1
|
Fagundes DA, Leonel LV, Fernandez-Outon LE, Ardisson JD, dos Santos RG. Radiosensitization Induced by Magnetic Hyperthermia of PEGylated Nickel Ferrite Nanoparticles on Breast Cancer Cells. Int J Mol Sci 2025; 26:2706. [PMID: 40141347 PMCID: PMC11942335 DOI: 10.3390/ijms26062706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Magnetic hyperthermia can complement traditional cancer treatments by exploiting the greater heat sensitivity of tumor cells. This approach allows for localized action, increasing its therapeutic effectiveness. In this study, MCF-7 breast cancer cell radiosensitization, induced by the magnetic hyperthermia of PEGylated nickel ferrite magnetic nanoparticles (PEG-NiF MNPs), was evaluated by exposing the cells in the presence of MNPs to an alternating magnetic field followed by 60Co gamma irradiation. Superparamagnetic PEG-NiF MNPs (25.6 ± 0.5 nm) synthesized via the hydrothermal method exhibited a hydrodynamic size below 150 nm, a saturation magnetization of 53 emu·g-1, biocompatibility of up to 100 µg·mL-1, selectivity for breast cancer cells, and an up-to-fivefold increase in therapeutic efficacy of radiation. When combined with magnetic hyperthermia, this increase reached up-to-sevenfold. These results indicate that PEG-NiF MNPs are suitable thermal radiosensitization agents for breast cancer cells.
Collapse
Affiliation(s)
- Daniele A. Fagundes
- Centro de Desenvolvimento da Tecnologia Nuclear, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (L.V.L.); (J.D.A.); (R.G.d.S.)
| | - Liliam V. Leonel
- Centro de Desenvolvimento da Tecnologia Nuclear, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (L.V.L.); (J.D.A.); (R.G.d.S.)
| | - Luis E. Fernandez-Outon
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - José D. Ardisson
- Centro de Desenvolvimento da Tecnologia Nuclear, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (L.V.L.); (J.D.A.); (R.G.d.S.)
| | - Raquel G. dos Santos
- Centro de Desenvolvimento da Tecnologia Nuclear, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil; (L.V.L.); (J.D.A.); (R.G.d.S.)
| |
Collapse
|
2
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
4
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Karmakar S, Lal G, Kumar A, Bhattacharyya S, Poluri KM, Mishra A. Ketorolac disturbs proteasome functions and induces mitochondrial abnormality-associated apoptosis. IUBMB Life 2025; 77:e2937. [PMID: 39723629 DOI: 10.1002/iub.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended to treat moderate-to-severe pain. Previous studies suggest that NSAIDs can suppress cellular proliferation and elevate apoptosis in different cancer cells. Ketorolac is an NSAID and can reduce the cancer cells' viability. However, molecular mechanisms by which Ketorolac can induce apoptosis and be helpful as an anti-tumor agent against carcinogenesis are unclear. Here, we observed treatment with Ketorolac disturbs proteasome functions, which induces aggregation of aberrant ubiquitinated proteins. Ketorolac exposure also induced the aggregation of expanded polyglutamine proteins, results cellular proteostasis disturbance. We found that the treatment of Ketorolac aggravates the accumulation of various cell cycle-linked proteins, which results in pro-apoptotic induction in cells. Ketorolac-mediated proteasome disturbance leads to mitochondrial abnormalities. Finally, we have observed that Ketorolac treatment depolarized mitochondrial membrane potential, released cytochrome c into cytoplasm, and induced apoptosis in cells, which could be due to proteasome functional depletion. Perhaps more in-depth research is required to understand the details of NSAID-based anti-proliferative molecular mechanisms that can elevate apoptosis in cancer cells and generate anti-tumor potential with the combination of putative cancer drugs.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
Ali F, Iqbal A, Azhar I, Qayyum A, Hassan SA, Hasan MSA, Jawi M, Hassan HM, Al-Emam A, Sajid M. Exploring a novel four-gene system as a diagnostic and prognostic biomarker for triple-negative breast cancer, using clinical variables. Comput Biol Chem 2024; 113:108247. [PMID: 39427606 DOI: 10.1016/j.compbiolchem.2024.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis. This research aims to find real hub genes for prognostic biomarkers of TNBC therapy. The GEO datasets GSE27447 and GSE233242 were analyzed using R package limma to explore DEGs. The PPI was generated using the STRING database. Cytoscape software plug-ins were used to screen the hub genes. Using the DAVID database, GO functional enrichment and KEGG pathway enrichment analysis were performed. Different online expression databases were employed to investigate the functions of real hub genes in tumor driving, diagnosis, and prognosis in TNBC patients with various clinicopathologic characteristics. A total of one hundred DEGs were identified between both datasets. The seven hub genes were identified after the topological parameter analysis of the PPI network. The KEGG pathway and GO analysis suggest that four genes (PSMB1, PSMC1, PSMF1, and PSMD8) are highly enriched in proteasome and were finally considered as real hub genes. Additionally, the expression analysis demonstrated that hub genes were notably up-regulated in TNBC patients compared to controls. Furthermore, correlational analyses revealed the positive and negative correlations among the expression of the real hub genes and various ancillary data, including tumor purity, promoter methylation status, overall survival (OS), genetic alterations, infiltration of CD8+ T and CD4+ immune cells, and a few more, across TNBC samples. Finally, our analysis identified a couple of significant chemotherapeutic drugs, miRNAs and transcription factors (TFS) with intriguing curative potential. In conclusion, we identified four real hub genes as novel biomarkers to overcome heterogenetic-particular challenges in diagnosis, prognosis, and therapy for TNBC patients.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Azhar Iqbal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Iqra Azhar
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Adiba Qayyum
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Syed Ali Hassan
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science And Technology University, Gopalgonj, Dhaka 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Dhaka, Bangladesh.
| | - Motasim Jawi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia.
| | - Muhammad Sajid
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Punjab 56300, Pakistan.
| |
Collapse
|
6
|
El Yaagoubi OM, Oularbi L, Salhi O, Samaki H, El Rhazi M, Aboudkhil S. Novel copper complex inhibits the proteasome in skin squamous cell carcinoma induced by DMBA in mice. J Trace Elem Med Biol 2024; 86:127533. [PMID: 39321648 DOI: 10.1016/j.jtemb.2024.127533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The proteasomal system is becoming a target for the treatment of several diseases, especially in cancer therapy. The present study aims to develop a novel copper complex that inhibits the proteasome in skin squamous cell carcinoma. New molecules based on the copper complex were synthesized for the first time to assess their potential as proteasome inhibitors, specifically targeting squamous cell carcinoma induced by 7,12-dimethylbenz(a)anthracene (DMBA) in mouse models. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and energy dispersive X-ray analysis (EDX) were carried out to characterize this new copper complex. Notably, the presence of a papilloma (skin tumor) was confirmed by histopathological analysis. Subsequent investigation included the quantification of proteasome levels using a sandwich ELISA test, and the catalytic activity of the 20S proteasome was determined by measuring the fluorescence emitted after the cleavage of 7-amino-4-methylcoumarin (AMC). Hence, X-ray crystallography indicates that all Cu atoms are five-coordinated in a square-pyramidal configuration and biological activity of copper Schiff base complex, which exhibits high proteasome inhibitory activities with particular selectivity of β5 subunit. The pharmacokinetic properties (ADMET) of the copper complex named Cu(L1) showed encouraging results with very low toxicity, distribution, and absorption. Structure-activity relationship (SAR) information obtained from Cu(L1) demonstrated its selectivity and potent inhibition for β5 subunit. In this regard, this copper complex has emerged as a novel therapy for skin cancer.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Larbi Oularbi
- Laboratory of Materials Membranes and Environment, P.B 146, Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco; Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir, Morocco.
| | - Ouissal Salhi
- Laboratory of Materials Membranes and Environment, P.B 146, Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco.
| | - Mama El Rhazi
- Laboratory of Materials Membranes and Environment, P.B 146, Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36), Faculty of Sciences and Techniques - Mohammedia, Hassan II University, Casablanca, Morocco.
| |
Collapse
|
7
|
Golla U, Patel S, Shah N, Talamo S, Bhalodia R, Claxton D, Dovat S, Sharma A. From Deworming to Cancer Therapy: Benzimidazoles in Hematological Malignancies. Cancers (Basel) 2024; 16:3454. [PMID: 39456548 PMCID: PMC11506385 DOI: 10.3390/cancers16203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Drug repurposing is a strategy to discover new therapeutic uses for existing drugs, which have well-established toxicity profiles and are often more affordable. This approach has gained significant attention in recent years due to the high costs and low success rates associated with traditional drug development. Drug repositioning offers a more time- and cost-effective path for identifying new treatments. Several FDA-approved non-chemotherapy drugs have been investigated for their anticancer potential. Among these, anthelmintic benzimidazoles (such as albendazole, mebendazole, and flubendazole) have garnered interest due to their effects on microtubules and oncogenic signaling pathways. Blood cancers, which frequently develop resistance and have high mortality rates, present a critical need for effective therapies. This review highlights the recent advances in repurposing benzimidazoles for blood malignancies. These compounds induce cell cycle arrest, differentiation, tubulin depolymerization, loss of heterozygosity, proteasomal degradation, and inhibit oncogenic signaling to exert their anticancer effects. We also discuss current limitations and strategies to overcome them, emphasizing the potential of combining benzimidazoles with standard therapies for improved treatment of hematological cancers.
