1
|
Chen CHS, Yuan TH, Lu TP, Lee HY, Chen YH, Lai LC, Tsai MH, Chuang EY, Chan CC. Exposure-associated DNA methylation among people exposed to multiple industrial pollutants. Clin Epigenetics 2024; 16:111. [PMID: 39164771 PMCID: PMC11337639 DOI: 10.1186/s13148-024-01705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Current research on the epigenetic repercussions of exposure to a combination of pollutants is limited. This study aims to discern DNA methylation probes associated with exposure to multiple pollutants, serving as early effect markers, and single-nucleotide polymorphisms (SNPs) as surrogate indicators for population susceptibility. The investigation involved the analysis of urine exposure biomarkers for 11 heavy metals (vanadium, arsenic, mercury, cadmium, chromium, nickel, lead, manganese, copper, strontium, thallium), polycyclic aromatic hydrocarbon (PAHs) (1-hydroxypyrene), genome-wide DNA methylation sequencing, and SNPs array on all study participants. The data were integrated with metabolomics information and analyzed both at a community level based on proximity to home addresses relative to the complex and at an individual level based on exposure biomarker concentrations. RESULTS On a community level, 67 exposure-related CpG probes were identified, while 70 CpG probes were associated with urine arsenic concentration, 2 with mercury, and 46 with vanadium on an individual level. These probes were annotated to genes implicated in cancers and chronic kidney disease. Weighted quantile sum regression analysis revealed that vanadium, mercury, and 1-hydroxypyrene contributed the most to cg08238319 hypomethylation. cg08238319 is annotated to the aryl hydrocarbon receptor repressor (AHRR) gene, and AHRR hypomethylation was correlated with an elevated risk of lung cancer. AHRR was further linked to deregulations in phenylalanine metabolism, alanine, aspartate, and glutamate metabolism, along with heightened oxidative stress. Additionally, three SNPs (rs11085020, rs199442, and rs10947050) corresponding to exposure-related CpG probes exhibited significant interaction effects with multiple heavy metals and PAHs exposure, and have been implicated in cancer progression and respiratory diseases. CONCLUSION Our findings underscore the pivotal role of AHRR methylation in gene-environment interactions and highlight SNPs that could potentially serve as indicators of population susceptibility in regions exposed to multiple heavy metals and PAHs.
Collapse
Affiliation(s)
- Chi-Hsin Sally Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuen Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan.
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
3
|
Effects of Prenatal Exposure to Arsenic on T Cell Development in Children. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
4
|
Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 2022; 39:85-110. [PMID: 35362847 PMCID: PMC10042769 DOI: 10.1007/s10565-022-09710-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.
Collapse
Affiliation(s)
- Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Ritesh Srivastava
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
5
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
6
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Sharma V, Gangopadhyay S, Shukla S, Chauhan A, Singh S, Singh RD, Tiwari R, Singh D, Srivastava V. Prenatal exposure to arsenic promotes sterile inflammation through the Polycomb repressive element EZH2 and accelerates skin tumorigenesis in mouse. Toxicol Appl Pharmacol 2022; 443:116004. [DOI: 10.1016/j.taap.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
8
|
Zhou X, Speer RM, Volk L, Hudson LG, Liu KJ. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin Cancer Biol 2021; 76:86-98. [PMID: 33984503 PMCID: PMC8578584 DOI: 10.1016/j.semcancer.2021.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Lindsay Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020; 8:464. [PMID: 33134234 PMCID: PMC7578365 DOI: 10.3389/fpubh.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
10
|
Maimaitiyiming Y, Wang QQ, Hsu CH, Naranmandura H. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond. Toxicol Appl Pharmacol 2020; 406:115212. [PMID: 32882258 DOI: 10.1016/j.taap.2020.115212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Epigenetic alterations regulate gene expression without changes in the DNA sequence. It is well-demonstrated that aberrant epigenetic changes contribute to the leukemogenesis of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) is one of the most common drugs used in the frontline treatment of APL that act through targeting and destabilizing the PML/RARα oncofusion protein. ATO together with all-trans retinoic acid (ATRA) lead to durable remission of more than 90% non-high-risk APL patients, turning APL treatment into a paradigm of oncoprotein targeted cure. Although relapse and drug resistance in APL are yet to be resolved in the clinic, epigenetic machineries might hold the key to address this issue. Further, ATO also showed promising anticancer activities against a variety of malignancies, but its application is particularly restricted due to limited understanding of the mechanism. Thus, a thorough understanding of epigenetic mechanism behind anti-leukemic effects of ATO would benefit the development of ATO-based anticancer strategy. Role of ATRA on APL associated epigenetic alterations has been extensively studied and reviewed. Recently, accumulating evidence suggest that ATO also induces some epigenetic changes that might favor APL eradication. In this article, we comprehensively discuss arsenic induced epigenetic changes and its relevance in APL treatment and beyond, so as to provide novel insights into overcoming arsenic resistance in APL and promote application of this drug to other malignancies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
