1
|
Parajuli KR, Jung Y, Taichman RS. Abscisic acid signaling through LANCL2 and PPARγ induces activation of p38MAPK resulting in dormancy of prostate cancer metastatic cells. Oncol Rep 2024; 51:39. [PMID: 38624012 PMCID: PMC10804438 DOI: 10.3892/or.2024.8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 04/17/2024] Open
Abstract
Prostate cancer (PCa) is one the most common malignancies in men. The high incidence of bone metastasis years after primary therapy suggests that disseminated tumor cells must become dormant, but maintain their ability to proliferate in the bone marrow. Abscisic acid (ABA) is a stress response molecule best known for its regulation of seed germination, stomal opening, root shoot growth and other stress responses in plants. ABA is also synthesized by mammalian cells and has been linked to human disease. The aim of the present study was to examine the role of ABA in regulating tumor dormancy via signaling through lanthionine synthetase C‑like protein 2 (LANCL2) and peroxisome proliferator activated receptor γ (PPARγ) receptors. ABA signaling in human PCa cell lines was studied using targeted gene knockdown (KD), western blotting, quantitative PCR, cell proliferation, migration, invasion and soft agar assays, as well as co‑culture assays with bone marrow stromal cells. The data demonstrated that ABA signaling increased the expression of p21, p27 and p16, while inhibiting viability, migration, invasion and colony size in a reversable manner without toxicity. ABA also induced p38MAPK activation and NR2F1 signaling. Targeted gene KD of LANCL2 and PPARγ abrogated the cellular responses to ABA. Taken together, these data demonstrate that ABA may induce dormancy in PCa cell lines through LANCL2 and PPARγ signaling, and suggest novel targets to manage metastatic PCa growth.
Collapse
Affiliation(s)
- Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35294, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Russell S. Taichman
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL 35294, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Liu R, Su S, Xing J, Liu K, Zhao Y, Stangis M, Jacho DP, Yildirim-Ayan ED, Gatto-Weis CM, Chen B, Li X. Tumor removal limits prostate cancer cell dissemination in bone and osteoblasts induce cancer cell dormancy through focal adhesion kinase. J Exp Clin Cancer Res 2023; 42:264. [PMID: 37821954 PMCID: PMC10566127 DOI: 10.1186/s13046-023-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Disseminated tumor cells (DTCs) can enter a dormant state and cause no symptoms in cancer patients. On the other hand, the dormant DTCs can reactivate and cause metastases progression and lethal relapses. In prostate cancer (PCa), relapse can happen after curative treatments such as primary tumor removal. The impact of surgical removal on PCa dissemination and dormancy remains elusive. Furthermore, as dormant DTCs are asymptomatic, dormancy-induction can be an operational cure for preventing metastases and relapse of PCa patients. METHODS We used a PCa subcutaneous xenograft model and species-specific PCR to survey the DTCs in various organs at different time points of tumor growth and in response to tumor removal. We developed in vitro 2D and 3D co-culture models to recapitulate the dormant DTCs in the bone microenvironment. Proliferation assays, fluorescent cell cycle reporter, qRT-PCR, and Western Blot were used to characterize the dormancy phenotype. We performed RNA sequencing to determine the dormancy signature of PCa. A drug repurposing algorithm was applied to predict dormancy-inducing drugs and a top candidate was validated for the efficacy and the mechanism of dormancy induction. RESULTS We found DTCs in almost all mouse organs examined, including bones, at week 2 post-tumor cell injections. Surgical removal of the primary tumor reduced the overall DTC abundance, but the DTCs were enriched only in the bones. We found that osteoblasts, but not other cells of the bones, induced PCa cell dormancy. RNA-Seq revealed the suppression of mitochondrial-related biological processes in osteoblast-induced dormant PCa cells. Importantly, the mitochondrial-related biological processes were found up-regulated in both circulating tumor cells and bone metastases from PCa patients' data. We predicted and validated the dormancy-mimicking effect of PF-562,271 (PF-271), an inhibitor of focal adhesion kinase (FAK) in vitro. Decreased FAK phosphorylation and increased nuclear translocation were found in both co-cultured and PF-271-treated C4-2B cells, suggesting that FAK plays a key role in osteoblast-induced PCa dormancy. CONCLUSIONS Our study provides the first insights into how primary tumor removal enriches PCa cell dissemination in the bones, defines a unique osteoblast-induced PCa dormancy signature, and identifies FAK as a PCa cell dormancy gatekeeper.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jing Xing
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Ke Liu
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Mary Stangis
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Diego P Jacho
- Bioengineering Department, the University of Toledo, Toledo, OH, 43606, USA
| | | | - Cara M Gatto-Weis
- Department of Pathology, College of Medicine and Life Sciences, the University of Toledo, Toledo, OH, 43614, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, MI, 49503, USA.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, the University of Toledo, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
4
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Özdemir BC, Arnold N, Fleischmann A, Hensel J, Klima I, Kruithof-de Julio M, Burkhard F, Hayoz S, Kiss B, Thalmann GN. Prediction of Biochemical Recurrence Based on Molecular Detection of Lymph Node Metastasis After Radical Prostatectomy. EUR UROL SUPPL 2022; 44:1-10. [PMID: 36185585 PMCID: PMC9520506 DOI: 10.1016/j.euros.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Background Molecular detection of lymph node (LN) micrometastases by analyzing mRNA expression of epithelial markers in prostate cancer (PC) patients provides higher sensitivity than histopathological examination. Objective To investigate which type of marker to use and whether molecular detection of micrometastases in LNs was predictive of biochemical recurrence. Design, setting, and participants LN samples from PC patients undergoing radical prostatectomy with extended LN dissection between 2009 and 2011 were examined for the presence of micrometastases by both routine histopathology and molecular analyses. Outcome measurements and statistical analysis The mRNA expression of a panel of markers of prostate epithelial cells, prostate stem cell–like cells, epithelial-to-mesenchymal transition, and stromal activation, was performed by quantitative real-time polymerase chain reaction. The expression levels of these markers in LN metastases from three PC patients were compared with the expression levels in LN from five control patients without PC in order to identify the panel of markers best suited for the molecular detection of LN metastases. The predictive value of the molecular detection of micrometastases for biochemical recurrence was assessed after a follow-up of 10 yr. Results and limitations Prostate epithelial markers are better suited for the detection of occult LN metastases than molecular markers of stemness, epithelial-to-mesenchymal transition, or reactive stroma. An analysis of 1023 LNs from 60 PC patients for the expression of prostate epithelial cell markers has revealed different expression levels and patterns between patients and between LNs of the same patient. The positive predictive value of molecular detection of occult LN metastasis for biochemical recurrence is 66.7% and the negative predictive value is 62.5%. Limitations are sample size and the hypothesis-driven selection of markers. Conclusions Molecular detection of epithelial cell markers increases the number of positive LNs and predicts tumor recurrence already at surgery. Patient summary We show that a panel of epithelial prostate markers rather than single genes is preferred for the molecular detection of lymph node micrometastases not visible at histopathological examination.
