1
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2024:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Lucarini E, Benvenuti L, Di Salvo C, D’Antongiovanni V, Pellegrini C, Valdiserra G, Ciampi C, Antonioli L, Lambiase C, Cancelli L, Grosso A, Di Cesare Mannelli L, Bellini M, Ghelardini C, Fornai M. Evaluation of the beneficial effects of a GABA-based product containing Melissa officinalis on post-inflammatory irritable bowel syndrome: a preclinical study. Front Pharmacol 2024; 15:1466824. [PMID: 39372212 PMCID: PMC11449869 DOI: 10.3389/fphar.2024.1466824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Visceral pain represents the most common digestive issue, frequently resulting from long-term inflammation, such as inflammatory bowel diseases. The lack of effective drugs prompted search of new therapeutic approaches. In this regard, gamma-aminobutyric acid (GABA) and Melissa officinalis (Mo) appear as excellent candidates as they were recognized to have several positive effects on the digestive system. The aim of this research was to evaluate the effects of a compound containing GABA and Mo (GABA-Mo 5:1) in inflammation-induced intestinal damage and visceral pain. Methods Colitis was induced in rats by intrarectal 2,4-dinitrobenzenesulfonic acid (DNBS) administration. DNBS-treated animals received GABA-Mo (80 mg/kg BID), starting 3 days before DNBS administration, until 14 days after colitis induction (preventive protocol), or starting 7 days after DNBS until day 21 (curative protocol). Visceral pain was assessed by measuring the viscero-motor response (VMR) and the abdominal withdrawal reflex (AWR) to colorectal distension on day 7, 14 (both protocols) and 21 (curative protocol) after DNBS administration. Results In the preventive protocol, GABA-Mo reduced AWR at day 14 but had no effect on VMR. In the spinal cord, treatment with GABA-Mo significantly prevented microglia reactivity (Iba-1 positive cells). In the colon, the supplement significantly decreased malondialdehyde (MDA, index of oxidative stress) and IL-1β levels and counteracted the decreased expression of claudin-1. Moreover, GABA-Mo normalized the increased levels of plasma lipopolysaccharide binding protein (LBP, index of altered intestinal permeability). In the curative protocol, GABA-Mo significantly counteracted visceral hypersensitivity persistence in DNBS-treated animals (day 14 and 21). In the spinal cord, GABA-Mo significantly reduced GFAP positive cell density (astrocytes). Histological evaluations highlighted a mild but significant effect of GABA-Mo in promoting healing from DNBS-induced colon damage. Colonic MDA and myeloperoxidase (index of leukocyte infiltration) levels were reduced, while the decreased colonic claudin-1 expression was normalized. In addition, the increased levels of plasma LBP were normalized by GABA-Mo administration. Discussion In conclusion GABA-Mo, particularly in the curative protocol, was able to reduce visceral pain and intestinal inflammation, likely through a reinforcement of intestinal barrier integrity, thus representing a suitable approach for the management of abdominal pain, especially in the remission stages of colitis.
Collapse
Affiliation(s)
- Elena Lucarini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, University of Florence, Florence, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clara Ciampi
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, University of Florence, Florence, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Christian Lambiase
- Department of Translational Research, New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Cancelli
- Department of Translational Research, New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Grosso
- Department of Translational Research, New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, University of Florence, Florence, Italy
| | - Massimo Bellini
- Department of Translational Research, New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, University of Florence, Florence, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, Di Cesare Mannelli L, Ghelardini C. Anti-Hyperalgesic Efficacy of Acetyl L-Carnitine (ALCAR) Against Visceral Pain Induced by Colitis: Involvement of Glia in the Enteric and Central Nervous System. Int J Mol Sci 2023; 24:14841. [PMID: 37834289 PMCID: PMC10573187 DOI: 10.3390/ijms241914841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (A.T.); (C.C.); (F.M.); (L.D.C.M.); (C.G.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
5
|
Jiang H, Xu L, Liu W, Xiao M, Ke J, Long X. Chronic Pain Causes Peripheral and Central Responses in MIA-Induced TMJOA Rats. Cell Mol Neurobiol 2021; 42:1441-1451. [PMID: 33387118 DOI: 10.1007/s10571-020-01033-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022]
Abstract
Chronic pain is the predominant symptom that drives temporomandibular joint osteoarthritis (TMJOA) patients to seek medical care; however, currently used treatment modalities remain less effective. This study aimed to investigate chronic pain and the peripheral and central responses in monoiodoacetate (MIA)-induced TMJOA rats. First, the appropriate dose of MIA was determined based on pain behavior assessment in rats. Alterations of the condylar structure in TMJOA rats were evaluated by histological staining and micro-computed tomography (micro-CT). Second, the period of TMJOA chronic pain was further explored by assessing the numbers of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium-binding adaptor molecule 1 (IBA-1)-positive microglia in the trigeminal spinal nucleus (TSN) and performing nonsteroidal anti-inflammatory drug (NSAID) efficacy experiments. Finally, the expression of neurofilament 200 (NF200), calcitonin gene-related peptide (CGRP), and isolectin B4 (IB4) in the trigeminal ganglion (TG) and TSN was assessed by immunofluorescence. MIA at 4 mg/kg was considered an appropriate dose. Gradual MIA-induced alterations of the condylar structure were correlated with temporomandibular joint (TMJ) pain. The numbers of GFAP- and IBA-1-positive cells were increased at 2, 3, and 4 weeks after MIA injection. NSAIDs failed to alleviate pain behavior 10 days after MIA injection. CGRP and IB4 levels in the TG and TSN were upregulated at 2 and 4 weeks. These results suggest that TMJOA-related chronic pain emerged 2 weeks after MIA injection. CGRP- and IB4-positive afferents in both the peripheral and central nervous systems may be involved in MIA-induced TMJOA-related chronic pain in rats.