12
|
Jamal Z, Das J, Ghosh S, Gupta A, Chattopadhyay S, Chatterji U. Arsenic-induced immunomodulatory effects disorient the survival-death interface by stabilizing the Hsp90/Beclin1 interaction. CHEMOSPHERE 2020; 238:124647. [PMID: 31466007 DOI: 10.1016/j.chemosphere.2019.124647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 05/08/2023]
Abstract
Ground water arsenic contamination is a global menace. Since arsenic may affect the immune system, leading to immunesuppression, we investigated the effects of acute arsenic exposure on the thymus and spleen using Swiss albino mice, exposed to 5 ppm, 15 ppm and 300 ppm of sodium arsenite for 7 d. Effects on cytokine balance and cell survivability were subsequently analyzed. Our data showed that arsenic treatment induced debilitating alterations in the tissue architecture of thymus and spleen. A dose-dependent decrease in the ratio of CD4+-CD8+ T-cells was observed along with a pro-inflammatory response and redox imbalance. In addition, pioneering evidences established the ability of arsenic to induce an up regulation of Hsp90, eventually resulting in stabilization of its client protein Beclin-1, an important autophagy-initiating factor. This association initiated the autophagic process, confirmed by co-immunoprecipitation assay, acridine orange staining and Western blot, indicating the effort of cells trying to survive at lower doses. However, increased arsenic assault led to apoptotic cell death in the lymphoid organs, possibly by increased ROS generation. There are several instances of autophagy and apoptosis taking place either simultaneously or sequentially due to oxidative stress. Since arsenic is a potent environmental stress factor, exposure to arsenic led to a dose-dependent increase in both autophagy and apoptosis in the thymus and spleen, and cell death could therefore possibly be induced by autophagy. Therefore, exposure to arsenic leads to serious effects on the immune physiology in mice, which may further have dire consequences on the health of exposed animals.
Collapse
Affiliation(s)
- Zarqua Jamal
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India
| | - Joydeep Das
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, 700 009, India
| | - Anasuya Gupta
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, 700 009, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
13
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020. [PMID: 33134234 DOI: 10.3389/fpubh/2020.00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
14
|
Merrick BA, Phadke DP, Bostrom MA, Shah RR, Wright GM, Wang X, Gordon O, Pelch KE, Auerbach SS, Paules RS, DeVito MJ, Waalkes MP, Tokar EJ. Arsenite malignantly transforms human prostate epithelial cells in vitro by gene amplification of mutated KRAS. PLoS One 2019; 14:e0215504. [PMID: 31009485 PMCID: PMC6476498 DOI: 10.1371/journal.pone.0215504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Inorganic arsenic is an environmental human carcinogen of several organs including the urinary tract. RWPE-1 cells are immortalized, non-tumorigenic, human prostate epithelia that become malignantly transformed into the CAsE-PE line after continuous in vitro exposure to 5μM arsenite over a period of months. For insight into in vitro arsenite transformation, we performed RNA-seq for differential gene expression and targeted sequencing of KRAS. We report >7,000 differentially expressed transcripts in CAsE-PE cells compared to RWPE-1 cells at >2-fold change, q<0.05 by RNA-seq. Notably, KRAS expression was highly elevated in CAsE-PE cells, with pathway analysis supporting increased cell proliferation, cell motility, survival and cancer pathways. Targeted DNA sequencing of KRAS revealed a mutant specific allelic imbalance, ‘MASI’, frequently found in primary clinical tumors. We found high expression of a mutated KRAS transcript carrying oncogenic mutations at codons 12 and 59 and many silent mutations, accompanied by lower expression of a wild-type allele. Parallel cultures of RWPE-1 cells retained a wild-type KRAS genotype. Copy number analysis and sequencing showed amplification of the mutant KRAS allele. KRAS is expressed as two splice variants, KRAS4a and KRAS4b, where variant 4b is more prevalent in normal cells compared to greater levels of variant 4a seen in tumor cells. 454 Roche sequencing measured KRAS variants in each cell type. We found KRAS4a as the predominant transcript variant in CAsE-PE cells compared to KRAS4b, the variant expressed primarily in RWPE-1 cells and in normal prostate, early passage, primary epithelial cells. Overall, gene expression data were consistent with KRAS-driven proliferation pathways found in spontaneous tumors and malignantly transformed cell lines. Arsenite is recognized as an important environmental carcinogen, but it is not a direct mutagen. Further investigations into this in vitro transformation model will focus on genomic events that cause arsenite-mediated mutation and overexpression of KRAS in CAsE-PE cells.
