1
|
Kalitin N, Koroleva N, Lushnikova A, Babaeva M, Samoylenkova N, Savchenko E, Smirnova G, Borisova Y, Kostarev A, Karamysheva A, Pavlova G. N-Glycoside of Indolo[2,3- a]pyrrolo[3,4- c]carbazole LCS1269 Exerts Anti-Glioblastoma Effects by G2 Cell Cycle Arrest and CDK1 Activity Modulation: Molecular Docking Studies, Biological Investigations, and ADMET Prediction. Pharmaceuticals (Basel) 2024; 17:1642. [PMCID: PMC11676706 DOI: 10.3390/ph17121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Indolo[2,3-a ]pyrrolo[3,4-c ]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Methods: Cell viability was estimated by an MTT assay. The distribution of cell cycle phases was monitored using flow cytometry. Mitotic figures were visualized by fluorescence microscopy. Quantitative RT-PCR was used to evaluate the gene expression. The protein expression was assessed by Western blotting. Molecular docking and computational ADMET were approved for the probable protein target simulations and predicted pharmacological assessments, respectively. Results: Our findings clearly suggest that LCS1269 displayed a significant cytotoxic effect against diverse glioblastoma cell lines and patient-derived glioblastoma cultures as well as strongly suppressed xenograft growth in nude mice. LCS1269 exhibited more potent anti-proliferative activity toward glioblastoma cell lines and patient-derived glioblastoma cultures compared to conventional drug temozolomide. We further demonstrated that LCS1269 treatment caused the severe G2 phase arrest of cell cycle in a dose-dependent manner. Mechanistically, we proposed that LCS1269 could affect the CDK1 activity both by targeting active site of this enzyme and indirectly, in particular through the modulation of the Wee1/Myt1 and FOXM1/Plk1 signaling pathways, and via p21 up-regulation. LCS1269 also showed favorable pharmacological characteristics in in silico ADME prediction in comparison with staurosporine, rebeccamycin, and becatecarin as reference drugs. Conclusions: Further investigations of LCS1269 as an anti-glioblastoma medicinal agent could be very promising.
Collapse
Affiliation(s)
- Nikolay Kalitin
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Natalia Koroleva
- Laboratory of Oncogenomics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.K.); (A.L.)
| | - Anna Lushnikova
- Laboratory of Oncogenomics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.K.); (A.L.)
| | - Maria Babaeva
- Molecular Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nadezhda Samoylenkova
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
| | - Ekaterina Savchenko
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
| | - Galina Smirnova
- Laboratory of Biochemical Pharmacology and Tumor Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (G.S.); (Y.B.)
| | - Yulia Borisova
- Laboratory of Biochemical Pharmacology and Tumor Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (G.S.); (Y.B.)
| | - Alexander Kostarev
- Max Planck Institute for Biology, University of Tübingen, 72074 Tübingen, Germany;
| | - Aida Karamysheva
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Galina Pavlova
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
- Laboratory of Neurogenetics and Developmental Genetics, Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia
| |
Collapse
|
2
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2024; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
3
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03480-2. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wolff A, Krone P, Maennicke J, Henne J, Oehmcke-Hecht S, Redwanz C, Bergmann-Ewert W, Junghanss C, Henze L, Maletzki C. Prophylaxis with abemaciclib delays tumorigenesis in dMMR mice by altering immune responses and reducing immunosuppressive extracellular vesicle secretion. Transl Oncol 2024; 47:102053. [PMID: 38986222 PMCID: PMC11296063 DOI: 10.1016/j.tranon.2024.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The CDK4/6 inhibitor abemaciclib is an FDA-approved agent and induces T-cell-mediated immunity. Previously, we confirmed the therapeutic potential of abemaciclib on mismatch repair-deficient (dMMR) tumors in mice. Here, we applied a prophylactic administration/dosage setting using two preclinical mouse models of dMMR-driven cancer. METHODS Mlh1-/- and Msh2loxP/loxP mice received repeated prophylactic applications of abemaciclib mesylate (75 mg/kg bw, per oral) as monotherapy or were left untreated. Blood phenotyping and multiplex cytokine measurements were performed regularly. The tumor microenvironment was evaluated by immunofluorescence and Nanostring-based gene expression profiling. Numbers, size and immune composition and activity of extracellular vesicles (EVs) were studied at the endpoint. FINDINGS Prophylactic abemaciclib-administration delayed tumor development and significantly prolonged overall survival in both mouse strains (Mlh1-/-: 50.0 wks vs. control: 33.9 wks; Msh2loxP/loxP;TgTg(Vil1-cre: 58.4 wks vs. control 44.4 wks). In Mlh1-/- mice, pro-inflammatory cytokines (IL-2, IL-6) significantly increased, whereas IL-10 and IL-17A decreased. Circulating and splenic exhausted and regulatory T cell numbers were significantly lower in the abemaciclib groups. Deeper analysis of late-onset tumors revealed activation of the Hedgehog and Notch signaling in Mlh1-/- mice, and activation of the MAPK pathway in Msh2loxP/loxP;TgTg(Vil1-cre mice. Still, arising tumors had fewer infiltrating myeloid-derived suppressor cells (vs. control). Notably, prophylactic abemaciclib-administration prevented secretion of procoagulant EVs but triggered release of immunomodulatory EVs in Mlh1-/- mice. INTERPRETATION Prophylactic abemaciclib prolongs survival via global immunomodulation. Prophylactic use of abemaciclib should be considered further for individuals with inherited dMMR. FUNDING This work was supported by grants from the German research foundation [DFG grant number: MA5799/2-2] and the Brigitte und Dr. Konstanze Wegener-Stiftung to CM.