Collapse
|
6
|
Mallin MM, Pienta KJ, Amend SR. Cancer cell foraging to explain bone-specific metastatic progression. Bone 2022; 158:115788. [PMID: 33279670 DOI: 10.1016/j.bone.2020.115788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023]
Abstract
Metastatic cancer is lethal and patients who suffer bone metastases fare especially poorly. Bone-specific metastatic progression in prostate and breast cancers is a highly observed example of organ-specific metastasis, or organotropism. Though research has delineated the sequential steps of the metastatic cascade, the determinants of bone-specific metastasis have remained elusive for decades. Applying fundamental ecological principles to cancer biology models of metastasis provides novel insights into metastatic organotropism. We use critical concepts from foraging theory and movement ecology to propose that observed bone-specific metastasis is the result of habitat selection by foraging cancer cells. Furthermore, we posit that cancer cells can only perform habitat selection if and when they employ a reversible motile foraging strategy. Only a very small percentage of cells in a primary tumor harbor this ability. Therefore, our habitat selection model emphasizes the importance of identifying the rare subset of cancer cells that might exhibit habitat selection, ergo achieve bone-specific metastatic colonization.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 2-103, Baltimore, MD 21205, USA.
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg 105, Baltimore, MD 21287, USA
| | - Sarah R Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St., Marburg 105, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Ferrer AI, Einstein E, Morelli SS. Bone Marrow-Derived Cells in Endometrial Cancer Pathogenesis: Insights from Breast Cancer. Cells 2022; 11:cells11040714. [PMID: 35203363 PMCID: PMC8869947 DOI: 10.3390/cells11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer, representing 3.5% of all new cancer cases in the United States. Abnormal stem cell-like cells, referred to as cancer stem cells (CSCs), reside in the endometrium and possess the capacity to self-renew and differentiate into cancer progenitors, leading to tumor progression. Herein we review the role of the endometrial microenvironment and sex hormone signaling in sustaining EC progenitors and potentially promoting dormancy, a cellular state characterized by cell cycle quiescence and resistance to conventional treatments. We offer perspective on mechanisms by which bone marrow-derived cells (BMDCs) within the endometrial microenvironment could promote endometrial CSC (eCSC) survival and/or dormancy. Our perspective relies on the well-established example of another sex hormone-driven cancer, breast cancer, in which the BM microenvironment plays a crucial role in acquisition of CSC phenotype and dormancy. Our previous studies demonstrate that BMDCs migrate to the endometrium and express sex hormone (estrogen and progesterone) receptors. Whether the BM is a source of eCSCs is unknown; alternatively, crosstalk between BMDCs and CSCs within the endometrial microenvironment could be an additional mechanism supporting eCSCs and tumorigenesis. Elucidating these mechanisms will provide avenues to develop novel therapeutic interventions for EC.
Collapse
Affiliation(s)
- Alejandra I. Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
- School of Graduate Studies Newark, Rutgers University, Newark, NJ 07103, USA
| | - Ella Einstein
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence:
| |
Collapse
|
8
|
The vulnerable primed cancer stem cells in disguise: demystifying the role of Maspin. Cancer Metastasis Rev 2022; 41:965-974. [PMID: 36451067 PMCID: PMC9713111 DOI: 10.1007/s10555-022-10070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Epithelial-specific Maspin is widely known as a tumor suppressor. However, while the level of maspin expression is inversely correlated with tumor grade and stage, emerging clinical evidence shows a correlation between seemingly better differentiated tumor cells that express Maspin in both the nucleus and the cytoplasm, (n + c)Maspin, with a poor prognosis of many types of cancer. Biological studies demonstrate that Maspin plays an essential role in stem cell differentiation. In light of the recently established characterization of primed stem cells (P-SCs) in development, we propose, for the first time, that cancer stem cells (CSCs) also need to undergo priming (P-CSCs) before their transition to various progeny phenotypes. We envisage major differences in the steady state kinetics between P-SCs and P-CSCs. We further propose that P-CSCs of carcinoma are both marked and regulated by (n + c)Maspin. The concept of P-CSCs helps explain the apparent dichotomous relationships of (n + c)Maspin expression with cancer diagnosis and prognosis, and is supported by the evidence from mechanistic studies. We believe that the potential utility of (n + c)Maspin as a molecular marker of P-CSCs may significantly accelerate the advancement in our understanding of the genesis of tumor phenotypic plasticity in response to changes of tumor microenvironments (TME) or drug treatments. The vulnerabilities of the cellular state of (n + c)Maspin-expressing P-CSCs are also discussed as the rationale for future development of P-CSC-targeted chemotherapeutic and immunotherapeutic strategies.