Collapse
Affiliation(s)
- B. Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Dhiral P. Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Meredith A. Bostrom
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Ruchir R. Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Garron M. Wright
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Xinguo Wang
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Oksana Gordon
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States of America
| | - Katherine E. Pelch
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Richard S. Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael J. DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Michael P. Waalkes
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Erik J. Tokar
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
15
|
Chikkanna A, Mehan L, P. K. S, Ghosh D. Arsenic Exposures, Poisoning, and Threat to Human Health. ENVIRONMENTAL EXPOSURES AND HUMAN HEALTH CHALLENGES 2019. [DOI: 10.4018/978-1-5225-7635-8.ch004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic (As) is a naturally occurring metalloid which induces high toxicity to both human and animal health. Although As has some applications in industrial, medicinal and agricultural fields, the increasing concentrations of As in drinking water sources had made it a potential threat to living organisms. Inorganic As is naturally present in groundwater and is adsorbed by plants and crops through the irrigation system. This leads to its accumulation in crops and translocation to humans and animals through food. Increased levels of As can cause various health disorders through acute and chronic exposures such as gastrointestinal, hepatic, respiratory, cardiovascular, integumentary, renal, neurological, and reproductive disorders including stillbirth and infant mortality. Arsenic is also capable of inducing epigenetic changes, thereby causing gene mutations. This chapter focuses on the possible sources of As, leading to environmental contamination and followed by its hazardous effects which pave the way to various human health manifestations.
Collapse
|
16
|
Zhang Q, Bai J, Yao X, Jiang L, Wu W, Yang L, Gao N, Qiu T, Yang G, Habtemariam Hidru T, Sun X. Taurine rescues the arsenic-induced injury in the pancreas of rat offsprings and in the INS-1 cells. Biomed Pharmacother 2018; 109:815-822. [PMID: 30551535 DOI: 10.1016/j.biopha.2018.10.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023] Open
Abstract
Arsenic was an established carcinogen and toxicant, occurring in drinking water and food. Arsenic was increasingly being blamed as a risk factor for diabetes mellitus. Recent studies have found that arsenic could induce the generation of reactive oxygen species (ROS) and mitochondria were the major targets of ROS. Damage mitochondria could be removed by mitophagy and mitophagy played a defensive role against cellular apoptosis. To investigate whether the arsenic could induce the injury in mitochondria, we treated Wistar rat offsprings and INS-1 cells with As2O3 and sodium arsenite, respectively. Our results showed that arsenic induced the generation of ROS in both rat offsprings' pancreas and INS-1 cells. The generation of ROS induced by arsenic could inhibit the expression of PPARγ. PPARγ is a major impact on mitochondrial function. The inhibition of PPARγ induced the reduction of PINK1 signaling and the upregulation of Bax. PINK1 signaling was one of the classical pathways of mitophagy. The inhibition of mitophagy induced the activation of apoptosis both in rat offsprings' pancreas and INS-1 cells. After treated with Rosiglitazone (RGS, PPARγ receptor agonist), PPARγ was rescued, the expression of PINK1 significantly increasing and the apoptosis was restrained. We used Taurine (Tau) as the protective agent both in rat offsprings' pancreas and INS-1 cells, after treated with Tau, the production of ROS was decreased significantly and the downgrade of PPARγ was rescued.