Collapse
Affiliation(s)
- Annabell Wolff
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Paula Krone
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Johanna Maennicke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Julia Henne
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
5
|
Huang CH, Khan P, Xu S, Cohen J, Georgakis GV, Turkman N. Development of a Radiolabeled Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitor for Brain and Cancer PET Imaging. Int J Mol Sci 2024; 25:6870. [PMID: 38999983 PMCID: PMC11241330 DOI: 10.3390/ijms25136870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The synthesis, biochemical evaluation and radiosynthesis of a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor and radioligand was performed. NT431, a newly synthesized 4-fluorobenzyl-abemaciclib, exhibited high potency to CDK4/6 and against four cancer cell lines with IC50 similar to that of the parent abemaciclib. We performed a two-step one-pot radiosynthesis to produce [18F]NT431 with good radiochemical yield (9.6 ± 3%, n = 3, decay uncorrected), high radiochemical purity (>95%), and high molar activity (>370 GBq/µmol (>10.0 Ci/µmol). In vitro autoradiography confirmed the specific binding of [18F]NT431 to CDK4/6 in brain tissues. Dynamic PET imaging supports that both [18F]NT431 and the parent abemaciclib crossed the BBB albeit with modest brain uptake. Therefore, we conclude that it is unlikely that NT431 or abemaciclib (FDA approved drug) can accumulate in the brain in sufficient concentrations to be potentially effective against breast cancer brain metastases or brain cancers. However, despite the modest BBB penetration, [18F]NT431 represents an important step towards the development and evaluation of a new generation of CDK4/6 inhibitors with superior BBB penetration for the treatment and visualization of CDK4/6 positive tumors in the CNS. Also, [18F]NT431 may have potential application in peripheral tumors such as breast cancer and other CDK4/6 positive tumors.
Collapse
Affiliation(s)
- Chun-Han Huang
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Long Island, NY 11794, USA
| | - Palwasha Khan
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Sulan Xu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Jules Cohen
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Medicine, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Georgios V Georgakis
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Long Island, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Long Island, NY 11794, USA
| |
Collapse
|
6
|
Hamed OA, Abou-Elmagd El-Sayed N, Mahmoud WR, F Elmasry G. Molecular docking approach for the design and synthesis of new pyrazolopyrimidine analogs of roscovitine as potential CDK2 inhibitors endowed with pronounced anticancer activity. Bioorg Chem 2024; 147:107413. [PMID: 38696844 DOI: 10.1016/j.bioorg.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.
Collapse
Affiliation(s)
- Ola Alaa Hamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Nehad Abou-Elmagd El-Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| |
Collapse
|
7
|
Hermosilla-Trespaderne M, Hu-Yang MX, Dannoura A, Frey AM, George AL, Trost M, Marín-Rubio JL. Proteomic Analysis Reveals Trilaciclib-Induced Senescence. Mol Cell Proteomics 2024; 23:100778. [PMID: 38679389 PMCID: PMC11141265 DOI: 10.1016/j.mcpro.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Trilaciclib, a cyclin-dependent kinase 4/6 inhibitor, was approved as a myeloprotective agent for protecting bone marrow from chemotherapy-induced damage in extensive-stage small cell lung cancer. This is achieved through the induction of a temporary halt in the cell cycle of bone marrow cells. While it has been studied in various cancer types, its potential in hematological cancers remains unexplored. This research aimed to investigate the efficacy of trilaciclib in hematological cancers. Utilizing mass spectrometry-based proteomics, we examined the alterations induced by trilaciclib in the chronic myeloid leukemia cell line, K562. Interestingly, trilaciclib promoted senescence in these cells rather than cell death, as observed in acute myeloid leukemia, acute lymphoblastic leukemia, and myeloma cells. In K562 cells, trilaciclib hindered cell cycle progression and proliferation by stabilizing cyclin-dependent kinase 4/6 and downregulating cell cycle-related proteins, along with the concomitant activation of autophagy pathways. Additionally, trilaciclib-induced senescence was also observed in the nonsmall cell lung carcinoma cell line, A549. These findings highlight trilaciclib's potential as a therapeutic option for hematological cancers and underscore the need to carefully balance senescence induction and autophagy modulation in chronic myeloid leukemia treatment, as well as in nonsmall cell lung carcinoma cell line.