Collapse
Affiliation(s)
- Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Satyam Patel
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Nyah Shah
- Department of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Stella Talamo
- Department of Medicine, Liberty University College of Osteopathic Medicine, Lynchburg, VA 24502, USA;
| | - Riya Bhalodia
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.B.); (S.D.)
| | - Arati Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
8
|
Larsson P, De Rosa MC, Righino B, Olsson M, Florea BI, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Integrated transcriptomics- and structure-based drug repositioning identifies drugs with proteasome inhibitor properties. Sci Rep 2024; 14:18772. [PMID: 39138277 PMCID: PMC11322189 DOI: 10.1038/s41598-024-69465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells. Using this approach, we identified six compounds with PI properties ((-)-kinetin-riboside, manumycin-A, puromycin dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). Although the docking scores pinpointed their ability to bind to the β5 subunit, our in vitro study revealed that these compounds inhibited the β1, β2, and β5 catalytic sites to some extent. As shown with bortezomib, only manumycin-A, puromycin dihydrochloride, and tegaserod maleate resulted in excessive accumulation of ubiquitinated proteins and elevated HMOX1 expression. Taken together, our integrated drug repositioning approach and subsequent in vitro validation studies identified six compounds demonstrating properties similar to proteasome inhibitors.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Rome, Italy
| | - Maxim Olsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bogdan Iulius Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Center, Leiden, The Netherlands
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Rukmini D, Kannan B, Pandi C, Pandi A, Prasad P, Jayaseelan VP, Arumugam P. Aberrated PSMA1 expression associated with clinicopathological features and prognosis in oral squamous cell carcinoma. Odontology 2024; 112:950-958. [PMID: 38216818 DOI: 10.1007/s10266-023-00883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a globally prevalent cancer with significant mortality rates. OSCC a predominant subtype of head and neck squamous cell carcinoma (HNSCC), poses a substantial health burden. Despite advancements in diagnosis and therapy, OSCC prognosis remains poor. The 26S proteasome, a cellular protein degradation complex, is associated with cancer, including PSMA1, a proteasomal subunit, which is upregulated in various cancers. We analyzed PSMA1 expression using TCGA data, validated it in OSCC samples using real-time PCR, and explored its role through various databases. Tumor and adjacent normal tissues from OSCC patients were examined, and PSMA1 expression was analyzed. Survival analysis assessed the impact of PSMA1 on patient outcomes, while immune infiltration was examined using the TIMER database. GeneMANIA, STRING, and Metascape were utilized for gene interaction and pathway analysis. PSMA1 was significantly upregulated in OSCC and HNSCC. Its overexpression correlated with advanced clinicopathological features and poorer prognosis in HNSCC patients. PSMA1 expression is also related to immune cell infiltration. Gene interaction analysis revealed PSMA1 involvement in proteolysis regulation, suggesting its potential as a therapeutic target. PSMA1 upregulation in HNSCC association with adverse clinicopathological features and prognosis underscores its potential significance. Further research is warranted to elucidate its molecular mechanisms and therapeutic potential in OSCC management.
Collapse
Affiliation(s)
- Dodla Rukmini
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, TN, India
| | - Balachander Kannan
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Chandra Pandi
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Anitha Pandi
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Prathibha Prasad
- College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijayashree Priyadharsini Jayaseelan
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Paramasivam Arumugam
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India.
| |
Collapse
|
10
|
De Florian Fania R, Bellazzo A, Collavin L. An update on the tumor-suppressive functions of the RasGAP protein DAB2IP with focus on therapeutic implications. Cell Death Differ 2024; 31:844-854. [PMID: 38902547 PMCID: PMC11239834 DOI: 10.1038/s41418-024-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.
Collapse
Affiliation(s)
| | - Arianna Bellazzo
- Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
11
|
Kargar B, Fazeli M, Sobhani Z, Hosseinzadeh S, Solhjoo A, Akbarizadeh AR. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci Rep 2024; 14:10117. [PMID: 38698033 PMCID: PMC11066107 DOI: 10.1038/s41598-024-57612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.
Collapse
Affiliation(s)
- Bahareh Kargar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Solhjoo
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Huda F, Hermawan R, Putri T, Dwiwina RG, Berbudi A, Bashari MH. Anticancer Activity of Aaptos suberitoides on Glioblastoma Multiforme Cell Line. Asian Pac J Cancer Prev 2024; 25:1815-1821. [PMID: 38809654 PMCID: PMC11318835 DOI: 10.31557/apjcp.2024.25.5.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE Glioblastoma Multiforme (GBM) poses a significant challenge due to its high aggressiveness and unfavorable prognosis, with existing treatments demonstrating limited efficacy in prolonging survival rates. This study aimed to assess the anticancer properties of Aaptos suberitoides extracts and fraction on the U87 cell line, serving as a representative model for GBM. METHODS U87 cells were treated with ethanol extracts derived from Aaptos suberitoides, specifically two extracts (OAA-1 and OAA-2) and one ethyl acetate fraction (EA) isolated from specimens collected on Pramuka Island and Tinjil Island. The evaluation encompased microscopic observation and MTT assay to determine the IC50. Subsequently, antiproliferative effects were investigated through apoptosis and cell cycle assays. RESULTS The extract demonstrated cytotoxic activity against U87 cells, with OAA-1 and OAA-2 exhibiting IC50 values of 35.78 μg/mL and 25.38 μg/mL, respectively. OAA-1 notably induced apoptosis at 50 μg/mL and induced cell cycle arrest. On other hand, OAA-2, while also inducing apoptosis significantly, had a lesser impact on cell cycle arrest. In contrast, EA induced significant apoptosis at a concentration of 100 μg/mL. CONCLUSION The ethanol extracts and the ethyl acetate fraction of Aaptos suberitoides emerged as a promising candidate for Glioblastoma Multiforme cancer therapy, showing potential in inhibiting cell proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Fathul Huda
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Rohim Hermawan
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Tenny Putri
- Laboratory of Advanced Biomedicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Resti Gradia Dwiwina
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Afiat Berbudi
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| |
Collapse
|
13
|
Larsson P, Pettersson D, Olsson M, Sarathchandra S, Abramsson A, Zetterberg H, Ittner E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov 2024; 10:57. [PMID: 38286854 PMCID: PMC10825133 DOI: 10.1038/s41420-024-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis and limited treatment options due to the lack of important receptors (estrogen receptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor 2 [HER2]) used for targeted therapy. However, high-throughput in vitro drug screening of cell lines is a powerful tool for identifying effective drugs for a disease. Here, we determine the intrinsic chemosensitivity of TNBC cell lines to proteasome inhibitors (PIs), thereby identifying potentially potent 2-drug combinations for TNBC. Eight TNBC cell lines (BT-549, CAL-148, HCC1806, HCC38, HCC70, MDA-MB-436, MDA-MB-453, and MDA-MB-468) and two controls (MCF-10A and MCF-7) were first exposed to 18 drugs (11 PIs and 7 clinically relevant chemotherapeutic agents) as monotherapy, followed by prediction of potent 2-drug combinations using the IDACombo pipeline. The synergistic effects of the 2-drug combinations were evaluated with SynergyFinder in four TNBC cell lines (CAL-148, HCC1806, HCC38, and MDA-MB-468) and three controls (BT-474, MCF-7, and T47D) in vitro, followed by further evaluation of tumor regression in zebrafish tumor models established using HCC1806 and MCF-7 cells. Monotherapy identified nine effective drugs (bortezomib, carfilzomib, cisplatin, delanzomib, docetaxel, epoxomicin, MLN-2238, MLN-9708, and nedaplatin) across all cell lines. PIs (e.g., bortezomib, delanzomib, and epoxomicin) were highly potent drugs in TNBC cells, of which bortezomib and delanzomib inhibited the chymotrypsin-like activity of the 20 S proteasome by 100% at 10 µM. Moreover, several potent 2-drug combinations (e.g., bortezomib+nedaplatin and epoxomicin+epirubicin) that killed virtually 100% of cells were also identified. Although HCC1806- and MCF-7-derived xenografts treated with bortezomib+nedaplatin and carboplatin+paclitaxel were smaller, HCC1806 cells frequently metastasized to the trunk region. Taken together, we show that PIs used in combination with platinum agents or topoisomerase inhibitors exhibit increased efficiency with almost 100% inhibition in TNBC cell lines, indicating that PIs are therefore promising compounds to use as combination therapy for TNBC.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Dementia Research Institute, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ella Ittner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
14
|
Łuczkowska K, Kulig P, Rusińska K, Baumert B, Machaliński B. 5-Aza-2'-Deoxycytidine Alters the Methylation Profile of Bortezomib-Resistant U266 Multiple Myeloma Cells and Affects Their Proliferative Potential. Int J Mol Sci 2023; 24:16780. [PMID: 38069103 PMCID: PMC10706146 DOI: 10.3390/ijms242316780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that accounts for 1% of all cancers and is the second-most-common hematological neoplasm. Bortezomib (BTZ) is a proteasome inhibitor widely implemented in the treatment of MM alone or in combination with other agents. The development of resistance to chemotherapy is one of the greatest challenges of modern oncology. Therefore, it is crucial to discover and implement new adjuvant therapies that can bypass therapeutic resistance. In this paper, we investigated the in vitro effect of methylation inhibitor 5-Aza-2'-deoxycytidine on the proliferative potential of MM cells and the development of resistance to BTZ. We demonstrate that alterations in the DNA methylation profile are associated with BTZ resistance. Moreover, the addition of methylation inhibitor 5-Aza-2'-deoxycytidine to BTZ-resistant MM cells led to a reduction in the proliferation of the BTZ-resistant phenotype, resulting in the restoration of sensitivity to BTZ. However, further in vitro and ex vivo studies are required before adjuvant therapy can be incorporated into existing treatment regimens.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
| | - Klaudia Rusińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
15
|
Tailor D, Garcia-Marques FJ, Bermudez A, Pitteri SJ, Malhotra SV. Guanylate-binding protein 1 modulates proteasomal machinery in ovarian cancer. iScience 2023; 26:108292. [PMID: 38026225 PMCID: PMC10665831 DOI: 10.1016/j.isci.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Guanylate-binding protein 1 (GBP1) is known as an interferon-γ-induced GTPase. Here, we used genetically modified ovarian cancer (OC) cells to study the role of GBP1. The data generated show that GBP1 inhibition constrains the clonogenic potential of cancer cells. In vivo studies revealed that GBP1 overexpression in tumors promotes tumor progression and reduces median survival, whereas GBP1 inhibition delayed tumor progression with longer median survival. We employed proteomics-based thermal stability assay (CETSA) on GBP1 knockdown and overexpressed OC cells to study its molecular functions. CETSA results show that GBP1 interacts with many members of the proteasome. Furthermore, GBP1 inhibition sensitizes OC cells to paclitaxel treatment via accumulated ubiquitinylated proteins where GBP1 inhibition decreases the overall proteasomal activity. In contrast, GBP1-overexpressing cells acquired paclitaxel resistance via boosted cellular proteasomal activity. Overall, these studies expand the role of GBP1 in the activation of proteasomal machinery to acquire chemoresistance.