Collapse
Affiliation(s)
- Qiaoting Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian medical university, 9W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Department of Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9W Lvshun South Road, Dalian 116044, PR China
| | - Wei Wu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Lei Yang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Ni Gao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9W Lvshun South Road, Dalian 116044, PR China
| | | | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
17
|
Zhu Y, Li Y, Lou D, Gao Y, Yu J, Kong D, Zhang Q, Jia Y, Zhang H, Wang Z. Sodium arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in mouse embryonic fibroblast cells. Toxicol Appl Pharmacol 2018; 357:70-79. [PMID: 30130555 DOI: 10.1016/j.taap.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023]
Abstract
Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L-/-) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.
Collapse
Affiliation(s)
- Yan Zhu
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yanqiang Li
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yang Gao
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jing Yu
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dehui Kong
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China
| | - Qiang Zhang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Yankai Jia
- GENEWIZ Suzhou, 218 Xinghu Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Haimou Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China.
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China; Fengxian Central Hospital, 9588 Nanfeng Hwy, Fengxian District, Shanghai 201406, China.
| |
Collapse
|
18
|
|
19
|
Meehan RR, Thomson JP, Lentini A, Nestor CE, Pennings S. DNA methylation as a genomic marker of exposure to chemical and environmental agents. Curr Opin Chem Biol 2018; 45:48-56. [PMID: 29505975 DOI: 10.1016/j.cbpa.2018.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Recent progress in interpreting comprehensive genetic and epigenetic profiles for human cellular states has contributed new insights into the developmental origins of disease, elucidated novel signalling pathways and enhanced drug discovery programs. A similar comprehensive approach to decoding the epigenetic readouts from chemical challenges in vivo would yield new paradigms for monitoring and assessing environmental exposure in model systems and humans.
Collapse
Affiliation(s)
- Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Antonio Lentini
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 58183, Sweden
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 58183, Sweden.
| | - Sari Pennings
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, UK.
| |
Collapse
|
20
|
Pérez-Vázquez MS, Ochoa-Martínez ÁC, RuÍz-Vera T, Araiza-Gamboa Y, Pérez-Maldonado IN. Evaluation of epigenetic alterations (mir-126 and mir-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28036-28045. [PMID: 28994022 DOI: 10.1007/s11356-017-0367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Recently, a great number of epidemiological studies have shown evidence that exposure to inorganic arsenic could have harmful effects on the cardiovascular system of humans. However, the underlying mechanisms through which arsenic induces cardiovascular toxic effects remain unclear. In this regard, epigenetic mechanisms have emerged as a probable connection between environment and disease phenotypes, including cardiovascular diseases. Therefore, this study aimed to evaluate epigenetic changes related to cardiotoxicity (miR-126 and miR-155 expression levels) in children from San Luis Potosi, Mexico exposed to inorganic arsenic. From 2014 to 2015, in a cross-sectional study, children (aged 6-12 years; n = 73) attending public schools at the studied sites were enrolled to take part in this study. Urinary arsenic was used as an exposure biomarker and analyzed by an atomic absorption spectrophotometry technique. On the other hand, miR-126 and miR-155 expression levels were evaluated by qRT-PCR. A mean urinary arsenic level of 30.5 ± 25.5 μg/g of creatinine was found. Moreover, the data showed a significant negative association (p < 0.05) between urinary arsenic concentrations and plasma miR-126 levels. However, an association between urinary arsenic concentrations and plasma miR-155 levels was not found (p > 0.05). In this regard, some investigations have shown an association between diminished plasma miR-126 levels and cardiovascular illnesses. The results found in this study are of concern. However, more similar studies including a larger sample size are necessary in order to clarify the real significance of the data.
Collapse
Affiliation(s)
- Mónica S Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Tania RuÍz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Yesenia Araiza-Gamboa
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Rio-verde, San Luis Potosi, Mexico.