Collapse
Affiliation(s)
- Marina Hermosilla-Trespaderne
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Mark Xinchen Hu-Yang
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Abeer Dannoura
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew M Frey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Amy L George
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| | - José Luis Marín-Rubio
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
8
|
Favaretto G, Rossi MN, Cuollo L, Laffranchi M, Cervelli M, Soriani A, Sozzani S, Santoni A, Antonangeli F. Neutrophil-activating secretome characterizes palbociclib-induced senescence of breast cancer cells. Cancer Immunol Immunother 2024; 73:113. [PMID: 38693312 PMCID: PMC11063017 DOI: 10.1007/s00262-024-03695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.
Collapse
Affiliation(s)
- Gabriele Favaretto
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
9
|
Muniz IDAF, Araujo M, Bouassaly J, Farshadi F, Atique M, Esfahani K, Bonan PRF, Hier M, Mascarella M, Mlynarek A, Alaoui-Jamali M, da Silva SD. Therapeutic Advances and Challenges for the Management of HPV-Associated Oropharyngeal Cancer. Int J Mol Sci 2024; 25:4009. [PMID: 38612819 PMCID: PMC11012756 DOI: 10.3390/ijms25074009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The use of conventional chemotherapy in conjunction with targeted and immunotherapy drugs has emerged as an option to limit the severity of side effects in patients diagnosed with head and neck cancer (HNC), particularly oropharyngeal cancer (OPC). OPC prevalence has increased exponentially in the past 30 years due to the prevalence of human papillomavirus (HPV) infection. This study reports a comprehensive review of clinical trials registered in public databases and reported in the literature (PubMed/Medline, Scopus, and ISI web of science databases). Of the 55 clinical trials identified, the majority (83.3%) were conducted after 2015, of which 77.7% were performed in the United States alone. Eight drugs have been approved by the FDA for HNC, including both generic and commercial forms: bleomycin sulfate, cetuximab (Erbitux), docetaxel (Taxotere), hydroxyurea (Hydrea), pembrolizumab (Keytruda), loqtorzi (Toripalimab-tpzi), methotrexate sodium (Trexall), and nivolumab (Opdivo). The most common drugs to treat HPV-associated OPC under these clinical trials and implemented as well for HPV-negative HNC include cisplatin, nivolumab, cetuximab, paclitaxel, pembrolizumab, 5-fluorouracil, and docetaxel. Few studies have highlighted the necessity for new drugs specifically tailored to patients with HPV-associated OPC, where molecular mechanisms and clinical prognosis are distinct from HPV-negative tumors. In this context, we identified most mutated genes found in HPV-associated OPC that can represent potential targets for drug development. These include TP53, PIK3CA, PTEN, NOTCH1, RB1, FAT1, FBXW7, HRAS, KRAS, and CDKN2A.
Collapse
Affiliation(s)
- Isis de Araújo Ferreira Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Megan Araujo
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Jenna Bouassaly
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Khashayar Esfahani
- Department of Oncology, McGill University, Montreal, QC HC3 1E2, Canada;
| | - Paulo Rogerio Ferreti Bonan
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Marco Mascarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Moulay Alaoui-Jamali
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| |
Collapse
|
10
|
Fernández EC, Tomassoni L, Zhang X, Wang J, Obradovic A, Laise P, Griffin AT, Vlahos L, Minns HE, Morales DV, Simmons C, Gallitto M, Wei HJ, Martins TJ, Becker PS, Crawford JR, Tzaridis T, Wechsler-Reya RJ, Garvin J, Gartrell RD, Szalontay L, Zacharoulis S, Wu CC, Zhang Z, Califano A, Pavisic J. Elucidation and Pharmacologic Targeting of Master Regulator Dependencies in Coexisting Diffuse Midline Glioma Subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585370. [PMID: 38559080 PMCID: PMC10979998 DOI: 10.1101/2024.03.17.585370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.
Collapse
|
11
|
Payungwong T, Angkulkrerkkrai K, Chaiboonchoe A, Lausoontornsiri W, Jirawatnotai S, Chindavijak S. Comparison of mutation landscapes of pretreatment versus recurrent squamous cell carcinoma of the oral cavity: The possible mechanism of resistance to standard treatment. Cancer Rep (Hoboken) 2024; 7:e2004. [PMID: 38477073 DOI: 10.1002/cnr2.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A high recurrent rate of oral squamous cell carcinoma (OSCC) is a major concern in head and neck cancer treatment. The study of the genetic mutation landscape in recurrent OSCC may provide information on certain mutations associated with the pathobiology and treatment response of the OSCC. AIM We investigated the mutation landscape of matched pretreatment and recurrent tumors to understand the influence of genetic mutations on the pathobiology and clinical outcomes in OSCC. METHODS AND RESULTS We sequenced 33 formalin-fixed paraffin-embedded (FFPE) recurrent tumors, primary tumors, and primary tumors before recurrence that matched the recurrent tumors collected from Rajavithi Hospital during 2019-2021. We identified recurrent mutations from these samples by the Oncomine Ion Torrent-based next-generation sequencing on the 517 cancer-associated gene panel. From the results, we found that the most commonly mutated gene in the cohort is a histone methyltransferase KMT2D (54.55%), implicating that aberrance in epigenetic regulation may play a role in oral cancer tumorigenesis. Functional protein association network analysis of the gene frequently mutated in the recurrent tumors showed enrichment of genes that regulate the cancer cell cycle, that is, MRE11A, CDKN2A, and CYLD. This finding was confirmed in the primary-recurring matched pair. We found that recurrent tumors possess a small but recurring group of genes, with presumably the subclonal mutations driving the recurrence of the tumor, suggesting that the recurrent disease originated from a small fraction of the cancer cell that survives standard treatment. These genes were absent in the primary tumor with a good response to the standard treatment. On the other hand, we found an enrichment of DNA repair genes, namely ATR, BRCA1, BRCA2, RAD50, and MUTYH, in nonrecurrent tumors suggesting that the mutations in the DNA repair pathway may at least partially explain the different response to the standard treatment. CONCLUSIONS Our pilot study identified pathways of carcinogenesis in oral cancer and specific gene sets that indicate treatment responses and prognoses in this group of patients.