Collapse
|
9
|
Cackowski FC, Heath EI. Prostate cancer dormancy and recurrence. Cancer Lett 2022; 524:103-108. [PMID: 34624433 PMCID: PMC8694498 DOI: 10.1016/j.canlet.2021.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Prostate cancer can progress rapidly after diagnosis, but can also become undetectable after curative intent radiation or surgery, only to recur years or decades later. This capacity to lie dormant and recur long after a patient was thought to be cured, is relatively unique to prostate cancer, with estrogen receptor positive breast cancer being the other common and well-studied example. Most investigators agree that the bone marrow is an important site for dormant tumor cells, given the frequency of bone metastases and that multiple studies have reported disseminated tumor cells in patients with localized disease. However, while more difficult to study, lymph nodes and the prostate bed are likely to be important reservoirs as well. Dormant tumor cells may be truly quiescent and in the G0 phase of the cell cycle, which is commonly called cellular dormancy. However, tumor growth may also be held in check through a balance of proliferation and cell death (tumor mass dormancy). For induction of cellular dormancy, prostate cancer cells respond to signals from their microenvironment, including TGF-β2, BMP-7, GAS6, and Wnt-5a, which result in signals transduced in part through p38 MAPK and pluripotency associated transcription factors including SOX2 and NANOG, which likely affect the epi-genome through histone modification. Clinical use of adjuvant radiation or androgen deprivation has been modestly successful to prevent recurrence. With the rapid pace of discovery in this field, systemic adjuvant therapy is likely to continue to improve in the future.
Collapse
Affiliation(s)
- Frank C Cackowski
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA.
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
10
|
|
11
|
Rossari F, Zucchinetti C, Buda G, Orciuolo E. Tumor dormancy as an alternative step in the development of chemoresistance and metastasis - clinical implications. Cell Oncol (Dordr) 2019; 43:155-176. [PMID: 31392521 DOI: 10.1007/s13402-019-00467-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The ability of a tumor to become dormant in response to suboptimal conditions has recently been recognized as a key step in tumor progression. Tumor dormancy has been found to be implicated in several tumor types as the culprit of therapy resistance and metastasis development, the deadliest features of a cancer. Several lines of evidence indicate that the development of these traits may rely on the de-differentiation of committed tumor cells that regain stem-like properties during a dormant state. Presently, dormancy is classified into cell- and population-level, according to the preponderance of cellular mechanisms that keep tumor cells quiescent or to a balance between overall cell division and death, respectively. Cellular dormancy is characterized by autophagy, stress-tolerance signaling, microenvironmental cues and, of prime relevance, epigenetic modifications. It has been found that the epigenome alters during cellular quiescence, thus representing the driving force for short-term cancer progression. Population-level dormancy is characterized by processes that counteract proliferation, such as inappropriate blood supply and intense immune responses. The latter two mechanisms are not mutually exclusive and may affect tumor masses both simultaneously and subsequently. CONCLUSIONS Overall, tumor dormancy may represent an additional step in the acquisition of cancer characteristics, and its comprehension may clarify both theoretical and practical aspects of cancer development. Clinically, only a deep understanding of dormancy may explain the course of tumor development in different patients, thus representing a process that may be targeted to prevent and/or treat advanced-stage cancers. That is especially the case for breast cancer, against which the mTOR inhibitor everolimus displays potent antitumor activity in patients with metastatic disease by impeding autophagy and tumor dormancy onset. Here we will also discuss other targeted therapies directed towards tumor dormancy onset, e.g. specific inhibitors of SFK and MEK, or aimed at keeping tumor cells dormant, e.g. prosaposin derivatives, that may shortly enter clinical assessment in breast, and possibly other cancer types.
Collapse
Affiliation(s)
- Federico Rossari
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy. .,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy.
| | - Cristina Zucchinetti
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126, Pisa, Italy
| | - Enrico Orciuolo
- Hematology Unit, Azienda Ospedaliera Universitaria Pisana, 56126, Pisa, Italy
| |
Collapse
|
12
|
Miao W, Yuan J, Li L, Wang Y. Parallel-Reaction-Monitoring-Based Proteome-Wide Profiling of Differential Kinase Protein Expression during Prostate Cancer Metastasis in Vitro. Anal Chem 2019; 91:9893-9900. [PMID: 31241916 DOI: 10.1021/acs.analchem.9b01561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prostate cancer is the most common type of cancer in men, and kinases are heavily pursued as drug targets for anticancer therapy. In this study, we applied our recently reported parallel-reaction-monitoring (PRM)-based targeted proteomic method to examine the reprogramming of the human kinome associated with bone metastasis of prostate cancer in vitro. The method displayed superior sensitivity over the shotgun-proteomic approach, and it facilitated the quantification of the relative expression of 276 kinase proteins in a pair of bone metastatic prostate cancer cells. Among the differentially expressed kinases, mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) stimulates the migration and invasion of cultured prostate cancer cells, partially by modulating the activity of secreted matrix metalloproteinases 9 (MMP-9). We also found that the upregulation of MAP4K4 in metastatic prostate cancer cells is driven by the MYC proto-oncogene. Cumulatively, we identify MAP4K4 as a potential promoter for prostate cancer metastasis in vitro.
Collapse
|
13
|
Murray NP, Aedo S, Fuentealba C, Reyes E, Salazar A, Lopez MA, Minzer S, Orrego S, Guzman E. Subtypes of minimal residual disease, association with Gleason score, risk and time to biochemical failure in pT2 prostate cancer treated with radical prostatectomy. Ecancermedicalscience 2019; 13:934. [PMID: 31281431 PMCID: PMC6605630 DOI: 10.3332/ecancer.2019.934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION The Gleason score is a strong prognostic factor for treatment failure in pathologically organ-confined prostate cancer (pT2) treated by radical prostatectomy (RP). However, within each Gleason score, there is clinical heterogeneity with respect to treatment outcome, even in patients with the same pathological stage and prostate-specific antigen (PSA) at diagnosis. This may be due to minimal residual disease (MRD) remaining after surgery. We hypothesise that the sub-type of MRD determines the risk of and timing of treatment failure, is a biological classification, and may explain in part clinical heterogeneity. We present a study of pT2 patients treated with RP, the subtypes of MRD for each Gleason score and clinical outcomes. PATIENTS AND METHODS Patients with Gleason ≤6 (G6) or Gleason 7 (G7) pT2 cancer participated in the study. One month after surgery, blood was taken for circulating prostate cell (CPCs); mononuclear cells were obtained by differential gel centrifugation and identified using immunocytochemistry with anti-PSA. The detection of one CPC/sample was defined as a positive test. Touch-preparations from bone-marrow biopsies were used to detect micro-metastasis using immunocytochemistry with anti-PSA. Biochemical failure was defined as a PSA >0.2 ng/mL. Patients were classified as: Group A MRD negative (CPC and micro-metastasis negative), Group B (only micro-metastasis positive) and Group C (CPC positive). Biochemical failure-free survival (BFFS) using Kaplan-Meier and time to failure using Restricted Mean Survival Time (RMST) after 10 years of follow-up were calculated for each group based on the Gleason score. RESULTS Of a cohort of 253 men, four were excluded for having Gleason 8 or 9 prostate cancer, leaving a study group of 249 men of whom 52 had G7 prostate cancer. G7 patients had a higher frequency of MRD (69% versus 36%) and worse prognosis. G6 and G7 patients negative for MRD had similar BBFS rates, 98% at 10 years, time to failure 9.9 years. Group C, G6 patients had a higher BFFS and longer time to failure compared to G7 patients (19% versus 5% and 7 versus 3 years). Group B showed similar results up to 5 years, thereafter G6 had a lower BFFS 63% versus 90%. CONCLUSIONS G7 and G6 pT2 patients have different patterns of MRD and relapse. Risk stratification using MRD sub-types may help to define the need for adjuvant therapy. This needs confirmation with large randomised long-term trials.