| |
Collapse
|
21
|
|
22
|
Alamdar A, Xi G, Huang Q, Tian M, Eqani SAMAS, Shen H. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation. Toxicol Appl Pharmacol 2017; 326:7-14. [DOI: 10.1016/j.taap.2017.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
23
|
Tauheed J, Sanchez-Guerra M, Lee JJ, Paul L, Ibne Hasan MOS, Quamruzzaman Q, Selhub J, Wright RO, Christiani DC, Coull BA, Baccarelli AA, Mazumdar M. Associations between post translational histone modifications, myelomeningocele risk, environmental arsenic exposure, and folate deficiency among participants in a case control study in Bangladesh. Epigenetics 2017; 12:484-491. [PMID: 28387569 DOI: 10.1080/15592294.2017.1312238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arsenic exposure may contribute to disease risk in humans through alterations in the epigenome. Previous studies reported that arsenic exposure is associated with changes in plasma histone concentrations. Posttranslational histone modifications have been found to differ between the brain tissue of human embryos with neural tube defects and that of controls. Our objectives were to investigate the relationships between plasma histone 3 levels, history of having an infant with myelomeningocele, biomarkers of arsenic exposure, and maternal folate deficiency. These studies took place in Bangladesh, a country with high environmental arsenic exposure through contaminated drinking water. We performed ELISA assays to investigate plasma concentration of total histone 3 (H3) and the histone modification H3K27me3. The plasma samples were collected from 85 adult women as part of a case-control study of arsenic and myelomeningocele risk in Bangladesh. We found significant associations between plasma %H3K27me3 levels and risk of myelomeningocele (P<0.05). Mothers with higher %H3K27me3 in their plasma had lower risk of having an infant with myelomeningocele (odds ratio: 0.91, 95% confidence interval: 0.84, 0.98). We also found that arsenic exposure, as estimated by arsenic concentration in toenails, was associated with lower total H3 concentrations in plasma, but only among women with folate deficiency (β = -9.99, standard error = 3.91, P=0.02). Our results suggest that %H3K27me3 in maternal plasma differs between mothers of infants with myelomeningocele and mothers of infants without myelomeningocele, and may be a marker for myelomeningocele risk. Women with folate deficiency may be more susceptible to the epigenetic effects of environmental arsenic exposure.
Collapse
Affiliation(s)
- Jannah Tauheed
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Marco Sanchez-Guerra
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,b Department of Developmental Neurobiology , National Institute of Perinatology , Mexico City , Mexico
| | - Jane J Lee
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,c Department of Neurology , Boston Children's Hospital , Boston , MA , USA
| | - Ligi Paul
- d Jean Mayer USDA Human Nutrition Research Center on Aging , Tufts University , Boston , MA , USA
| | | | | | - Jacob Selhub
- d Jean Mayer USDA Human Nutrition Research Center on Aging , Tufts University , Boston , MA , USA
| | - Robert O Wright
- f Department of Preventive Medicine , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - David C Christiani
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Brent A Coull
- g Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Andrea A Baccarelli
- h Department of Environmental Health Sciences , Columbia Mailman School of Public Health , New York , NY , USA
| | - Maitreyi Mazumdar
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,c Department of Neurology , Boston Children's Hospital , Boston , MA , USA
| |
Collapse
|
24
|
Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:93-103. [PMID: 27701139 DOI: 10.1515/reveh-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports describing epigenetic changes induced by iAs exposure and the possible epigenetic mechanisms underlying these changes.
Collapse
|
25
|
Zhang L, Reyes A, Wang X. The Role of DNA Repair in Maintaining Mitochondrial DNA Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:85-105. [PMID: 29178071 DOI: 10.1007/978-981-10-6674-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are vital double-membrane organelles that act as a "powerhouse" inside the cell and have essential roles to maintain cellular functions, e.g., ATP production, iron-sulfur synthesis metabolism, and steroid synthesis. An important difference with other organelles is that they contain their own mitochondrial DNA (mtDNA). Such powerful organelles are also sensitive to both endogenous and exogenous factors that can cause lesions to their structural components and their mtDNA, resulting in gene mutations and eventually leading to diseases. In this review, we will mainly focus on mammalian mitochondrial DNA repair pathways that safeguard mitochondrial DNA integrity and several important factors involved in the repair process, especially on an essential pathway, base excision repair. We eagerly anticipate to explore more methods to treat related diseases by constantly groping for these complexes and precise repair mechanisms.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
26
|