Collapse
Affiliation(s)
- Tongchai Payungwong
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krittaya Angkulkrerkkrai
- Center of Excellence of Otolaryngology Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence in Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somjin Chindavijak
- Center of Excellence of Otolaryngology Head and Neck Surgery, Rajavithi Hospital, Bangkok, Thailand
| |
Collapse
|
12
|
Gu H, Li T, Beeraka NM, Zheng Y, Zhang X, Song R, Zhou R, Wang X, Sukocheva O, Fan R, Liu J. Molecular classification of human papilloma virus-negative head and neck squamous cell carcinomas: Cell cycle-based classifier and prognostic signature. PLoS One 2023; 18:e0286414. [PMID: 37903125 PMCID: PMC10615317 DOI: 10.1371/journal.pone.0286414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/15/2023] [Indexed: 11/01/2023] Open
Abstract
The molecular classification of human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs) remains questionable. Differentially expressed genes were detected between tumor and normal tissues and GSEA showed they are associated with cell cycle pathways. This study aimed to classify HPV-negative HNSCCs based on cell cycle-related genes. The established gene pattern was correlated with tumor progression, clinical prognosis, and drug treatment efficacy. Biological analysis was performed using HNSCC patient sample data obtained from the Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Gene Expression Omnibus (GEO) databases. All samples included in this study contained survival information. RNA sequencing data from 740 samples were used for the analysis. Previously characterized cell cycle-related genes were included for unsupervised consensus clustering. Two subtypes of HPV-negative HNSCCs (C1, C2) were identified. Subtype C1 displayed low cell cycle activity, 'hot' tumor microenvironment (TME), earlier N stage, lower pathological grade, better prognosis, and higher response rate to the immunotherapy and targeted therapy. Subtype C2 was associated with higher cell cycle activity, 'cold' TME, later N stage, higher pathological grade, worse prognosis, and lower response rate to the treatment. According to the nearest template prediction method, classification rules were established and verified. Our work explored the molecular mechanism of HPV-negative HNSCCs in the view of cell cycle and might provide new sights for personalized anti-cancer treatment.
Collapse
Affiliation(s)
- Hao Gu
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingxuan Li
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Narasimha M. Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Andhra Pradesh, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yufei Zheng
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xintan Zhang
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Song
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runze Zhou
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, Australia
- Department of Hepatology, Royal Adelaide Hospital, SA Health, Adelaide, SA, Australia
| | - Ruitai Fan
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Kaushik M, Tiku AB. Molecular pathways modulated by phytochemicals in head and neck cancer. J Cell Commun Signal 2023; 17:469-483. [PMID: 36454443 PMCID: PMC10409696 DOI: 10.1007/s12079-022-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
In the last few years, natural dietary phytochemicals have shown immense potential in the suppression and incidence of Head and Neck Cancer (HNC). From various in-vitro, animal, and epidemiological studies it is now clear that intake of foods rich in dietary phytochemicals lower the risk of HNC. These phytochemicals have been reported to target different stages of Head and Neck cancer (initiation to promotion) by modulating many cellular signaling pathways. A single phytochemical may target different pathways simultaneously or a single pathway may be targeted by a diversity of phytochemicals. This review highlights the molecular pathways modulated by a large number of phytochemicals relevant to HNC with an intent to identify specific signaling pathways that could be therapeutically targeted. Therefore, relevant literature was screened and scrutinized for molecular details. We have focused on the complexity of the molecular mechanisms that are modulated by various phytochemicals and the role they can play in better clinical efficacy and management of head and neck cancer. In-depth knowledge of these molecular mechanisms can lead to innovative therapeutic strategies using phytochemicals alone or along with available treatments for various cancers including HNC. Molecular pathways modulated by Phytochemicals.