Collapse
Affiliation(s)
- Dhanir Tailor
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Fernando Jose Garcia-Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sharon J. Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sanjay V. Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
16
|
Lee ZC, Hadisurya M, Luo Z, Li L, Tao WA. Hands-Free Proteomic Profiling of Urinary Extracellular Vesicles with a High-Throughput Automated Workflow. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2585-2593. [PMID: 37870912 DOI: 10.1021/jasms.3c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a promising source of disease biomarkers for noninvasive early stage diagnoses, but a bottleneck in EV sample processing restricts their immense potential in clinical applications. Existing methods are limited by a low EV yield and integrity, slow processing speeds, low sample capacity, and poor recovery efficiency. We aimed to address these issues with a high-throughput automated workflow for EV isolation, EV lysis, protein extraction, and protein denaturation. The automation can process clinical urine samples in parallel, resulting in protein-covered beads ready for various analytical methods, including immunoassays, protein quantitation assays, and mass spectrometry. Compared to the standard manual lysis method for contamination levels, efficiency, and consistency of EV isolation, the automated protocol shows reproducible and robust proteomic quantitation with less than a 10% median coefficient of variation. When we applied the method to clinical samples, we identified a total 3,793 unique proteins and 40,380 unique peptides, with 992 significantly upregulated proteins in kidney cancer patients versus healthy controls. These upregulated proteins were found to be involved in several important kidney cancer metabolic pathways also identified with a manual control. This hands-free workflow represents a practical EV extraction and profiling approach that can benefit both clinical and research applications, streamlining biomarker discovery, tumor monitoring, and early cancer diagnoses.
Collapse
Affiliation(s)
- Zheng-Chi Lee
- West Lafayette Junior/Senior High School, West Lafayette, Indiana 47906, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Bhattacharyya S, Oblinger JL, Beauchamp RL, Yin Z, Erdin S, Koundinya P, Ware AD, Ferrer M, Jordan JT, Plotkin SR, Xu L, Chang LS, Ramesh V. Proteasomal pathway inhibition as a potential therapy for NF2-associated meningioma and schwannoma. Neuro Oncol 2023; 25:1617-1630. [PMID: 36806881 PMCID: PMC10479743 DOI: 10.1093/neuonc/noad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Neurofibromatosis 2 (NF2) is an inherited disorder caused by bi-allelic inactivation of the NF2 tumor suppressor gene. NF2-associated tumors, including schwannoma and meningioma, are resistant to chemotherapy, often recurring despite surgery and/or radiation, and have generally shown cytostatic response to signal transduction pathway inhibitors, highlighting the need for improved cytotoxic therapies. METHODS Leveraging data from our previous high-throughput drug screening in NF2 preclinical models, we identified a class of compounds targeting the ubiquitin-proteasome pathway (UPP), and undertook studies using candidate UPP inhibitors, ixazomib/MLN9708, pevonedistat/MLN4924, and TAK-243/MLN7243. Employing human primary and immortalized meningioma (MN) cell lines, CRISPR-modified Schwann cells (SCs), and mouse Nf2-/- SCs, we performed dose response testing, flow cytometry-based Annexin V and cell cycle analyses, and RNA-sequencing to identify potential underlying mechanisms of apoptosis. In vivo efficacy was also assessed in orthotopic NF2-deficient meningioma and schwannoma tumor models. RESULTS Testing of three UPP inhibitors demonstrated potent reduction in cell viability and induction of apoptosis for ixazomib or TAK-243, but not pevonedistat. In vitro analyses revealed that ixazomib or TAK-243 downregulates expression of c-KIT and PDGFRα, as well as the E3 ubiquitin ligase SKP2 while upregulating genes associated with endoplasmic reticulum stress-mediated activation of the unfolded protein response (UPR). In vivo treatment of mouse models revealed delayed tumor growth, suggesting a therapeutic potential. CONCLUSIONS This study demonstrates the efficacy of proteasomal pathway inhibitors in meningioma and schwannoma preclinical models and lays the groundwork for use of these drugs as a promising novel treatment strategy for NF2 patients.
Collapse
Affiliation(s)
- Srirupa Bhattacharyya
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Janet L Oblinger
- Center for Childhood Cancer & Blood Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Roberta L Beauchamp
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zhenzhen Yin
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Serkan Erdin
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Priya Koundinya
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna D Ware
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Justin T Jordan
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Scott R Plotkin
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer & Blood Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijaya Ramesh
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Badawy SA, Hassan AR, Elkousy RH, Abu El Wafa SA, Mohammad AESI. New cyclic glycolipids from Silene succulenta promote in vitro MCF-7 breast carcinoma cell apoptosis by cell cycle arrest and in silico mitotic Mps1/TTK inhibition. RSC Adv 2023; 13:18627-18638. [PMID: 37346953 PMCID: PMC10280128 DOI: 10.1039/d3ra01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
In vitro anticancer screening of Silene succulenta Forssk. aerial parts (Caryophyllaceae) showed that the n-hexane fraction was a highly effective fraction against breast carcinoma cell lines (MCF-7) with IC50 = 15.5 μg mL-1. The bioactive-guided approach led to the isolation of two new cyclic glucolipids from the n-hexane fraction, identified as a 1,2'-cyclic ester of 11-oxy-(6'-O-acetyl-β-d-glucopyranosyl) behenic acid (1) as a C-11 epimeric mixture and 11(R)-oxy-(β-d-glucopyranosyl)-1,2'-cyclic ester of behenic acid (2). An in vitro cytotoxicity study showed the potential suppression of MCF-7 cells with IC50 values of 11.7 ± 0.04 and 6.6 ± 0.01 μg mL-1 for compounds 1 and 2, respectively, compared to doxorubicin (IC50 = 3.83 ± 0.01 μg mL-1). Accordingly, only cell cycle tracking for the most active compound (2) was assessed. The cell cycle investigation showed that compound 2 altered the cell cycle at G0/G1, S, and G2/M phases in MCF-7 treated cells. In addition, its powerful apoptotic ability resulted in a significant increase in the early and late stages of apoptosis. Moreover, molecular docking analysis, which was performed against the anticancer mitotic (or spindle assembly) checkpoint target Mps1 kinase, showed that the two new cyclic glycolipids (1 and 2) possess high binding affinity of -7.7 and - 7.6 kcal mol-1, respectively, compared to its ATP ligand. Overall, this report emphasizes that natural cyclic glycolipids can be used as potential antitumour breast cancer agents.