Collapse
Affiliation(s)
- Nigel P Murray
- Faculty of Medicine, University Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile
- Urology Service, Hospital de Carabineros, Simón Bolívar 2200, Ñuñoa, Santiago 7770199, Chile
| | - Socrates Aedo
- Faculty of Medicine, University Finis Terrae, Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile
| | - Cynthia Fuentealba
- Urology Service, Hospital de Carabineros, Simón Bolívar 2200, Ñuñoa, Santiago 7770199, Chile
| | - Eduardo Reyes
- Faculty of Medicine, University Diego Portales, Manuel Rodríguez Sur 415, Santiago 8370179, Chile
- Urology Service, Hospital DIPRECA, Vital Apoquindo 1200, Las Condes, Santiago 7601003, Chile
| | - Anibal Salazar
- Urology Service, Hospital de Carabineros, Simón Bolívar 2200, Ñuñoa, Santiago 7770199, Chile
| | - Marco Antonio Lopez
- Faculty of Medicine, University Mayor, San Pio X 2422, Providencia, Santiago 7510041, Chile
| | - Simona Minzer
- Faculty of Medicine, University Mayor, San Pio X 2422, Providencia, Santiago 7510041, Chile
| | - Shenda Orrego
- Faculty of Medicine, University Mayor, San Pio X 2422, Providencia, Santiago 7510041, Chile
| | - Eghon Guzman
- Faculty of Medicine, University Mayor, San Pio X 2422, Providencia, Santiago 7510041, Chile
| |
Collapse
|
14
|
van der Toom EE, Axelrod HD, de la Rosette JJ, de Reijke TM, Pienta KJ, Valkenburg KC. Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies. Nat Rev Urol 2019; 16:7-22. [PMID: 30479377 DOI: 10.1038/s41585-018-0119-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite improvements in early detection and advances in treatment, patients with prostate cancer continue to die from their disease. Minimal residual disease after primary definitive treatment can lead to relapse and distant metastases, and increasing evidence suggests that circulating tumour cells (CTCs) and bone marrow-derived disseminated tumour cells (BM-DTCs) can offer clinically relevant biological insights into prostate cancer dissemination and metastasis. Using epithelial markers to accurately detect CTCs and BM-DTCs is associated with difficulties, and prostate-specific markers are needed for the detection of these cells using rare cell assays. Putative prostate-specific markers have been identified, and an optimized strategy for staining rare cancer cells from liquid biopsies using these markers is required. The ideal prostate-specific marker will be expressed on every CTC or BM-DTC throughout disease progression (giving high sensitivity) and will not be expressed on non-prostate-cancer cells in the sample (giving high specificity). Some markers might not be specific enough to the prostate to be used as individual markers of prostate cancer cells, whereas others could be truly prostate-specific and would make ideal markers for use in rare cell assays. The goal of future studies is to use sensitive and specific prostate markers to consistently and reliably identify rare cancer cells.
Collapse
Affiliation(s)
| | - Haley D Axelrod
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019; 141:43-84. [PMID: 30691685 DOI: 10.1016/bs.acr.2018.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dormancy occurs when cells remain viable but stop proliferating. When most of a cancer population undergoes this phenomenon, the result is called tumor dormancy, and when a single cancer cell undergoes this process, it is termed quiescence. Cancer stem cells (CSCs) share several overlapping characteristics and signaling pathways with dormant cancer cells, including therapy resistance, and an ability to metastasize and evade the immune system. Cancer cells can be broadly grouped into dormancy-competent CSCs (DCCs), cancer-repopulating cells (CRCs), dormancy-incompetent CSCs and disseminated tumor cells (DTCs). The settings in which cancer cells exploit the dormancy phase to survive and adapt are: (i) primary cancer dormancy; (ii) metastatic dormancy; (iii) therapy-induced dormancy; and (iv) immunologic dormancy. Dormancy, therapy resistance and plasticity of CSCs are fundamentally interconnected processes mediated through mechanisms involving reversible genetic alterations. Niches including metastatic, bone marrow, and perivascular are known to harbor dormant cancer cells. Mechanisms of dormancy induction are complex and multi-factorial and can involve angiogenic switching, addictive oncogene inhibition, immunoediting, anoikis, therapy, autophagy, senescence, epigenetic, and biophysical regulation. Therapy can have opposing effects on cancer cells with respect to dormancy; some therapies can induce dormancy, while others can reactivate dormant cells. There is a lack of consensus relative to the value of therapy-induced dormancy, i.e., some researchers view dormancy induction as a beneficial strategy as it can lead to metastasis inhibition, while others argue that reactivating dormant cancer cells and then eliminating them through therapy are a better approach. More focused investigations of intrinsic cell kinetics and environmental dynamics that promote and maintain cancer cells in a dormant state, and the long-term consequences of dormancy are critical for improving current therapeutic treatment outcomes.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
16
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
17
|
Lange T, Oh-Hohenhorst SJ, Joosse SA, Pantel K, Hahn O, Gosau T, Dyshlovoy SA, Wellbrock J, Feldhaus S, Maar H, Gehrcke R, Kluth M, Simon R, Schlomm T, Huland H, Schumacher U. Development and Characterization of a Spontaneously Metastatic Patient-Derived Xenograft Model of Human Prostate Cancer. Sci Rep 2018; 8:17535. [PMID: 30510249 PMCID: PMC6277427 DOI: 10.1038/s41598-018-35695-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Here we describe the establishment and characterization of an AR+, PSMA+, ERG+, PTEN-/-, CHD1+/- patient-derived xenograft (PDX) model termed 'C5', which has been developed from a 60 years old patient suffering from castration-resistant prostate cancer (CRPC). The patient underwent radical prostatectomy, showed early tumor marker PSA recurrence and, one year after surgery, abiraterone resistance. Subcutaneous C5 tumors can be serially transplanted between mice and grow within ~90 days to 1.5-2 cm³ tumors in SCID Balb/c mice (take rate 100%), NOD-scid IL2Rgnull (NSG) mice (100%) and C57BL/6 