Collapse
Affiliation(s)
- Mahesh Kaushik
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
15
|
Design, Synthesis, and Biological Evaluation of 2-Mercaptobenzoxazole Derivatives as Potential Multi-Kinase Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010097. [PMID: 36678593 PMCID: PMC9863562 DOI: 10.3390/ph16010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
A series of 12 compounds was designed and synthesized, based on 2-mercaptobenzoxazole derivatives containing either the substituted benzenes 4a-d, substituted isatins 5a-f, or heterocycles 6a-b. The in vitro antiproliferative activity of the compounds was evaluated against hepatocellular carcinoma (HepG2), mammary gland cancer (MCF-7), breast cancer (MDA-MB-231), and the epithelioid cervix carcinoma (HeLa) cancer cell lines. Compounds 4b, 4d, 5d, and 6b had the most potent antiproliferative activity, with IC50 values ranging from 2.14 to 19.34 µM, compared to the reference drugs, doxorubicin and sunitinib. Compound 6b revealed a remarkably broad antitumor activity pattern against HepG2 (IC50 6.83 µM), MCF-7 (IC50 3.64 µM), MDA-MB-231 (IC50 2.14 µM), and HeLa (IC50 5.18 µM). In addition, compound 6b showed potent inhibitory activities against EGFR, HER2, VEGFR2, and the CDK2 protein kinase enzymes, with IC50 values of 0.279, 0.224, 0.565, and 0.886 µM, respectively. Moreover, compound 6b induced caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Finally, a molecular docking simulation was performed for compound 6b to predict the potential ligand-protein interactions with the active sites of the EGFR, HER2, and VEGFR2 proteins.
Collapse
|
16
|
Zhao W, Zhang L, Zhang Y, Jiang Z, Lu H, Xie Y, Han W, Zhao W, He J, Shi Z, Yang H, Chen J, Chen S, Li Z, Mao J, Zhou L, Gao X, Li W, Tan G, Zhang B, Wang Z. The CDK inhibitor AT7519 inhibits human glioblastoma cell growth by inducing apoptosis, pyroptosis and cell cycle arrest. Cell Death Dis 2023; 14:11. [PMID: 36624090 PMCID: PMC9829897 DOI: 10.1038/s41419-022-05528-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor with a poor median survival of less than 15 months. However, clinical strategies and effective therapies are limited. Here, we found that the second-generation small molecule multi-CDK inhibitor AT7519 is a potential drug for GBM treatment according to high-throughput screening via the Approved Drug Library and Clinical Compound Library (2718 compounds). We found that AT7519 significantly inhibited the cell viability and proliferation of U87MG, U251, and patient-derived primary GBM cells in a dose-dependent manner. Furthermore, AT7519 also inhibited the phosphorylation of CDK1/2 and arrested the cell cycle at the G1-S and G2-M phases. More importantly, AT7519 induced intrinsic apoptosis and pyroptosis via caspase-3-mediated cleavage of gasdermin E (GSDME). In the glioblastoma intracranial and subcutaneous xenograft assays, tumor volume was significantly reduced after treatment with AT7519. In summary, AT7519 induces cell death through multiple pathways and inhibits glioblastoma growth, indicating that AT7519 is a potential chemical available for GBM treatment.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yaya Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Zhengye Jiang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hanwen Lu
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Xie
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wanhong Han
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhongjie Shi
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Huiying Yang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361001, P. R. China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhangyu Li
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jianyao Mao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Liwei Zhou
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xin Gao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wenhua Li
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Guowei Tan
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
17
|
Mohammed ER, Elmasry GF. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma. J Enzyme Inhib Med Chem 2022; 37:686-700. [PMID: 35139719 PMCID: PMC8843100 DOI: 10.1080/14756366.2022.2036985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Inhibiting Cyclin-dependent kinase 2 (CDK2) has been established as a therapeutic strategy for the treatment of many cancers. Accordingly, this study aimed at developing a new set of quinazolinone-based derivatives as CDK2 inhibitors. The new compounds were evaluated for their anticancer activity against sixty tumour cell lines. Compounds 5c and 8a showed excellent growth inhibition against the melanoma cell line MDA-MB-435 with GI% of 94.53 and 94.15, respectively. Cell cycle analysis showed that compound 5c led to cell cycle cessation at S phase and G2/M phase revealing that CDK2 could be the plausible biological target. Thus, the most cytotoxic candidates 5c and 8a were evaluated in vitro for their CDK2 inhibitory activity and were able to display significant inhibitory action. The molecular docking study confirmed the obtained results. ADME study predicted that 5c had appropriate drug-likeness properties. These findings highlight a rationale for further development and optimisation of novel CDK2 inhibitors.
