751913. [PMID: 24222914 PMCID: PMC3814052 DOI: 10.1155/2013/751913] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/18/2013] [Indexed: 01/02/2023]
Abstract
Recently, much attention has been paid to the bioactive properties of water-soluble fullerene derivatives: fullerenols, with emphasis on their pro- and antioxidative properties. Due to their hydrophilic properties and the ability to scavenge free radicals, fullerenols may, in the future, provide a serious alternative to the currently used pharmacological methods in chemotherapy, treatment of neurodegenerative diseases, and radiobiology. Some of the most widely used drugs in chemotherapy are anthracycline antibiotics. Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects. Fullerenols may counteract the harmful effects of anthracyclines by scavenging free radicals and thereby improve the effects of chemotherapy. Additionally, due to the hollow spherical shape, fullerenols may be used as drug carriers. Moreover, because of the existence of the currently ineffective ways for neurodegenerative diseases treatment, alternative compounds, which could prevent the negative effects of oxidative stress in the brain, are still sought. In the search of alternative methods of treatment and diagnosis, today's science is increasingly reaching for tools in the field of nanomedicine, for example, fullerenes and their water-soluble derivatives, which is addressed in the present paper.
Collapse
|
31
|
Britten A, Rossier C, Taright N, Ezra P, Bourgier C. Genomic classifications and radiotherapy for breast cancer. Eur J Pharmacol 2013; 717:67-70. [PMID: 23583322 DOI: 10.1016/j.ejphar.2012.11.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
Abstract
The current therapeutic strategy in breast cancer rests on standard prognostic factors such as size, histological grade, nodal and hormone receptor status. However, over the last decade, a new form of molecular classification has emerged to complement the classical clinico-pathological staging. Models based on tumour genome have been developped to help predict the risk of relapse, and are currently being evaluated. This improved risk stratification tool would enable the identification of patients who would benefit from systemic as well as local treatments. This paper aims to give an overview of the radiobiological implications in particular of this new classification, by looking at on the one hand, predictors of local relaspe, and on the other hand, the modulation in radiotherapy according to molecular type.
Collapse
Affiliation(s)
- Anna Britten
- Radiation Oncology Department, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
32
|
Allison RR, Sibata C, Patel R. Future radiation therapy: photons, protons and particles. Future Oncol 2013; 9:493-504. [DOI: 10.2217/fon.13.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy plays a critical role in the current management of cancer patients. The most common linear accelerator-based treatment device delivers photons of radiation. In an ever more precise fashion, state-of-the-art technology has recently allowed for both modulation of the radiation beam and imaging for this treatment delivery. This has resulted in better patient outcome with far fewer side effects than were achieved even a decade ago. Recently, a push has begun for proton therapy, which may have clinical advantage in select indications, although significant limitations for these devices have become apparent. In addition, currently, heavy particle therapy has been touted as a potential means to improve cancer patient outcomes. This article will highlight current benefits and drawbacks to modern radiation therapy and speculate on future tools that will likely dramatically improve radiation oncology.
Collapse
Affiliation(s)
- Ron R Allison
- 21st Century Oncology, 801 WH Smith Blvd., Greenville, NC 27834, USA.
| | | | - Rajen Patel
- 21st Century Oncology, 801 WH Smith Blvd., Greenville, NC 27834, USA
| |
Collapse
|
33
|
Levy A, Hollebecque A, Bourgier C, Loriot Y, Guigay J, Robert C, Delaloge S, Bahleda R, Massard C, Soria JC, Deutsch E. Targeted therapy-induced radiation recall. Eur J Cancer 2013; 49:1662-8. [PMID: 23312391 DOI: 10.1016/j.ejca.2012.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Radiation recall (RR) is an acute inflammatory reaction confined to previously irradiated areas after the administration of various pharmacological agents. A diverse range of chemotherapies has been associated with RR but no case series with targeted therapies (TT) has been reported. PATIENTS AND METHODS From a database of 346,933 cancer patients ≥18 years treated at Institut Gustave Roussy between June 1986 and August 2012, clinical data and the pattern of treatment of TT-induced RR were collected. Results were compared with those of prior TT-induced RR publications. RESULTS Sixteen patients with different tumour types were diagnosed with RR observed in the heart, bladder, salivary glands, skin and gastrointestinal tract. The median duration of RR was 1.7 weeks (range: 0.1-13.7) and median time to onset from TT to RR was 16.9 weeks (range: 1-86.9). TT consisted of inhibitors of the mammalian target of rapamycin (mTOR) (n=5), endothelial growth factor receptor (EGFR) (n=2), integrin (n=2), histone deacetylase (HDAC) (n=2), cell division cycle 7 (CDC7) (n=1), insulin-like growth factor 1 receptor (IGFR1) (n=1), cyclin-dependent kinase (CDK) (n=1), BRAF (n=1) and a vascular disrupting agent (VDA) (n=1). Thirteen incriminated TT (81%) were evaluated during early clinical trials and RR led to discontinuation of TT in six patients. All patients had previously received radiotherapy at a median biologically effective dose (BED) of 47 Gy (range: 20-70). The median interval from radiation to TT was 30 months (range: 0.3-363). Immunohistochemical analysis of skin biopsy specimens did not show any transforming growth factor-beta (TGF-β) activation. TT-induced RR characteristics in our population were comparable to those of the nine other cases previously reported in the literature. CONCLUSION This is the largest case series ever reported on TT-induced RR. RR could be a potential dose-limiting toxicity in early clinical trials. Research is warranted to further understand the exact pathophysiology of this rare but clinically relevant phenomenon.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|