pfp-/-/rag2-/- mice (66%). In contrast, no tumor growth is observed in female mice. C5 tumors can be cryopreserved and show the same growth characteristics in vivo afterwards. C5 tumor cells do not grow stably in vitro, neither under two- nor three-dimensional cell culture conditions. Upon serial transplantation, some C5 tumors spontaneously disseminated to distant sites with an observable trend towards higher metastatic cell loads in scid compared to NSG mice. Lung metastases could be verified by histology by means of anti-PSMA immunohistochemistry, exclusively demonstrating single disseminated tumor cells (DTCs) and micro-metastases. Upon surgical resection of the primary tumors, such pulmonary foci rarely grew out to multi-cellular metastatic colonies despite doubled overall survival span. In the brain and bone marrow, the metastatic cell load present at surgery even disappeared during the post-surgical period. We provide shallow whole genome sequencing and whole exome sequencing data of C5 tumors demonstrating the copy number aberration/ mutation status of this PCa model and proving genomic stability over several passages. Moreover, we analyzed genomic and transcriptomic alterations during metastatic progression achieved by serial transplantation. This study describes a novel PCa PDX model that enables future research on several aspects of metastatic PCa, particularly for the AR+ , ERG+ , PTEN-/- PCa subtype.
Collapse
Affiliation(s)
- Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Su Jung Oh-Hohenhorst
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Hahn
- Department of Urology, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Tobias Gosau
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sergey A Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Renate Gehrcke
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Charité University Hospital, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
18
|
Zhou Y, Su Y, Zhu H, Wang X, Li X, Dai C, Xu C, Zheng T, Mao C, Chen D. Interleukin-23 receptor signaling mediates cancer dormancy and radioresistance in human esophageal squamous carcinoma cells via the Wnt/Notch pathway. J Mol Med (Berl) 2018; 97:177-188. [PMID: 30483821 PMCID: PMC6348073 DOI: 10.1007/s00109-018-1724-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
Abstract In the tumor microenvironment, inflammatory cells and molecules influence almost every process; among them, interleukin-23 (IL-23) is a pro-inflammatory molecule that exhibits pro- or anti-tumor properties, but both activities remain poorly understood. In this study, we investigated the effect of extracellular IL-23 in IL-23 receptor-positive (IL-23R+) esophageal squamous cell carcinoma (ESCC) and explored the mechanisms underlying this effect. We analyzed ESCC tumor tissues by immunohistochemical and immunofluorescence staining and found that IL-23, which was highly expressed, co-localized with Oct-4A in IL-23R+ ESCC cells. In addition, IL-23 treatment significantly increased the accumulation of CD133+ cells and activated the Wnt and Notch signaling pathways in CD133−IL-23R+ ESCC cell lines. Consistently, CD133−IL-23R+ cells pretreated with IL-23 showed stronger anti-apoptosis activity when exposed to radiation and higher survival than untreated groups. Moreover, the inhibition of Wnt/Notch signaling by a small-molecule inhibitor or siRNA abolished the effect of IL-23-induced dormancy and consequent radioresistance. Taken together, these results suggested that IL-23 facilitates radioresistance in ESCC by activating Wnt/Notch-mediated G0/1 phase arrest, and attenuating these detrimental changes by blocking the formation of dormancy may prove to be an effective pretreatment for radiotherapy. Key messages IL-23/IL-23R is correlated with the acquisition of stem-like potential in ESCC. CD133−IL-23R+ ESCCs acquired dormancy via IL-23. Radioresistance depends on IL-23-mediated Wnt/Notch pathway activation in vitro and vivo.
Electronic supplementary material The online version of this article (10.1007/s00109-018-1724-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Yuting Su
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoqin Li
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Chunhua Dai
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Tingting Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China.
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, China.
| |
Collapse
|
19
|
Kannan P, Winser SJ, Fung B, Cheing G. Effectiveness of Pelvic Floor Muscle Training Alone and in Combination With Biofeedback, Electrical Stimulation, or Both Compared to Control for Urinary Incontinence in Men Following Prostatectomy: Systematic Review and Meta-Analysis. Phys Ther 2018; 98:932-945. [PMID: 30137629 DOI: 10.1093/ptj/pzy101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The efficacy of pelvic floor muscle training (PFMT) alone and in combination with biofeedback (BFB), electrical stimulation (ES), or both for urinary incontinence in men following prostatectomy is inconclusive. PURPOSE The purpose of this study was to determine whether PFMT works well alone or in combination with BFB, ES, or both in comparison with a control. DATA SOURCES The databases Ovid Medline, EMBASE, CENTRAL, Scopus, and Web of Science, and the specialized register of the Citroen Incontinence Review Group were searched from study inception to August 2017. Abstract proceedings from urological meetings, including the European Association of Urology and the American Urological Association, were also searched. STUDY SELECTION Randomized controlled trials that compared PFMT alone and PFMT with ES, BFB, or both and no treatment, placebo, or sham were included in the review. DATA EXTRACTION, SYNTHESIS, AND QUALITY Two independent reviewers completed data extraction and quality appraisal. The Grading of Recommendations, Assessment, Development, and Evaluation tool was used for quality appraisal. Meta-analysis was done with software used for preparing and maintaining Cochrane reviews. LIMITATIONS Methodological flaws in the included studies limited internal validity. CONCLUSIONS PFMT alone, PFMT plus BFB and ES, and PFMT plus ES were more effective than the control for urinary incontinence following prostatectomy. The effect of PFMT plus BFB on postprostatectomy incontinence remains uncertain.