Collapse
Affiliation(s)
- Eman R. Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghada F. Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Chen S, Zhou S, Huang YE, Yuan M, Lei W, Chen J, Lin K, Jiang W. Estimating Metastatic Risk of Pancreatic Ductal Adenocarcinoma at Single-Cell Resolution. Int J Mol Sci 2022; 23:ijms232315020. [PMID: 36499343 PMCID: PMC9736800 DOI: 10.3390/ijms232315020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by intra-tumoral heterogeneity, and patients are always diagnosed after metastasis. Thus, finding out how to effectively estimate metastatic risk underlying PDAC is necessary. In this study, we proposed scMetR to evaluate the metastatic risk of tumor cells based on single-cell RNA sequencing (scRNA-seq) data. First, we identified diverse cell types, including tumor cells and other cell types. Next, we grouped tumor cells into three sub-populations according to scMetR score, including metastasis-featuring tumor cells (MFTC), transitional metastatic tumor cells (TransMTC), and conventional tumor cells (ConvTC). We identified metastatic signature genes (MSGs) through comparing MFTC and ConvTC. Functional enrichment analysis showed that up-regulated MSGs were enriched in multiple metastasis-associated pathways. We also found that patients with high expression of up-regulated MSGs had worse prognosis. Spatial mapping of MFTC showed that they are preferentially located in the cancer and duct epithelium region, which was enriched with the ductal cells' associated inflammation. Further, we inferred cell-cell interactions, and observed that interactions of the ADGRE5 signaling pathway, which is associated with metastasis, were increased in MFTC compared to other tumor sub-populations. Finally, we predicted 12 candidate drugs that had the potential to reverse expression of MSGs. Taken together, we have proposed scMetR to estimate metastatic risk in PDAC patients at single-cell resolution which might facilitate the dissection of tumor heterogeneity.
Collapse
|
19
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
20
|
Zhang B, Liu G, Wang X, Hu X. Identification of Molecular Targets and Potential Mechanisms of Yinchen Wuling San Against Head and Neck Squamous Cell Carcinoma by Network Pharmacology and Molecular Docking. Front Genet 2022; 13:914646. [PMID: 35873484 PMCID: PMC9306494 DOI: 10.3389/fgene.2022.914646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant and heterogeneous tumors, and the patients have low 5-year survival. Traditional Chinese medicine (TCM) has been demonstrated as an effective complementary and/or alternative therapy for advanced malignancies including HNSCC. It has been noted that several herbs that are used for preparing Yinchen Wuling San (YWLS) have anti-tumor activities, whereas their mechanisms of action remain elusive. In this study, network pharmacology and molecular docking studies were employed to explore the underlying mechanisms of action of YWLS against HNSCC. The 58 active ingredients from six herbs used for YWLS and their 506 potential targets were screened from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction database. A total of 2,173 targets associated with HNSCC were mainly identified from the DisGeNET and GeneCards databases. An active components-targets-disease network was constructed in the Cytoscape. Top 20 hub targets, such as AKT1, EGFR, TNF, ESR1, SRC, HSP90AA1, MAPK3, ERBB2, and CCND1, were identified by a degree in the protein–protein interaction (PPI) network. Gene functional enrichment analysis showed that PI3K-AKT, MAPK, Ras, TNF, and EGFR were the main signaling pathways of YWLS in treating HNSCC. There were 48 intersected targets such as EGFR, AKT1, and TNF that were associated with patients’ outcomes by the univariate Cox analysis, and most of them had increased expression in the tumor as compared to normal tissues. The area under curves of receiver operating characteristic indicated their diagnostic potential. Inhibition of these survival-related targets and/or combination with EGFR or AKT inhibitors were promising therapeutic options in HNSCC. The partial active components of YWLS exhibited good binding with the hub targets, and ADME analysis further evaluated the drug-likeness of the active components. These compounds and targets identified in this study might provide novel treatment strategies for HNSCC patients, and the subsequent work is essential to verify the underlying mechanisms of YWLS against HNSCC.
Collapse
Affiliation(s)
- Biyu Zhang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, China
| | - Xuelei Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
21
|
Gu Z, Shi C, Li J, Han Y, Sun B, Zhang W, Wu J, Zhou G, Ye W, Li J, Zhang Z, Zhou R. Palbociclib-based high-throughput combination drug screening identifies synergistic therapeutic options in HPV-negative head and neck squamous cell carcinoma. BMC Med 2022; 20:175. [PMID: 35546399 PMCID: PMC9097351 DOI: 10.1186/s12916-022-02373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Deregulation of cell-cycle pathway is ubiquitously observed in human papillomavirus negative (HPVneg) head and neck squamous cell carcinoma (HNSCC). Despite being an attractive target, CDK4/6 inhibition using palbociclib showed modest or conflicting results as monotherapy or in combination with platinum-based chemotherapy or cetuximab in HPVneg HNSCC. Thus, innovative agents to augment the efficacy of palbociclib in HPVneg HNSCC would be welcomed. METHODS A collection of 162 FDA-approved and investigational agents was screened in combinatorial matrix format, and top combinations were validated in a broader panel of HPVneg HNSCC cell lines. Transcriptional profiling was conducted to explore the molecular mechanisms of drug synergy. Finally, the most potent palbociclib-based drug combination was evaluated and compared with palbociclib plus cetuximab or cisplatin in a panel of genetically diverse HPVneg HNSCC cell lines and patient-derived xenograft models. RESULTS Palbociclib displayed limited efficacy in HPVneg HNSCC as monotherapy. The high-throughput combination drug screening provided a comprehensive palbociclib-based drug-drug interaction dataset, whereas significant synergistic effects were observed when palbociclib was combined with multiple agents, including inhibitors of the PI3K, EGFR, and MEK pathways. PI3K pathway inhibitors significantly reduced cell proliferation and induced cell-cycle arrest in HPVneg HNSCC cell lines when combined with palbociclib, and alpelisib (a PI3Kα inhibitor) was demonstrated to show the most potent synergy with particularly higher efficacy in HNSCCs bearing PIK3CA alterations. Notably, when compared with cisplatin and cetuximab, alpelisib exerted stronger synergism in a broader panel of cell lines. Mechanistically, RRM2-dependent epithelial mesenchymal transition (EMT) induced by palbociclib, was attenuated by alpelisib and cetuximab rather than cisplatin. Subsequently, PDX models with distinct genetic background further validated that palbociclib plus alpelisib had significant synergistic effects in models harboring PIK3CA amplification. CONCLUSIONS This study provides insights into the systematic combinatory effect associated with CDK4/6 inhibition and supports further initiation of clinical trials using the palbociclib plus alpelisib combination in HPVneg HNSCC with PIK3CA alterations.