Collapse
Affiliation(s)
- Sarah A Badawy
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Rawah H Elkousy
- Department of Pharmacognosy, Faculty of Pharmacy (for Girls), Al-Azhar University Nasr City 11651 Cairo Egypt
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy, Faculty of Pharmacy (for Girls), Al-Azhar University Nasr City 11651 Cairo Egypt
| | - Abd-El Salam I Mohammad
- Department of Pharmacognosy, Faculty of Pharmacy (for Boys), Al-Azhar University Nasr City 13129 Cairo Egypt
| |
Collapse
|
19
|
Tao L, Zhou K, Zhao Y, Xia X, Guo Y, Gao Y, Peng G, Liu Y. Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116295. [PMID: 36813244 DOI: 10.1016/j.jep.2023.116295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celastrus orbiculatus Thunb., also called as oriental bittersweet vine or climbing spindle berry, a traditional Chinese herbal medicine has been used to treat a spectrum of painful and inflammatory diseases for centuries. Explored for their unique medicinal properties, C.orbiculatus offers additional therapeutic effects on cancerous diseases. The effect of single-agent gemcitabine on survival has not long been encouraging, combination therapies provide patients multiple chances of benefit for improved clinical response. AIMS OF THIS STUDY This study aims at expounding the chemopotentiating effects and underlying mechanisms of betulinic acid, a primary therapeutic triterpene of C. orbiculatus in combination with gemcitabine chemotherapy. MATERIALS AND METHODS The preparation of betulinic acid was optimized using ultrasonic-assisted extraction method. Gemcitabine-resistant cell model was established by induction of the cytidine deaminase. MTT, colony formation, EdU incorporation and Annexin V/PI staining assays were used to evaluate cytotoxicity, cell proliferation and apoptosis in BxPC-3 pancreatic cancer cell line and H1299 non-small cell lung carcinoma cell line. Comet assay, metaphase chromosome spread and γH2AX immunostaining were applied for DNA damage assessment. Western blot and co-immunoprecipitation was used to detect the phosphorylation and ubiquitination of Chk1. Mode of action of gemcitabine in combination with betulinic acid was further captured in BxPC-3-derived mouse xenograft model. RESULTS We noticed that the extraction method had an impact on the thermal stability of C. orbiculatus. Ultrasound-assisted extraction at room temperature in shorter processing time could maximize the overall yields and biological activities of C. orbiculatus. The major constituent was identified as betulinic acid, and the pentacyclic triterpene represented the prominent anticancer activity of C. orbiculatus. Forced expression of cytidine deaminase conferred acquired resistance to gemcitabine, while betulinic acid displayed equivalent cytotoxicity toward gemcitabine-resistant and sensitive cells. A combination therapy of gemcitabine with betulinic acid produced synergistic pharmacologic interaction on cell viability, apoptosis and DNA double-strand breaks. Moreover, betulinic acid abrogated gemcitabine-triggered Chk1 activation by destabilizing Chk1 loading via proteasomal degradation. The combination of gemcitabine and betulinic acid significantly retarded BxPC-3 tumor growth in vivo compared to single-agent gemcitabine treatment alone, accompanied with reduced Chk1 expression. CONCLUSIONS These data provide evidence that betulinic acid is a potential candidate for chemosensitization as a naturally occurring Chk1 inhibitor and warrants further preclinical evaluation.
Collapse
Affiliation(s)
- Li Tao
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Kehui Zhou
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yang Zhao
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medicine, Linfen Vocational and Technical College, Linfen, Shanxi, 041000, China
| | - Xiangyu Xia
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yajie Guo
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yang Gao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Guoping Peng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Yanqing Liu
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
20
|
Verkhovskii RA, Ivanov AN, Lengert EV, Tulyakova KA, Shilyagina NY, Ermakov AV. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051566. [PMID: 37242807 DOI: 10.3390/pharmaceutics15051566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.
Collapse
Affiliation(s)
- Roman A Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Ksenia A Tulyakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
21
|
Vriend J, Klonisch T. Genes of the Ubiquitin Proteasome System Qualify as Differential Markers in Malignant Glioma of Astrocytic and Oligodendroglial Origin. Cell Mol Neurobiol 2023; 43:1425-1452. [PMID: 35896929 PMCID: PMC10079750 DOI: 10.1007/s10571-022-01261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
We have mined public genomic datasets to identify genes coding for components of the ubiquitin proteasome system (UPS) that may qualify as potential diagnostic and therapeutic targets in the three major glioma types, astrocytoma (AS), glioblastoma (GBM), and oligodendroglioma (ODG). In the Sun dataset of glioma (GEO ID: GSE4290), expression of the genes UBE2S and UBE2C, which encode ubiquitin conjugases important for cell-cycle progression, distinguished GBM from AS and ODG. KEGG analysis showed that among the ubiquitin E3 ligase genes differentially expressed, the Notch pathway was significantly over-represented, whereas among the E3 ligase adaptor genes the Hippo pathway was over-represented. We provide evidence that the UPS gene contributions to the Notch and Hippo pathway signatures are related to stem cell pathways and can distinguish GBM from AS and ODG. In the Sun dataset, AURKA and TPX2, two cell-cycle genes coding for E3 ligases, and the cell-cycle gene coding for the E3 adaptor CDC20 were upregulated in GBM. E3 ligase adaptor genes differentially expressed were also over-represented for the Hippo pathway and were able to distinguish classic, mesenchymal, and proneural subtypes of GBM. Also over-expressed in GBM were PSMB8 and PSMB9, genes encoding subunits of the immunoproteasome. Our transcriptome analysis provides a strong rationale for UPS members as attractive therapeutic targets for the development of more effective treatment strategies in malignant glioma. Ubiquitin proteasome system and glioblastoma: E1-ubiquitin-activating enzyme, E2-ubiquitin-conjugating enzyme, E3-ubiquitin ligase. Ubiquitinated substrates of E3 ligases may be degraded by the proteasome. Expression of genes for specific E2 conjugases, E3 ligases, and genes for proteasome subunits may serve as differential markers of subtypes of glioblastoma.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada.
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm34, BMSB, 745 Bannatyne Ave, Winnipeg, MB, R3E0J9, Canada
| |
Collapse
|
22
|
Morgan EL, Toni T, Viswanathan R, Robbins Y, Yang X, Cheng H, Gunti S, Huynh A, Sowers AL, Mitchell JB, Allen CT, Chen Z, Van Waes C. Inhibition of USP14 promotes TNFα-induced cell death in head and neck squamous cell carcinoma (HNSCC). Cell Death Differ 2023; 30:1382-1396. [PMID: 37055579 PMCID: PMC10154301 DOI: 10.1038/s41418-023-01144-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023] Open
Abstract
TNFα is a key mediator of immune, chemotherapy and radiotherapy-induced cytotoxicity, but several cancers, including head and neck squamous cell carcinomas (HNSCC), display resistance to TNFα due to activation of the canonical NFκB pro-survival pathway. However, direct targeting of this pathway is associated with significant toxicity; thus, it is vital to identify novel mechanism(s) contributing to NFκB activation and TNFα resistance in cancer cells. Here, we demonstrate that the expression of proteasome-associated deubiquitinase USP14 is significantly increased in HNSCC and correlates with worse progression free survival in Human Papillomavirus (HPV)- HNSCC. Inhibition or depletion of USP14 inhibited the proliferation and survival of HNSCC cells. Further, USP14 inhibition reduced both basal and TNFα-inducible NFκB activity, NFκB-dependent gene expression and the nuclear translocation of the NFκB subunit RELA. Mechanistically, USP14 bound to both RELA and IκBα and reduced IκBα K48-ubiquitination leading to the degradation of IκBα, a critical inhibitor of the canonical NFκB pathway. Furthermore, we demonstrated that b-AP15, an inhibitor of USP14 and UCHL5, sensitized HNSCC cells to TNFα-mediated cell death, as well as radiation-induced cell death in vitro. Finally, b-AP15 delayed tumor growth and enhanced survival, both as a monotherapy and in combination with radiation, in HNSCC tumor xenograft models in vivo, which could be significantly attenuated by TNFα depletion. These data offer new insights into the activation of NFκB signaling in HNSCC and demonstrate that small molecule inhibitors targeting the ubiquitin pathway warrant further investigation as a novel therapeutic avenue to sensitize these cancers to TNFα- and radiation-induced cytotoxicity.
Collapse
Affiliation(s)
- Ethan L Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Angel Huynh
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
24
|
Zeng G, Yu Q, Zhuang R, Zhu H, Shao J, Xi J, Zhang J. Recent Advances and Future Perspectives of Noncompetitive Proteasome Inhibitors. Bioorg Chem 2023; 135:106507. [PMID: 37030106 DOI: 10.1016/j.bioorg.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Collapse
|
25
|
Luo QW, Yao L, Li L, Yang Z, Zhao MM, Zheng YZ, Zhuo FF, Liu TT, Zhang XW, Liu D, Tu PF, Zeng KW. Inherent Capability of Self-Assembling Nanostructures in Specific Proteasome Activation for Cancer Cell Pyroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205531. [PMID: 36549896 DOI: 10.1002/smll.202205531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Understanding the direct interaction of nanostructures per se with biological systems is important for biomedical applications. However, whether nanostructures regulate biological systems by targeting specific cellular proteins remains largely unknown. In the present work, self-assembling nanomicelles are constructed using small-molecule oleanolic acid (OA) as a molecular template. Unexpectedly, without modifications by functional ligands, OA nanomicelles significantly activate cellular proteasome function by directly binding to 20S proteasome subunit alpha 6 (PSMA6). Mechanism study reveals that OA nanomicelles interact with PSMA6 to dynamically modulate its N-terminal domain conformation change, thereby controlling the entry of proteins into 20S proteasome. Subsequently, OA nanomicelles accelerate the degradation of several crucial proteins, thus potently driving cancer cell pyroptosis. For translational medicine, OA nanomicelles exhibit a significant anticancer potential in tumor-bearing mouse models and stimulate immune cell infiltration. Collectively, this proof-of-concept study advances the mechanical understanding of nanostructure-guided biological effects via their inherent capacity to activate proteasome.