Collapse
Affiliation(s)
- P Kannan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - S J Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University
| | - B Fung
- Physiotherapy Unit, Kwong Wah Hospital, Yau Ma Tei, Hong Kong
| | - G Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University
| |
Collapse
|
20
|
Murray NP, Aedo S, Fuentealba C, Reyes E, Salazar A. Minimum Residual Disease in Patients Post Radical Prostatectomy for Prostate Cancer: Theoretical Considerations, Clinical Implications and Treatment Outcome. Asian Pac J Cancer Prev 2018; 19:229-236. [PMID: 29374406 PMCID: PMC5844623 DOI: 10.22034/apjcp.2018.19.1.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction: Minimal residual disease (MRD) remaining after curative therapy for prostate cancer has the potential for growth and can result in metastasis. Circulating prostate cells (CPCs) and bone marrow micro-metastasis (mM) could represent different types of MRD. We here determined; biochemical failure free survival rates; time to BF after 10 years follow-up; and the presence of CPCs and mM in patients treated with radical prostatectomy (RP) for prostate cancer. Methods and Patients: One month after RP, blood and bone marrow were sampled for assessment of CPCs and mM. Cases were classified as: group A, CPC negative and mM negative; group B, CPC negative and mM positive; Group C, CPC positive and mM negative; and Group D, CPC positive and mM positive. Subjects were followed with serial determination of PSA levels, recording the time at which BF occurred defined as a serum PSA >0.2ng/ml. After ten years of follow-up Kaplan-Meier survival curves were generated and the restricted mean survival time (RMST) for each group calculated. Results: A total of 321 men participated, 140 in group A with survival of 92.7% (86.3 to 96.2), 39 in group B with 55.8% (37.2 to 70.9); 54 in group C with 6.41% (1.19 to 18.21) and 88 in group D with 4.96%(1.64 to 11.13%. The RMST (in years) were: group A, 9.47 (9.24 to 9.69); group B, 9.23 (8.87 to 9.58); group C, 4.62 (4.46 to 4.77); and group D, 3.57 (3.52 and 3.63) (p-value<0.001 between groups: A versus C and D, B versus C and D). Conclusions: CPC positive men have more aggressive disease, with increased early failure; men who are only positive for mM are at greater risk of late failure. These two forms of MRD represent different clinical entities with respect to biochemical failure and could be used to guide clinical treatment decisions.
Collapse
Affiliation(s)
- Nigel P Murray
- CTC Unit, Faculty of Medicine, University Finis Terrae, Santiago, Chile.
| | | | | | | | | |
Collapse
|
21
|
Murray NP. Treatment of Minimal Residual Disease in Breast Cancer: A Longitudinal Case Study. Cureus 2017; 9:e1521. [PMID: 29383298 PMCID: PMC5779321 DOI: 10.7759/cureus.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The presence of micrometastatic disease will ultimately determine the breast cancer-specific mortality of patients treated according to current guidelines. Minimal residual disease (i.e., occult tumor, not detected by conventional tests) may exist in two forms: a dormant form of only micrometastasis and a more aggressive “awakened” form where CTCs (circulating tumor cells) are actively disseminating. The hypothesis is that patients with CTCs have a more advanced or aggressive disease (that the cancer has “awoken” and there is active dissemination), whereas those patients with only micrometastasis have “dormant” disease and, although at risk of future relapse, may not do so for many years. This case study shows how determining the presence of both CTCs and bone marrow micrometastasis could be used to monitor disease activity and determine treatment changes before the appearance of metastatic disease. Presented is the case of a 53-year-old postmenopausal woman who presented with a T2N1M0 invasive ductal breast cancer. She had been treated with partial mastectomy, axillary dissection, local radiotherapy, and adjuvant chemotherapy. As the cancer was estrogen receptor-positive, she was taking tamoxifen. Two years into treatment, she was assessed for minimal residual disease and was found to be positive for CTCs and bone marrow micrometastasis. Her treatment was changed to letrozole and differing bisphosphonates. The minimal residual disease was finally eliminated, and at 16 years post-initial treatment, there was no evidence of relapse. The detection of minimal residual disease can be used to monitor treatment effect and change therapy in order to maintain the asymptomatic status of the patient and prevent disease progression.
Collapse
|
22
|
Rycaj K, Li H, Zhou J, Chen X, Tang DG. Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol 2017; 44:83-97. [PMID: 28408152 PMCID: PMC5491097 DOI: 10.1016/j.semcancer.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Metastasis causes more than 90% of cancer-related deaths and most prostate cancer (PCa) patients also die from metastasis. The 'metastatic cascade' is a complex biological process that encompasses tumor cell dissociation (from the primary tumor), local invasion, intravasation, transport in circulation, extravasation, colonization, and overt growth in end organs. It has become clear that successful metastasis not only involves many tumor cell-intrinsic properties but also depends on productive interactions between cancer cells and the tumor microenvironment. In this Review, we begin with a general summary on cancer metastasis and a specific discussion on PCa metastasis. We then discuss recent advances in our knowledge of the cellular determinants of PCa metastasis and the importance of tumor microenvironment, especially an immunosuppressive tumor microenvironment, in shaping metastatic propensities. We conclude with a presentation of current and future therapeutic options for patients with PCa metastasis, emphasizing the development of novel, mechanism-based combinatorial strategies for treating metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Hangwen Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianjun Zhou
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Chen
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
23
|
Al-Yasiri AY, Khoobchandani M, Cutler CS, Watkinson L, Carmack T, Smith CJ, Kuchuk M, Loyalka SK, Lugão AB, Katti KV. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans 2017; 46:14561-14571. [DOI: 10.1039/c7dt00383h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here production of MGF-198AuNPs and its application for prostate tumor therapy.