Collapse
Affiliation(s)
- Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Chaoji Shi
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yong Han
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Bao Sun
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jing Wu
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Weimin Ye
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiang Li
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| |
Collapse
|
22
|
El-Hawary SS, Mohammed R, Taher MA, AbouZid SF, Mansour MA, Almahmoud SA, Huwaimel B, Amin E. Characterization of Promising Cytotoxic Metabolites from Tabebuia guayacan Hemsl.: Computational Prediction and In Vitro Testing. PLANTS (BASEL, SWITZERLAND) 2022; 11:888. [PMID: 35406868 PMCID: PMC9002841 DOI: 10.3390/plants11070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Genus Tabebuia is famous for its traditional uses and valuable phytoconstituents. Our previous investigation of Tabebuia species noted the promising anticancer activity of T. guayacan Hemsl. leaves extract, however, the mechanism underlying the observed anticancer activity is still unexplored. The current research was designed to explore the phytochemical content as well as to address the phytoconstituent(s) responsible for the recorded anticancer activity. Accordingly, sixteen compounds were isolated, and their structures were elucidated using different spectroscopic techniques. The drug-likeness of the isolated compounds, as well as their binding affinity with four anticancer drug target receptors: CDK-2/6, topoisomerase-1, and VEGFR-2, were evaluated. Additionally, the most promising compounds were in vitro evaluated for inhibitory activities against CDK-2/6 and VEGFR-2 enzymes using kinase assays method. Corosolic acid (3) and luteolin-7-O-β-glucoside (16) were the most active inhibitors against CDK-2 (-13.44 kcal/mol) and topoisomerase 1 (-13.83 kcal/mol), respectively. Meanwhile, quercetin 3-O-β-xyloside (10) scored the highest binding free energies against both CDK-6 (-16.23 kcal/mol) as well as against VEGFR-2 protein targets (-10.39 kcal/mol). Molecular dynamic simulation indicated that quercetin 3-O-β-xyloside (10) exhibited the least fluctuations and deviations from the starting binding pose with RMSD (2.6 Å). Interestingly, in vitro testing results confirmed the potent activity of 10 (IC50 = 0.154 µg/mL) compared to IC50 = 0.159 µg/mL of the reference drug ribociclib. These findings suggest the three noted compounds (3, 10, and 16) for further in vivo anticancer studies.
Collapse
Affiliation(s)
- Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt;
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
| | - Marwa A. Taher
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Sameh Fekry AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mostafa A. Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
23
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
25
|
Zuo Z, He L, Duan X, Peng Z, Han J. Glycyrrhizic acid exhibits strong anticancer activity in colorectal cancer cells via SIRT3 inhibition. Bioengineered 2021; 13:2720-2731. [PMID: 34747319 PMCID: PMC8974138 DOI: 10.1080/21655979.2021.2001925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sirtuin-3 (SIRT3) has been described as a colorectal cancer oncogene and to be regulated by glycyrrhizic acid (GA). However, few studies have explored the interaction between GA and SIRT3. Therefore, in the present study, we showed that GA could significantly decrease SIRT3 protein levels in SW620 and HT29 cells in a dose-dependent manner. Then, we overexpressed SIRT3 by lentivirus infection on SW620 and HT29 cells. We found that, in vitro, GA treatment significantly decreased cell viability, cell clone number, and invasion and migration number, besides significantly increasing apoptosis. Also, GA treatment significantly decreased the Bax/Bcl2 protein ratio and the expression of Cyclin D1, CDK2, CDK4, MMP-9, N-cadherin, and vimentin in SW620 and HT29 cells. Meanwhile, the SIRT3 overexpression could significantly reverse these changes. Moreover, the GA treatment could significantly decrease the weight of xenograft tumor tissues and its SIRT3 protein levels in vivo, while SIRT3 overexpression reversed these effects. Overall, GA inhibited the proliferation, invasion, and migration of colorectal cancer cells, and induced their apoptosis by SIRT3 inhibition.