Collapse
Affiliation(s)
- Qian-Wei Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fang-Fang Zhuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
26
|
Fatehi R, Rashedinia M, Akbarizadeh AR, Zamani M, Firouzabadi N. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution. Biochem Biophys Res Commun 2023; 644:130-139. [PMID: 36641965 DOI: 10.1016/j.bbrc.2022.12.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Breast cancer is the fifth leading cause of death, worldwide affecting both genders. Accumulating evidence suggests that metformin, an oral hypoglycemic agent used in the management of type 2 diabetes, exerts anti-tumor effects in many cancers, including the breast cancer. Resveratrol, a natural product found abundantly in many fruits, exhibits marked cytotoxic and pro-oxidant effects. This study was designed to investigate the effect of metformin in combination with resveratrol and cisplatin in MCF-7 cells. Study groups were as follows: untreated control group, single treatment groups (metformin, resveratrol, and cisplatin), double treatment groups (metformin + resveratrol, metformin + cisplatin, and cisplatin + resveratrol) and triple treatment groups (metformin + resveratrol + cisplatin). Our results indicated that metformin inhibits proliferation of MCF-7 cells, an effect that was associated with ROS production and G0/G1 cell cycle arrest, but not apoptosis. Moreover, resveratrol suppressed the proliferation of MCF-7 cells by induction of apoptosis as well as cell cycle arrest. Notably, a significant inhibitory effect in the co-treatment of metformin, resveratrol, and cisplatin was observed which was attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest. In conclusion, our results advocate the anti-cancer properties of metformin and resveratrol on MCF-7 cell s via induction of cell cycle arrest. Additionally, synergistic anti-cancer effects of metformin in a triple combination with cisplatin and resveratrol was attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest. Based on our findings it is proposed that patients may benefit from addition of a drug with a safe profile to conventional anticancer therapies.
Collapse
Affiliation(s)
- Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Quality Control, Food and Drug, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Unraveling the molecular mechanism of l-menthol against cervical cancer based on network pharmacology, molecular docking and in vitro analysis. Mol Divers 2023; 27:323-340. [PMID: 35467269 DOI: 10.1007/s11030-022-10429-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/30/2022] [Indexed: 02/08/2023]
Abstract
Cervical cancer is a major cause of gynecological related mortalities in developing countries. Cisplatin, a potent chemotherapeutic agent used for treating advanced cervical cancer exhibits side effects and resistance development. The current study was aimed to investigate the repurposing of l-menthol as a potential therapeutic drug against cervical cancer. L-menthol was predicted to be non-toxic with good pharmacokinetic properties based on SwissADME and pkCSM analysis. Subsequently, 543 and 1664 targets of l-menthol and cervical cancer were identified using STITCH, BATMAN-TCM, PharmMapper and CTD databases. STRING and Cytoscape analysis of the merged protein-protein interaction network revealed 107 core targets of l- menthol against cervical cancer. M-CODE identified highly connected clusters between the core targets which through KEGG analysis were found to be enriched in pathways related to apoptosis and adherence junctions. Molecular docking showed that l- menthol targeted E6, E6AP and E7 onco-proteins of HPV that interact and inactivate TP53 and Rb1 in cervical cancer, respectively. Molecular docking also showed good binding affinity of l-menthol toward proteins associated with apoptosis and migration. Molecular dynamics simulation confirmed stability of the docked complexes. In vitro analysis confirmed that l-menthol was cytotoxic towards cervical cancer CaSki cells and altered expression of TP53, Rb1, CDKN1A, E2F1, NFKB1, Akt-1, caspase-3, CDH1 and MMP-2 genes identified through network pharmacology approach. Schematic representation of the work flow depicting the potential of l-menthol to target cervical cancer.
Collapse
|
28
|
The Journey of Mitochondrial Protein Import and the Roadmap to Follow. Int J Mol Sci 2023; 24:ijms24032479. [PMID: 36768800 PMCID: PMC9916854 DOI: 10.3390/ijms24032479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are double membrane-bound organelles that play critical functions in cells including metabolism, energy production, regulation of intrinsic apoptosis, and maintenance of calcium homeostasis. Mitochondria are fascinatingly equipped with their own genome and machinery for transcribing and translating 13 essential proteins of the oxidative phosphorylation system (OXPHOS). The rest of the proteins (99%) that function in mitochondria in the various pathways described above are nuclear-transcribed and synthesized as precursors in the cytosol. These proteins are imported into the mitochondria by the unique mitochondrial protein import system that consists of seven machineries. Proper functioning of the mitochondrial protein import system is crucial for optimal mitochondrial deliverables, as well as mitochondrial and cellular homeostasis. Impaired mitochondrial protein import leads to proteotoxic stress in both mitochondria and cytosol, inducing mitochondrial unfolded protein response (UPRmt). Altered UPRmt is associated with the development of various disease conditions including neurodegenerative and cardiovascular diseases, as well as cancer. This review sheds light on the molecular mechanisms underlying the import of nuclear-encoded mitochondrial proteins, the consequences of defective mitochondrial protein import, and the pathological conditions that arise due to altered UPRmt.
Collapse
|
29
|
Wu C, Shen Y, Shi L, Zhang J, Guo T, Zhou L, Wang W, Zhang X, Yu R, Liu X. UBA1 inhibition contributes radiosensitization of glioblastoma cells via blocking DNA damage repair. Front Pharmacol 2023; 14:1073929. [PMID: 36959858 PMCID: PMC10027716 DOI: 10.3389/fphar.2023.1073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with high mortality and recurrence rate. Radiotherapy and chemotherapy after surgery are the main treatment options available for GBM. However, patients with glioblastoma have a grave prognosis. The major reason is that most GBM patients are resistant to radiotherapy. UBA1 is considered an attractive potential anti-tumor therapeutic target and a key regulator of DNA double-strand break repair and genome replication in human cells. Therefore, we hypothesized that TAK-243, the first-in-class UBA1 inhibitor, might increase GBM sensitivity to radiation. The combined effect of TAK-243 and ionizing radiation on GBM cell proliferation, and colony formation ability was detected using CCK-8, colony formation, and EdU assays. The efficacy of TAK-243 combined with ionizing radiation for GBM was further evaluated in vivo, and the mechanism of TAK-243 sensitizing radiotherapy was preliminarily discussed. The results showed that TAK-243, in combination with ionizing radiation, significantly inhibited GBM cell proliferation, colony formation, cell cycle arrest in the G2/M phase, and increased the proportion of apoptosis. In addition, UBA1 inhibition by TAK-243 substantially increased the radiation-induced γ-H2AX expression and impaired the recruitment of the downstream effector molecule 53BP1. Therefore, TAK-243 inhibited the radiation-induced DNA double-strand break repair and thus inhibited the growth of GBM cells. Our results provided a new therapeutic strategy for improving the radiation sensitivity of GBM and laid a theoretical foundation and experimental basis for further clinical trials.
Collapse
Affiliation(s)
- Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Shen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of general surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingni Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanzhou Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| |
Collapse
|
30
|
Ćwilichowska N, Świderska KW, Dobrzyń A, Drąg M, Poręba M. Diagnostic and therapeutic potential of protease inhibition. Mol Aspects Med 2022; 88:101144. [PMID: 36174281 DOI: 10.1016/j.mam.2022.101144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Proteases are enzymes that hydrolyze peptide bonds in proteins and peptides; thus, they control virtually all biological processes. Our understanding of protease function has advanced considerably from nonselective digestive enzymes to highly specialized molecular scissors that orchestrate complex signaling networks through a limited proteolysis. The catalytic activity of proteases is tightly regulated at several levels, ranging from gene expression through trafficking and maturation to posttranslational modifications. However, when this delicate balance is disturbed, many diseases develop, including cancer, inflammatory disorders, diabetes, and neurodegenerative diseases. This new understanding of the role of proteases in pathologic physiology indicates that these enzymes represent excellent molecular targets for the development of therapeutic inhibitors, as well as for the design of chemical probes to visualize their redundant activity. Recently, numerous platform technologies have been developed to identify and optimize protease substrates and inhibitors, which were further used as lead structures for the development of chemical probes and therapeutic drugs. Due to this considerable success, the clinical potential of proteases in therapeutics and diagnostics is rapidly growing and is still not completely explored. Therefore, small molecules that can selectively target aberrant protease activity are emerging in diseases cells. In this review, we describe modern trends in the design of protease drugs as well as small molecule activity-based probes to visualize selected proteases in clinical settings.