Collapse
Affiliation(s)
- A. Y. Al-Yasiri
- Nuclear Science and Engineering Institute (NSEI)
- University of Missouri
- Columbia
- USA
| | - M. Khoobchandani
- Department of Radiology
- Institute of Green Nanotechnology
- University of Missouri
- One Hospital Drive
- Columbia
| | - C. S. Cutler
- Nuclear Science and Engineering Institute (NSEI)
- University of Missouri Research Reactor (MURR)
- University of Missouri
- Columbia
- USA
| | - L. Watkinson
- Harry S. Truman Memorial Veterans Hospital
- University of Missouri
- One Hospital Drive
- Columbia
- USA
| | - T. Carmack
- Harry S. Truman Memorial Veterans Hospital
- University of Missouri
- One Hospital Drive
- Columbia
- USA
| | - C. J. Smith
- Department of Radiology
- Harry S. Truman Memorial Veterans Hospital
- University of Missouri
- One Hospital Drive
- Columbia
| | - M. Kuchuk
- University of Missouri Research Reactor (MURR)
- University of Missouri
- One Hospital Drive
- Columbia
- USA
| | - S. K. Loyalka
- Nuclear Science and Engineering Institute (NSEI)
- University of Missouri
- Columbia
- USA
| | - A. B. Lugão
- Nuclear and Energy Research Institute – IPEN/CNEN/Sao Paulo
- Brazil
| | - K. V. Katti
- Nuclear Science and Engineering Institute (NSEI)
- Department of Radiology
- Institute of Green Nanotechnology
- University of Missouri Research Reactor (MURR)
- Harry S. Truman Memorial Veterans Hospital
| |
Collapse
|
24
|
Cavnar SP, Rickelmann AD, Meguiar KF, Xiao A, Dosch J, Leung BM, Cai Lesher-Perez S, Chitta S, Luker KE, Takayama S, Luker GD. Modeling selective elimination of quiescent cancer cells from bone marrow. Neoplasia 2016; 17:625-33. [PMID: 26408255 PMCID: PMC4674483 DOI: 10.1016/j.neo.2015.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023] Open
Abstract
Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer.
Collapse
Affiliation(s)
- Stephen P Cavnar
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109; Biointerfaces Institute, University of Michigan College of Engineering, Ann Arbor, MI 48109
| | - Andrew D Rickelmann
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kaille F Meguiar
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Annie Xiao
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Joseph Dosch
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Brendan M Leung
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109; Biointerfaces Institute, University of Michigan College of Engineering, Ann Arbor, MI 48109
| | - Sasha Cai Lesher-Perez
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109; Biointerfaces Institute, University of Michigan College of Engineering, Ann Arbor, MI 48109
| | - Shashank Chitta
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kathryn E Luker
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Department of Macromolecular Science and Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109; Biointerfaces Institute, University of Michigan College of Engineering, Ann Arbor, MI 48109; Department of Macromolecular Science and Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109; Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109.
| |
Collapse
|
25
|
Sewalt L, Harley K, van Heijster P, Balasuriya S. Influences of Allee effects in the spreading of malignant tumours. J Theor Biol 2016; 394:77-92. [DOI: 10.1016/j.jtbi.2015.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/10/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022]
|
26
|
Bui AT, Laurent F, Havard M, Dautry F, Tchénio T. SMAD signaling and redox imbalance cooperate to induce prostate cancer cell dormancy. Cell Cycle 2016; 14:1218-31. [PMID: 25706341 DOI: 10.1080/15384101.2015.1014145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Metastasis involves the dissemination of single or small clumps of cancer cells through blood or lymphatic vessels and their extravasation into distant organs. Despite the strong regulation of metastases development by a cell dormancy phenomenon, the dormant state of cancer cells remains poorly characterized due to the difficulty of in vivo studies. We have recently shown in vitro that clonogenicity of prostate cancer cells is regulated by a dormancy phenomenon that is strongly induced when cells are cultured both at low cell density and in a slightly hypertonic medium. Here, we characterized by RT-qPCR a genetic expression signature of this dormant state which combines the presence of both stemness and differentiation markers. We showed that both TFGβ/BMP signaling and redox imbalance are required for the full induction of this dormancy signature and cell quiescence. Moreover, reconstruction experiments showed that TFGβ/BMP signaling and redox imbalance are sufficient to generate a pattern of genetic expression displaying all characteristic features of the dormancy signature. Finally, we observed that low cell density was sufficient to activate TGFβ/BMP signaling and to generate a slight redox imbalance thus priming cells for dormancy that can be attained with a co-stimulus like hypertonicity, most likely through an increased redox imbalance. The identification of a dual regulation of dormancy provides a framework for the interpretation of previous reports showing a restricted ability of BMP signaling to regulate cancer cell dormancy in vivo and draws attention on the role of oxidative stress in the metastatic process.
Collapse
Affiliation(s)
- Anh Thu Bui
- a LBPA ; UMR8113 ENSC - CNRS; Ecole Normale Supérieure de Cachan ; Cachan , France
| | | | | | | | | |
Collapse
|
27
|
Haider M, Lange PH. Breast and Prostate Cancers: A Comparison of Two Endocrinologic Malignancies. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Abstract
Hes1 is one mammalian counterpart of the Hairy and Enhancer of split proteins that play a critical role in many physiological processes including cellular differentiation, cell cycle arrest, apoptosis and self-renewal ability. Recent studies have shown that Hes1 functions in the maintenance of cancer stem cells (CSCs), metastasis and antagonizing drug-induced apoptosis. Pathways that are involved in the up-regulation of Hes1 level canonically or non-canonically, such as the Hedgehog, Wnt and hypoxia pathways are frequently aberrant in cancer cells. Here, we summarize the recent data supporting the idea that Hes1 may have an important function in the maintenance of cancer stem cells self-renewal, cancer metastasis, and epithelial-mesenchymal transition (EMT) process induction, as well as chemotherapy resistance, and conclude with the possible mechanisms by which Hes1 functions have their effect, as well as their crosstalk with other carcinogenic signaling pathways.