Collapse
Affiliation(s)
- Zhenkui Zuo
- Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine
| | - Lulu He
- Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine
| | - Xiaoyu Duan
- Department of Proctology, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine
| | - Zining Peng
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine
| | - Jiarui Han
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine, The Second Hospital Affiliated to Henan University of Chinese Medicine
| |
Collapse
|
26
|
Fasano M, Perri F, Della Corte CM, Di Liello R, Della Vittoria Scarpati G, Cascella M, Ottaiano A, Ciardiello F, Solla R. Translational Insights and New Therapeutic Perspectives in Head and Neck Tumors. Biomedicines 2021; 9:1045. [PMID: 34440249 PMCID: PMC8391435 DOI: 10.3390/biomedicines9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a high mortality rate owing to very few available oncological treatments. For many years, a combination of platinum-based chemotherapy and anti-EGFR antibody cetuximab has represented the only available option for first-line therapy. Recently, immunotherapy has been presented an alternative for positive PD-L1 HNSCC. However, the oncologists' community foresees that a new therapeutic era is approaching. In fact, no-chemo options and some molecular targets are on the horizon. This narrative review addresses past, present, and future therapeutic options for HNSCC from a translational point of view.
Collapse
Affiliation(s)
- Morena Fasano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Via M. Semmola, 80131 Naples, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Raimondo Di Liello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | | | - Marco Cascella
- Division of Anesthesia, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80100 Naples, Italy;
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80100 Naples, Italy;
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Raffaele Solla
- Italian National Research Council, Institute of Biostructure & Bioimaging, 80131 Naples, Italy;
| |
Collapse
|
27
|
Schoenwaelder N, Salewski I, Engel N, Krause M, Schneider B, Müller M, Riess C, Lemcke H, Skorska A, Grosse-Thie C, Junghanss C, Maletzki C. The Individual Effects of Cyclin-Dependent Kinase Inhibitors on Head and Neck Cancer Cells-A Systematic Analysis. Cancers (Basel) 2021; 13:cancers13102396. [PMID: 34063457 PMCID: PMC8157193 DOI: 10.3390/cancers13102396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (CDKi´s) display cytotoxic activity against different malignancies, including head and neck squamous cell carcinomas (HNSCC). By coordinating the DNA damage response, these substances may be combined with cytostatics to enhance cytotoxicity. Here, we investigated the influence of different CDKi´s (palbociclib, dinaciclib, THZ1) on two HNSCC cell lines in monotherapy and combination therapy with clinically-approved drugs (5-FU, Cisplatin, cetuximab). Apoptosis/necrosis, cell cycle, invasiveness, senescence, radiation-induced γ-H2AX DNA double-strand breaks, and effects on the actin filament were studied. Furthermore, the potential to increase tumor immunogenicity was assessed by analyzing Calreticulin translocation and immune relevant surface markers. Finally, an in vivo mouse model was used to analyze the effect of dinaciclib and Cisplatin combination therapy. Dinaciclib, palbociclib, and THZ1 displayed anti-neoplastic activity after low-dose treatment, while the two latter substances slightly enhanced radiosensitivity. Dinaciclib decelerated wound healing, decreased invasiveness, and induced MHC-I, accompanied by high amounts of surface-bound Calreticulin. Numbers of early and late apoptotic cells increased initially (24 h), while necrosis dominated afterward. Antitumoral effects of the selective CDKi palbociclib were weaker, but combinations with 5-FU potentiated effects of the monotherapy. Additionally, CDKi and CDKi/chemotherapy combinations induced MHC I, indicative of enhanced immunogenicity. The in vivo studies revealed a cell line-specific response with best tumor growth control in the combination approach. Global acting CDKi's should be further investigated as targeting agents for HNSCC, either individually or in combination with selected drugs. The ability of dinaciclib to increase the immunogenicity of tumor cells renders this substance a particularly interesting candidate for immune-based oncological treatment regimens.
Collapse
Affiliation(s)
- Nina Schoenwaelder
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
- Correspondence: ; Tel.: +49-381-494-5764
| | - Inken Salewski
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mareike Krause
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Strempelstr.14, 18057 Rostock, Germany;
| | - Michael Müller
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Christin Riess
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
- University Children’s Hospital, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, 18057 Rostock, Germany; (H.L.); (A.S.)
- Department of Cardiology, University Medical Center Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter, Faculty of Interdisciplinary Research, University Rostock, 18059 Rostock, Germany
| | - Anna Skorska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, 18057 Rostock, Germany; (H.L.); (A.S.)
- Department of Cardiology, University Medical Center Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter, Faculty of Interdisciplinary Research, University Rostock, 18059 Rostock, Germany
| | - Christina Grosse-Thie
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| |
Collapse
|