Collapse
Affiliation(s)
- Natalia Ćwilichowska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Karolina W Świderska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Marcin Poręba
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb, Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
31
|
Larsson P, Pettersson D, Engqvist H, Werner Rönnerman E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types. BMC Cancer 2022; 22:993. [PMID: 36123629 PMCID: PMC9484138 DOI: 10.1186/s12885-022-10079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer proteostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome in different cancer forms. Methods Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer cohort and KM plotter with four cancer types. Results The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocarcinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were predominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. Conclusion These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel therapeutic targets for different cancer forms. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10079-4.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniella Pettersson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Zhang M, Liu Y, Shi L, Fang L, Xu L, Cao Y. Neural stemness unifies cell tumorigenicity and pluripotent differentiation potential. J Biol Chem 2022; 298:102106. [PMID: 35671824 PMCID: PMC9254501 DOI: 10.1016/j.jbc.2022.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stemness is suggested to be the ground state of tumorigenicity and pluripotent differentiation potential. However, the relationship between these cell properties is unclear. Here, by disrupting the neural regulatory network in neural stem and cancer cells and by serial transplantation of cancer cells, we show that tumorigenicity and pluripotent differentiation potential are coupled cell properties unified by neural stemness. We show that loss of neural stemness via inhibition of SETDB1, an oncoprotein with enriched expression in embryonic neural cells during vertebrate embryogenesis, led to neuronal differentiation with reduced tumorigenicity and pluripotent differentiation potential in neural stem and cancer cells, whereas enhancement of neural stemness by SETDB1 overexpression caused the opposite effects. SETDB1 maintains a regulatory network comprising proteins involved in developmental programs and basic cellular functional machineries, including epigenetic modifications (EZH2), ribosome biogenesis (RPS3), translation initiation (EIF4G), and spliceosome assembly (SF3B1); all of these proteins are enriched in embryonic neural cells and play active roles in cancers. In addition, SETDB1 represses the transcription of genes promoting differentiation and cell cycle and growth arrest. Serial transplantation of cancer cells showed that neural stemness, tumorigenicity, and pluripotent differentiation potential were simultaneously enhanced; these effects were accompanied by increased expression of proteins involved in developmental programs and basic machineries, including SETDB1 and the abovementioned proteins, as well as by increased alternative splicing events. These results indicate that basic machineries work together to define a highly proliferative state with pluripotent differentiation potential and also suggest that neural stemness unifies tumorigenicity and differentiation potential.
Collapse
Affiliation(s)
- Min Zhang
- Shenzhen Research Institute of Nanjing University, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Yang Liu
- Shenzhen Research Institute of Nanjing University, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Lihua Shi
- MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| | - Liyang Xu
- MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School
| | - Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School.
| |
Collapse
|
33
|
Dogan B, Gumusoglu E, Ulgen E, Sezerman OU, Gunel T. Integrated bioinformatics analysis of validated and circulating miRNAs in ovarian cancer. Genomics Inform 2022; 20:e20. [PMID: 35794700 PMCID: PMC9299562 DOI: 10.5808/gi.21067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Recent studies have focused on the early detection of ovarian cancer (OC) using tumor materials by liquid biopsy. The mechanisms of microRNAs (miRNAs) to impact OC and signaling pathways are still unknown. This study aims to reliably perform functional analysis of previously validated circulating miRNAs' target genes by using pathfindR. Also, overall survival and pathological stage analyses were evaluated with miRNAs' target genes which are common in the The Cancer Genome Atlas and GTEx datasets. Our previous studies have validated three downregulated miRNAs (hsa-miR-885-5p, hsa-miR-1909-5p, and hsalet7d-3p) having a diagnostic value in OC patients' sera, with high-throughput techniques. The predicted target genes of these miRNAs were retrieved from the miRDB database (v6.0). Active-subnetwork-oriented Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by pathfindR using the target genes. Enrichment of KEGG pathways assessed by the analysis of pathfindR indicated that 24 pathways were related to the target genes. Ubiquitin-mediated proteolysis, spliceosome and Notch signaling pathway were the top three pathways with the lowest p-values (p < 0.001). Ninety-three common genes were found to be differentially expressed (p < 0.05) in the datasets. No significant genes were found to be significant in the analysis of overall survival analyses, but 24 genes were found to be significant with pathological stages analysis (p < 0.05). The findings of our study provide in-silico evidence that validated circulating miRNAs' target genes and enriched pathways are related to OC and have potential roles in theranostics applications. Further experimental investigations are required to validate our results which will ultimately provide a new perspective for translational applications in OC management.
Collapse
Affiliation(s)
- Berkcan Dogan
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey.,Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa 16059, Turkey
| | - Ece Gumusoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| | - Ege Ulgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34750, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34750, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| |
Collapse
|
34
|
Alves C, Silva J, Afonso MB, Guedes RA, Guedes RC, Alvariño R, Pinteus S, Gaspar H, Goettert MI, Alfonso A, Rodrigues CMP, Alpoím MC, Botana L, Pedrosa R. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomed Pharmacother 2022; 149:112886. [PMID: 35378501 DOI: 10.1016/j.biopha.2022.112886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Nature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1-100 µM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 µM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 µM), followed by HCT116 (1.77 µM) and SW620 (2.74 µM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the relevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Romina A Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rebeca Alvariño
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; BioISI - Biosystems and Integrative Sciences Institute Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Márcia I Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS 95914-014, Brazil
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria C Alpoím
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luis Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal.
| |
Collapse
|
35
|
Zhu Q, Zhang G, Tang M, Zheng R, Gan H. SPOP Inhibition of Endometrial Carcinoma and Its Clinicopathological Relationship. Appl Bionics Biomech 2022; 2022:5721630. [PMID: 35465183 PMCID: PMC9033399 DOI: 10.1155/2022/5721630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Endometrial carcinoma (EC) ranks first in the incidence of female genital malignancies in developed countries. SPOP (speckle-type POZ protein) has changed in EC with a statistically high frequency. This research may play a crucial role in the initiation and progression of EC, ultimately leading to fresh therapeutic targets. Explore the expression of SPOP in EC; observe its effect on the proliferation, invasion, and migration of EC cells after upregulating the expression of SPOP through RNA activation. Methods The expression levels of SPOP protein in 150 EC tissues and 45 normal endometrial tissues were detected by immunohistochemistry and Western blotting. Analyze the relationship between SPOP expression and clinicopathological characteristics. The differences of the proliferation, migration, and invasion abilities between before and after transfection were analyzed using CCK-8 and Transwell assays. Results The results of immunohistochemistry and Western blotting showed the expression level of SPOP in EC tissue significantly reduced or even missed compared with normal endometrial tissue. The results of CCK-8 showed that the growth of EC significantly slowed down after the upregulating of SPOP expression. The results of the Transwell assay showed the migration and invasion abilities of EC cells were weakened after the level of SPOP was upregulated. Conclusions The expression level of SPOP in EC tissues is lower and related to the clinicopathological features compared with normal endometrial tissues. After upregulating the SPOP expression by RNA activation in EC cell lines, the abilities of proliferation, migration, and invasion of cells were significantly inhibited.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233399 Anhui, China
- Department of Pathology, Bengbu Medical College, Bengbu, 233030 Anhui, China
| | - Guanghui Zhang
- Class 2020, Clinical Pathology, The Graduate School, Bengbu Medical College, Bengbu, 233030 Anhui, China
| | - Mingyang Tang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030 Anhui, China
| | - Rumin Zheng
- Class 2019, Medical Imaging Technology, The Medical Imaging School, Bengbu Medical College, Bengbu, 233030 Anhui, China
| | - Huaiyong Gan
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233399 Anhui, China
- Department of Pathology, Bengbu Medical College, Bengbu, 233030 Anhui, China
| |
Collapse
|
36
|
Xiao S, Yang C, Zhang Y, Lai C. Downregulation of B3GNT6 is a predictor of poor outcomes in patients with colorectal cancer. World J Surg Oncol 2022; 20:110. [PMID: 35387659 PMCID: PMC8988341 DOI: 10.1186/s12957-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background The B3GNT6 protein is a member of the O-GlcNAc transferase (OGT) family and is responsible for the production of the core 3 structure of O-glycans. It is generally expressed in the gastrointestinal (GI) tract; however, its clinical significance in colorectal cancer remains largely unexplored. Methods We obtained mRNA transcriptomic sequencing data from 3 gene expression omnibus (GEO) datasets (GSE37182, GSE39582, GSE103512) and The Cancer Genome Atlas (TCGA) to compare the B3GNT6 mRNA levels between colorectal cancer and normal tissues and further evaluate its value as a prognostic marker in colorectal cancer. We further validated this at the protein level in our cohort using immunohistochemical staining of B3GNT6 as well as the Human Protein Atlas online database. Results B3GNT6 expression was downregulated in colorectal cancer tissues as compared to that in the normal tissues at both mRNA and protein levels. Downregulation of B3GNT6 expression was found to be associated with poor overall survival in patients with colorectal cancer as per the data in GSE39582 and TCGA databases. Low B3GNT6 mRNA levels were significantly associated with chromosome instability (CIN) and KRAS mutations in patients with colorectal cancer. Gene set enrichment analysis (GSEA) revealed that low B3GNT6 expression levels in colorectal cancer were associated with increased proteasome activity. Conclusions The results of this study demonstrate that low expression of B3GNT6 is a potential biomarker for poor outcomes in patients with CRC. Moreover, the low expression of B3GNT6 may indicate more frequent activation of the KRAS/ERK signaling pathway, high CIN, and increased proteasomal activity. These novel findings may prove helpful for molecular diagnosis and provide a new therapeutic target for colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02561-x.