Yu CW, Liao VHC. Transgenerational Reproductive Effects of Arsenite Are Associated with H3K4 Dimethylation and SPR-5 Downregulation in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10673-10681. [PMID: 27579588 DOI: 10.1021/acs.est.6b02173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arsenic is a prevalent environmental toxin. Arsenic is associated with a wide variety of adverse effects; however, studies on whether As-induced toxicities can be transferred from parents to offspring have received little attention. Caenorhabditis elegans has become an important animal model in biomedical and environmental toxicology research. In this study, transgenerational reproductive toxicity by arsenite exposure and the underlying mechanisms in C. elegans were investigated over six generations (F0-F5). Following arsenite maternal exposure of the F0 generation, subsequent generations (F1-F5) were cultured under arsenite-free conditions. We found that the brood size of C. elegans was significantly reduced by arsenite exposure in F0 and that this reduction in brood size was also observed in the offspring generations (F1-F5), after the toxicant had been removed from the diet. In addition, adult worms from F0 and F1 generations accumulated arsenite and arsenate when F0 L4 larvae were exposed to arsenite for 24 h. We found that the mRNA level of H3K4me2 demethylase LSD/KDM1, spr-5, was significantly reduced in the F0 exposed generation and subsequent unexposed generations (F1-F3). Likewise, the mRNA levels of spr-5 were also significantly decreased in the F1-F3 generations. Moreover, dimethylation of global H3K4 was increased in the F0-F3 generations. Our study demonstrates that maternal arsenite exposure causes transgenerational reproductive effects in C. elegans, which might be associated with H3K4 dimethylation and SPR-5 downregulation.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
27
|
Howe CG, Gamble MV. Influence of Arsenic on Global Levels of Histone Posttranslational Modifications: a Review of the Literature and Challenges in the Field. Curr Environ Health Rep 2016; 3:225-37. [PMID: 27352015 PMCID: PMC4967376 DOI: 10.1007/s40572-016-0104-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arsenic is a human carcinogen and also increases the risk for non-cancer outcomes. Arsenic-induced epigenetic dysregulation may contribute to arsenic toxicity. Although there are several reviews on arsenic and epigenetics, these have largely focused on DNA methylation. Here, we review investigations of the effects of arsenic on global levels of histone posttranslational modifications (PTMs). Multiple studies have observed that arsenic induces higher levels of H3 lysine 9 dimethylation (H3K9me2) and also higher levels of H3 serine 10 phosphorylation (H3S10ph), which regulate chromosome segregation. In contrast, arsenic causes a global loss of H4K16ac, a histone PTM that is a hallmark of human cancers. Although the findings for other histone PTMs have not been entirely consistent across studies, we discuss biological factors which may contribute to these inconsistencies, including differences in the dose, duration, and type of arsenic species examined; the tissue or cell line evaluated; differences by sex; and exposure timing. We also discuss two important considerations for the measurement of histone PTMs: proteolytic cleavage of histones and arsenic-induced alterations in histone expression.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. Address: 11 Floor, 722 W. 168 Street, New York, New York, 10032. . Phone: 212-305-1205. Fax: 212-305-3857
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. Address: 11 Floor, 722 W. 168 Street, New York, New York, 10032. . Phone: 212-305-7949. Fax: 212-305-3857
| |
Collapse
|
28
|
Kim HY, Wegner SH, Van Ness KP, Park JJ, Pacheco SE, Workman T, Hong S, Griffith W, Faustman EM. Differential epigenetic effects of chlorpyrifos and arsenic in proliferating and differentiating human neural progenitor cells. Reprod Toxicol 2016; 65:212-223. [PMID: 27523287 DOI: 10.1016/j.reprotox.2016.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Understanding the underlying temporal and mechanistic responses to neurotoxicant exposures during sensitive periods of neuronal development are critical for assessing the impact of these exposures on developmental processes. To investigate the importance of timing of neurotoxicant exposure for perturbation of epigenetic regulation, we exposed human neuronal progenitor cells (hNPCs) to chlorpyrifos (CP) and sodium arsenite (As; positive control) during proliferation and differentiation. CP or As treatment effects on hNPCs morphology, cell viability, and changes in protein expression levels of neural differentiation and cell stress markers, and histone H3 modifications were examined. Cell viability, proliferation/differentiation status, and epigenetic results suggest that hNPCs cultures respond to CP and As treatment with different degrees of sensitivity. Histone modifications, as measured by changes in histone H3 phosphorylation, acetylation and methylation, varied for each toxicant and growth condition, suggesting that differentiation status can influence the epigenetic effects of CP and As exposures.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Susanna H Wegner
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Kirk P Van Ness
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Julie Juyoung Park
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Sara E Pacheco
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Tomomi Workman
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Sungwoo Hong
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - William Griffith
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health, Institute of Risk Analysis and Risk Communication, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, United States.
| |
Collapse
|