Collapse
Key Words
- ABC, ATP-binding cassette
- CSCs, cancer stem cells
- CSL, CBF1/ Suppressor of Hairless / Lag1
- EMT, epithelial–mesenchymal transition
- GSI, γ-secretase inhibitor
- HDACs, histone deacetylases
- Hes1
- MAML, Mastermind-like protein family
- MASH-1, Mammalian achaete-scute homolog-1
- NICD, Notch intracellular domain
- Notch signaling pathway
- Runx2, Runt-related protein 2
- TLE, transducin-like Enhancer of split
- bHLH, basic helix-loop-helix
- cancer stem cell
- chemotherapy resistance
- dnMAM, dominant-negative mastermind
- metastasis
- non-canonical Notch
Collapse
|
29
|
Chéry L, Lam HM, Coleman I, Lakely B, Coleman R, Larson S, Aguirre-Ghiso JA, Xia J, Gulati R, Nelson PS, Montgomery B, Lange P, Snyder LA, Vessella RL, Morrissey C. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 2015; 5:9939-51. [PMID: 25301725 PMCID: PMC4259449 DOI: 10.18632/oncotarget.2480] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM+/CD45− cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Lisly Chéry
- Department of Urology, University of Washington, Seattle, WA. Contributed equally to this work
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA. Contributed equally to this work
| | - Ilsa Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Bryce Lakely
- Department of Urology, University of Washington, Seattle, WA
| | - Roger Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sandy Larson
- Department of Urology, University of Washington, Seattle, WA
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York, NY
| | - Jing Xia
- Divison of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Roman Gulati
- Divison of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Peter S Nelson
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA. Department of Medicine, University of Washington, Seattle, WA
| | | | - Paul Lange
- Department of Veterans Affairs Medical Center, Seattle, WA. Department of Urology, University of Washington, Seattle, WA
| | | | - Robert L Vessella
- Department of Veterans Affairs Medical Center, Seattle, WA. Department of Urology, University of Washington, Seattle, WA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, Coleman R, Nguyen H, Nelson PS, Corey E, Snyder LA, Vessella RL, Morrissey C, Lam HM. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One 2015; 10:e0130565. [PMID: 26090669 PMCID: PMC4475050 DOI: 10.1371/journal.pone.0130565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.
Collapse
Affiliation(s)
- Nazanin Ruppender
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Sandy Larson
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Bryce Lakely
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Lori Kollath
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Lisha Brown
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Ilsa Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Roger Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Linda A. Snyder
- Janssen Research and Development, LLC, Spring House, Pennsylvania, United States of America
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- Department of Veterans Affairs Medical Center, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Departments of Medicine and Surgery, Samuel Orchin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA,
| | | |
Collapse
|
32
|
Crea F, Nur Saidy NR, Collins CC, Wang Y. The epigenetic/noncoding origin of tumor dormancy. Trends Mol Med 2015; 21:206-11. [PMID: 25771096 DOI: 10.1016/j.molmed.2015.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) have been implicated as the seeds of treatment resistance and metastasis, which are the most deadly features of a neoplasm. However, an unequivocal definition of the CSC phenotype is still missing. A common feature of normal and aberrant stem cells is their ability to enter a prolonged dormant state. Cancer dormancy is a key mechanism for treatment resistance and metastasis. Here we propose a unified definition of dormancy-competent CSCs (DCCs) as the neoplastic subpopulation that can plastically alternate periods of dormancy and rapid growth. Irreversible DNA mutations can hardly account for this versatile behavior, and based on emerging evidence we propose that cancer dormancy is a nongenetic disease driven by the flexible nature of the epigenetic/noncoding interactome.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, Canada; Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| | - Nur Ridzwan Nur Saidy
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, Canada; Honours Biotechnology Program, University of British Columbia, Vancouver, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, Canada; Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
33
|
Lam HM, Vessella RL, Morrissey C. The role of the microenvironment-dormant prostate disseminated tumor cells in the bone marrow. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 11:41-7. [PMID: 24847652 DOI: 10.1016/j.ddtec.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disseminated tumor cells (DTC) leave the primary tumor and reside in distant sites (e.g. bone) early in prostate cancer. Patients may harbor dormant DTC which develop into clinically overt metastasis years after radical prostatectomy. We will describe recent evidence suggesting high p38/ERK ratio, bone morphogenetic proteins, and tumor growth factor-beta 2 promote dormancy in solid tumors. Furthermore, we will discuss the possible regulation of dormancy by hematopoietic stem cell and vascular niches, and describe novel models recapitulating bone marrow metastatic latency and out- growth, 3D microvascular networks, and 3D biomatrix supportive niches in the studies of tumor cell dormancy.
Collapse
|
34
|
Menczer J, Schreiber L, Peled O, Levy T. Very late recurrence (after more than 20 years) of epithelial ovarian carcinoma: case report and literature review. Arch Gynecol Obstet 2014; 291:1199-203. [PMID: 25524538 DOI: 10.1007/s00404-014-3597-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
PURPOSE To present a case of very late (more than 20 years) recurrence of epithelial ovarian carcinoma and to review the pertinent literature. We encountered a 50-year-old patient who, at the age of 22, underwent cytoreductive surgery and adjuvant chemotherapy for stage III serous ovarian carcinoma. She recurred after 28 years and underwent secondary surgery and chemotherapy. METHOD A PubMed search of the English literature containing the following key words: ovarian cancer, late recurrence, late relapse, late metastasis was performed. RESULTS Only five cases (including the present one) with recurrence after more than 20 years are so far on record. Of these, four patients were 33 years old or younger and had advanced stage at diagnosis. Time to recurrence ranged from 21 to 28 years. All patients had serous carcinoma and three had recurrence in lymph nodes. CONCLUSIONS Very late recurrence is an extremely rare event and may result from either regrowth of dormant tumor cells or from development of a new cancer. Lifelong follow-up is critically important for ovarian cancer patients.
Collapse
Affiliation(s)
- Joseph Menczer
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, E. Wolfson Medical Center, Holon, Israel,
| | | | | | | |
Collapse
|
35
|
Trost LW, Hellstrom WJ. Testosterone Deficiency, Supplementation, and Prostate Cancer: Maintaining a Balanced Perspective. J Sex Med 2013; 10:2879-81. [DOI: 10.1111/jsm.12370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|