Collapse
Affiliation(s)
- Shihan Xiao
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
| | - Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,Department of Colorectal Surgery, 1st Affiliated Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Yang Zhang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China. .,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China.
| |
Collapse
|
37
|
Li X, Duan S, Zheng Y, Yang Y, Wang L, Li X, Zhang Q, Thorne RF, Li W, Yang D. Hyperthermia inhibits growth of nasopharyngeal carcinoma through degradation of c-Myc. Int J Hyperthermia 2022; 39:358-371. [PMID: 35184661 DOI: 10.1080/02656736.2022.2038282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiaole Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Duan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjuan Zheng
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Yang
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Zhang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
39
|
Chen L, Zhang M, Fang L, Yang X, Cao N, Xu L, Shi L, Cao Y. Coordinated regulation of the ribosome and proteasome by PRMT1 in the maintenance of neural stemness in cancer cells and neural stem cells. J Biol Chem 2021; 297:101275. [PMID: 34619150 PMCID: PMC8546425 DOI: 10.1016/j.jbc.2021.101275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggested that cancer cells resemble neural stem/progenitor cells in regulatory network, tumorigenicity, and differentiation potential, and that neural stemness might represent the ground or basal state of differentiation and tumorigenicity. The neural ground state is reflected in the upregulation and enrichment of basic cell machineries and developmental programs, such as cell cycle, ribosomes, proteasomes, and epigenetic factors, in cancers and in embryonic neural or neural stem cells. However, how these machineries are concertedly regulated is unclear. Here, we show that loss of neural stemness in cancer or neural stem cells via muscle-like differentiation or neuronal differentiation, respectively, caused downregulation of ribosome and proteasome components and major epigenetic factors, including PRMT1, EZH2, and LSD1. Furthermore, inhibition of PRMT1, an oncoprotein that is enriched in neural cells during embryogenesis, caused neuronal-like differentiation, downregulation of a similar set of proteins downregulated by differentiation, and alteration of subcellular distribution of ribosome and proteasome components. By contrast, PRMT1 overexpression led to an upregulation of these proteins. PRMT1 interacted with these components and protected them from degradation via recruitment of the deubiquitinase USP7, also known to promote cancer and enriched in embryonic neural cells, thereby maintaining a high level of epigenetic factors that maintain neural stemness, such as EZH2 and LSD1. Taken together, our data indicate that PRMT1 inhibition resulted in repression of cell tumorigenicity. We conclude that PRMT1 coordinates ribosome and proteasome activity to match the needs for high production and homeostasis of proteins that maintain stemness in cancer and neural stem cells.
Collapse
Affiliation(s)
- Lu Chen
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Min Zhang
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Xiaoli Yang
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Ning Cao
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Liyang Xu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Lihua Shi
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China
| | - Ying Cao
- Research Institute of Nanjing University in Shenzhen, Shenzhen, China; MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine of the Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
40
|
Neural is Fundamental: Neural Stemness as the Ground State of Cell Tumorigenicity and Differentiation Potential. Stem Cell Rev Rep 2021; 18:37-55. [PMID: 34714532 DOI: 10.1007/s12015-021-10275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Tumorigenic cells are similar to neural stem cells or embryonic neural cells in regulatory networks, tumorigenicity and pluripotent differentiation potential. By integrating the evidence from developmental biology, tumor biology and evolution, I will make a detailed discussion on the observations and propose that neural stemness underlies two coupled cell properties, tumorigenicity and pluripotent differentiation potential. Neural stemness property of tumorigenic cells can hopefully integrate different observations/concepts underlying tumorigenesis. Neural stem cells and tumorigenic cells share regulatory networks; both exhibit neural stemness, tumorigenicity and pluripotent differentiation potential; both depend on expression or activation of ancestral genes; both rely primarily on aerobic glycolytic metabolism; both can differentiate into various cells/tissues that are derived from three germ layers, leading to tumor formation resembling severely disorganized or more degenerated process of embryonic tissue differentiation; both are enriched in long genes with more splice variants that provide more plastic scaffolds for cell differentiation, etc. Neural regulatory networks, which include higher levels of basic machineries of cell physiological functions and developmental programs, work concertedly to define a basic state with fast cell cycle and proliferation. This is predestined by the evolutionary advantage of neural state, the ground or initial state for multicellularity with adaptation to an ancient environment. Tumorigenesis might represent a process of restoration of neural ground state, thereby restoring a state with fast proliferation and pluripotent differentiation potential in somatic cells. Tumorigenesis and pluripotent differentiation potential might be better understood from understanding neural stemness, and cancer therapy should benefit more from targeting neural stemness.
Collapse
|
41
|
Lehrbach NJ. NGLY1: Insights from C. elegans. J Biochem 2021; 171:145-152. [PMID: 34697631 DOI: 10.1093/jb/mvab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 01/31/2023] Open
Abstract
Peptide:N-glycanase is an evolutionarily conserved deglycosylating enzyme that catalyzes the removal of N-linked glycans from cytosolic glycoproteins. Recessive mutations that inactivate this enzyme cause NGLY1 deficiency, a multisystemic disorder with symptoms including developmental delay and defects in cognition and motor control. Developing treatments for NGLY1 deficiency will require an understanding of how failure to deglycosylate NGLY1 substrates perturbs cellular and organismal function. In this review, I highlight insights into peptide:N-glycanase biology gained by studies in the highly tractable genetic model animal C. elegans. I focus on the recent discovery of SKN-1A/Nrf1, an N-glycosylated transcription factor, as a peptide:N-glycanase substrate critical for regulation of the proteasome. I describe the elaborate post-translational mechanism that culminates in activation of SKN-1A/Nrf1 via NGLY1-dependent 'sequence editing' and discuss the implications of these findings for our understanding of NGLY1 deficiency.
Collapse
|
42
|
Liu Q, Wang JCY, Xie SZ. SUMO wrestling cancer stem cells. Cell Chem Biol 2021; 28:1390-1392. [PMID: 34678166 DOI: 10.1016/j.chembiol.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sumoylation is a reversible post-translational modification implicated in cancer. In this issue of Cell Chemical Biology, Benoit et al. describe an inhibitor of sumoylation that results in anti-proliferative effects in cancer stem cell models via the sumoylation enzyme SAE2.
Collapse
Affiliation(s)
- Qiang Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
43
|
Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S. Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells. Mol Biol Rep 2021; 48:5121-5133. [PMID: 34169395 DOI: 10.1007/s11033-021-06509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
Collapse
Affiliation(s)
- Sivasangkary Gandhi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Méndez-Ambrosio B. Identification of genes modulated by interferon gamma in breast cancer cells. Biochem Biophys Rep 2021; 27:101053. [PMID: 34189281 PMCID: PMC8220005 DOI: 10.1016/j.bbrep.2021.101053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/04/2022] Open
Abstract
Interferon gamma (IFNγ) plays a context-dependent dual tumor-suppressor and pro-tumorigenic roles in cancer. IFNγ induces morphological changes in breast cancer (BC) cells with or without estrogen receptor alpha (ERα) expression. However, IFNγ-regulated genes in BC cells remain unexplored. Here, we performed a cDNA microarray analysis of MCF-7 (ERα+) and MDA-MB-231 (HER2-/PR-/ERα-) cells with and without IFNγ treatment. We identified specific IFNγ−modulated genes in each cell type, and a small group of genes regulated by IFNγ common in both cell types. IFNγ treatment for an extended time mainly repressed gene expression shared by both cell types. Nonetheless, some of these IFNγ-repressed genes were seemingly deregulated in human mammary tumor samples, along with decreased IFNGR1 (an IFNγ receptor) expression. Thus, IFNγ signaling-elicited anti-tumor activities may be mediated by the downregulation of main IFNγ target genes in BC; however, it may be deregulated by the tumor microenvironment in a tumor stage-dependent manner. Identification of new potential genes regulated by IFNγ in breast cancer cells. A small group of common genes is regulated by IFNγ in ERα- and ERα+ breast cancer cells. IFNγ treatment for a long time mainly represses gene expression in breast cancer cells. The tumor environment may lead to a decrease in IFNGR1 expression in mammary tumors.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Ciudad de México, Mexico
| | | | | | | |
Collapse
|
45
|
Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021; 22:ijms22115488. [PMID: 34070986 PMCID: PMC8197098 DOI: 10.3390/ijms22115488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Oral health is an integral part of the general health and well-being of individuals. The presence of oral disease is potentially indicative of a number of systemic diseases and may contribute to their early diagnosis and treatment. The ubiquitin (Ub) system has been shown to play a role in cellular immune response, cellular development, and programmed cell death. Ubiquitination is a post-translational modification that occurs in eukaryotes. Its mechanism involves a number of factors, including Ub-activating enzymes, Ub-conjugating enzymes, and Ub protein ligases. Deubiquitinating enzymes, which are proteases that reversely modify proteins by removing Ub or Ub-like molecules or remodeling Ub chains on target proteins, have recently been regarded as crucial regulators of ubiquitination-mediated degradation and are known to significantly affect cellular pathways, a number of biological processes, DNA damage response, and DNA repair pathways. Research has increasingly shown evidence of the relationship between ubiquitination, deubiquitination, and oral disease. This review investigates recent progress in discoveries in diseased oral sites and discusses the roles of ubiquitination and deubiquitination in oral disease.
Collapse
|
46
|
Eshaq RS, Harris NR. The role of tumor necrosis factor-α and interferon-γ in the hyperglycemia-induced ubiquitination and loss of platelet endothelial cell adhesion molecule-1 in rat retinal endothelial cells. Microcirculation 2021; 28:e12717. [PMID: 34008903 PMCID: PMC10078990 DOI: 10.1111/micc.12717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate the role of the hyperglycemia-induced increase in tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in the ubiquitination and degradation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the diabetic retina. METHODS Type I diabetes was induced in rats by the injection of streptozotocin, with age-matched non-diabetic rats as controls. Primary rat retinal microvascular endothelial cells were grown in normal or high glucose media for 6 days or in normal glucose media for 24 h with addition of TNF-α and/or IFN-γ. PECAM-1, TNF-α, IFN-γ, and ubiquitin levels were assessed using Western blotting, immunofluorescence, and immunoprecipitation assays. Additionally, proteasome activity was assessed both in vivo and in vitro. RESULTS Under hyperglycemic conditions, total ubiquitination levels in the retina and RRMECs, and PECAM-1 ubiquitination levels in RRMECs, were significantly increased. Additionally, TNF-α and IFN-γ levels were significantly increased under hyperglycemic conditions. PECAM-1 levels in RRMECs treated with TNF-α and/or IFN-γ were significantly decreased. Moreover, there was a significant decrease in proteasome activity in the diabetic retina, hyperglycemic RRMECs, and RRMECs treated with TNF-α or IFN-γ. CONCLUSION Tumor necrosis factor-α and IFN-γ may contribute to the hyperglycemia-induced loss of PECAM-1 in retinal endothelial cells, possibly by upregulating PECAM-1 ubiquitination.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|
47
|
Antitumor Effect of Inula viscosa Extracts on DMBA-Induced Skin Carcinoma Are Mediated by Proteasome Inhibition. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6687589. [PMID: 33855081 PMCID: PMC8019636 DOI: 10.1155/2021/6687589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
The aim of this work is to evaluate the antitumor effect mediated by the proteasome inhibitors of Inula viscosa extracts on skin carcinogenesis. Female Swiss albino mice were divided into five groups depending on the combination of skin cancer-inducing 7,12-dimethylbenz(a)anthracene (DMBA) and extract of Inula viscosa treatments. Histology of the affected skin and measurement of proteasome activity were performed to demonstrate the effect of Inula viscosa on mice. The identification of the molecules responsible for this inhibitory activity was carried out through the docking studies. The results showed that Inula viscosa extracts inhibit the development of papilloma in mice. Therefore, the best chemopreventive action of Inula viscosa was observed on mice in which extract treatment was performed before and after the induction of skin carcinogenesis. It was revealed that the ingestion of extracts Inula viscosa delays the formation of skin papillomas in animals and simultaneously decreases the size and number of papillomas, which is also reflected on the skin histology of the mice treated. Structure-activity relationship information obtained from component of Inula viscosa particularly tomentosin, inuviscolide, and isocosticacid demonstrated that distinct bonding modes in β 1, β 2, and β 5 subunits determine its selectivity and potent inhibition for β 5 subunit.
Collapse
|
48
|
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome Complexes and Their Heterogeneity in Colorectal, Breast and Pancreatic Cancers. J Cancer 2021; 12:2472-2487. [PMID: 33854609 PMCID: PMC8040722 DOI: 10.7150/jca.52414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Targeting the ubiquitin-proteasome system (UPS) - in particular, the proteasome complex - has emerged as an attractive novel cancer therapy. While several proteasome inhibitors have been successfully approved by the Food and Drug Administration for the treatment of hematological malignancies, the clinical efficacy of these inhibitors is unexpectedly lower in the treatment of solid tumors due to the functional and structural heterogeneity of proteasomes in solid tumors. There are ongoing trials to examine the effectiveness of compound and novel proteasome inhibitors that can target solid tumors either alone or in combination with conventional chemotherapeutic agents. The modest therapeutic efficacy of proteasome inhibitors such as bortezomib in solid malignancies demands further research to clarify the exact effects of these proteasome inhibitors on different proteasomes present in cancer cells. The structural, cellular localization and functional analysis of the proteasome complexes in solid tumors originated from different tissues provides new insights into the diversity of proteasomes' responses to inhibitors. In this study, we used an optimized iodixanol gradient ultracentrifugation to purify a native form of proteasome complexes with their intact associated protein partners enriched within distinct cellular compartments. It is therefore possible to isolate proteasome subcomplexes with far greater resolution than sucrose or glycerol fractionations. We have identified differences in the catalytic activities, subcellular distribution, and inhibitor sensitivity of cytoplasmic proteasomes isolated from human colon, breast, and pancreatic cancer cell lines. Our developed techniques and generated results will serve as a valuable guideline for investigators developing a new generation of proteasome inhibitors as an effective targeted therapy for solid tumors.
Collapse
Affiliation(s)
- Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rebecca Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
49
|
Nakkas H, Ocal BG, Kipel S, Akcan G, Sahin C, Ardicoglu A, Cayli S. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors. Tissue Cell 2021; 71:101513. [PMID: 33677201 DOI: 10.1016/j.tice.2021.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Ubiquitin proteasome sytem (UPS) and autophagy govern protein quality control by degradation and clearance of damaged proteins. Many proteins working in these pathways such as p97/VCP, Ubiquitin (Ub), Jab1/CSN5, p62, LC3B and Beclin 1 are known to be essential for different pathological conditions, especially in cancer, but their expression in human testicular tumors has not been characterized yet. In the present study, we aimed to investigate the expression of UPS (p97/VCP, Ubiquitin, Jab1/CSN5) and autophagic (p62, LC3B, Beclin 1) proteins in human testicular tumors and cancer adjacent normal testicular tissues. We used an immunohistochemical staining technique. 120 cases of testicular germ and non-germ cell tumors, which are 42 seminomas, 31 embryonal carcinomas, 11 yolk sac tumors, 25 intratubular germ cell neoplasms, 6 Leydig cell tumors, 5 Sertoli cell tumors, were collected and evaluated on tissue microarray. For the first time, the expression of p97/VCP, Ub, Jab1/CSN5, p62, LC3B and Beclin 1 in different type of human testicular tumors has been confirmed. We found that p97/VCP, Ub and Jab1/CSN5 were frequently expressed at higher levels in testicular tumours. In contrast to UPS markers, p62, LC3B and Beclin 1 showed significantly diminished expressions in testicular tumors. Accordingly, a negative correlation between p97/VCP and autophagic markers (p62 and LC3B) was found, suggesting a relationship between UPS and autophagy in different type of testicular tumors. The current results displayed elevated level of p97/VCP, Ub and Jab1/CSN5 expressions in contrast to the diminished expression of p62, LC3B and Beclin 1 in human testicular tumors, thereby supporting a correlation between p97/VCP and autophagic markers in testicular tumors.
Collapse
Affiliation(s)
- Hilal Nakkas
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | | | - Seyma Kipel
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Gulben Akcan
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Cansu Sahin
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Arslan Ardicoglu
- Department of Urology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| |
Collapse
|
50
|
Simwela NV, Hughes KR, Rennie MT, Barrett MP, Waters AP. Mammalian Deubiquitinating Enzyme Inhibitors Display in Vitro and in Vivo Activity against Malaria Parasites and Potentiate Artemisinin Action. ACS Infect Dis 2021; 7:333-346. [PMID: 33400499 DOI: 10.1021/acsinfecdis.0c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) is an emerging drug target in malaria due to its essential role in the parasite's life cycle stages as well its contribution to resistance to artemisinins. Polymorphisms in the Kelch13 gene of Plasmodium falciparum are primary markers of artemisinin resistance and among other things are phenotypically characterized by an overactive UPS. Inhibitors targeting the proteasome, critical components of the UPS, display activity in malaria parasites and synergize artemisinin action. Here we report the activity of small molecule inhibitors targeting mammalian deubiquitinating enzymes, DUBs (upstream UPS components), in malaria parasites. We show that generic DUB inhibitors can block intraerythrocytic development of malaria parasites in vitro and possess antiparasitic activity in vivo and can be used in combination with additive to synergistic effect. We also show that inhibition of these upstream components of the UPS can potentiate the activity of artemisinin in vitro as well as in vivo to the extent that artemisinin resistance can be overcome. Combinations of DUB inhibitors anticipated to target different DUB activities and downstream proteasome inhibitors are even more effective at improving the potency of artemisinins than either inhibitors alone, providing proof that targeting multiple UPS activities simultaneously could be an attractive approach to overcoming artemisinin resistance. These data further validate the parasite UPS as a target to both enhance artemisinin action and potentially overcome resistance. Lastly, we confirm that DUB inhibitors can be developed into in vivo antimalarial drugs with promise for activity against all of human malaria and could thus further exploit their current pursuit as anticancer agents in rapid drug repurposing programs.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Katie R. Hughes
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael T. Rennie
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael P. Barrett
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| |
Collapse
|