Collapse
Affiliation(s)
- Henghua Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Liqin Xu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Wen Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Mian Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| |
Collapse
|
6
|
Zarei M, Sabetkasaei M, Moini-Zanjani T. Effect of Paroxetine on the Neuropathic Pain: A Molecular Study. IRANIAN BIOMEDICAL JOURNAL 2020; 24:306-13. [PMID: 32429644 PMCID: PMC7392138 DOI: 10.29252/ibj.24.5.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
Background Neuropathic pain, due to peripheral nerve damage, has influenced millions of people living all over the world. It has been shown that paroxetine can relieve neuropathic pain. Recently, the role of certain proteins like brain-derived neurotrophic factor (BDNF), GABAA receptor, and K+-Cl- cotransporter 2 (KCC2) transporter in the occurrence of neuropathic pain has been documented. In the current study, the expression of these proteins affected by paroxetine was evaluated. Methods Male Wistar rats were allocated into two main groups of pre- and post-injury. Rats in each main group received paroxetine before nerve injury and at day seven after nerve damage till day 14, respectively. The lumbar spinal cord of animals was extracted to assess the expression of target genes and proteins. Results In the preventive study, paroxetine decreased BDNF and increased KCC2 and GABAA gene and protein expression, while in the post-injury paradigm, it decreased BDNF and increased KCC2 genes and protein expression. In this regard, an increase in the protein expression of GABAA was observed. Conclusion It seems that paroxetine with a change in the expression of three significant proteins involved in neuropathic pain could attenuate this type of chronic pain.
Collapse
Affiliation(s)
| | - Masoumeh Sabetkasaei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Piao Y, Gwon DH, Kang DW, Hwang TW, Shin N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, Kim HW, Kim Y, Kim SR, Oh SH, Kim DW. TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain 2018; 11:11. [PMID: 29486776 PMCID: PMC5830083 DOI: 10.1186/s13041-018-0354-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/19/2018] [Indexed: 03/12/2023] Open
Abstract
Neuropathic pain is a complex, chronic pain state characterized by hyperalgesia, allodynia, and spontaneous pain. Accumulating evidence has indicated that the microglial Toll-like receptor 4 (TLR4) and autophagy are implicated in neurodegenerative diseases, but their relationship and role in neuropathic pain remain unclear. In this study, we examined TLR4 and its association with autophagic activity using a chronic constriction injury (CCI)-induced neuropathic pain model in wild-type (WT) and TLR4-knockout (KO) mice. The mice were assigned into four groups: WT-Contralateral (Contra), WT-Ipsilateral (Ipsi), TLR4 KO-Contra, and TLR4 KO-Ipsi. Behavioral and mechanical allodynia tests and biochemical analysis of spinal cord tissue were conducted following CCI to the sciatic nerve. Compared with the Contra group, mechanical allodynia in both the WT- and TLR4 KO-Ipsi groups was significantly increased, and a marked decrease of allodynia was observed in the TLR4 KO-Ipsi group. Although glial cells were upregulated in the WT-Ipsi group, no significant change was observed in the TLR4 KO groups. Moreover, protein expression and immunoreactive cell regulation of autophagy (Beclin 1, p62) were significantly increased in the neurons, but not microglia, of WT-Ipsi group compared with the WT-Contra group. The level of PINK1, a marker for mitophagy was increased in the neurons of WT, but not in TLR4 KO mice. Together, these results show that TLR4-mediated p62 autophagic impairment plays an important role in the occurrence and development of neuropathic pain. And what is more, microglial TLR4-mediated microglial activation might be indirectly coupled to neuronal autophage.
Collapse
Affiliation(s)
- Yibo Piao
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Do Hyeong Gwon
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Dong-Wook Kang
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Tae Woong Hwang
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Nara Shin
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyeok Hee Kwon
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yuhua Yin
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jwa-Jin Kim
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,LES Corporation Inc., Gung-Dong 465-16, Yuseong-Gu, Daejeon, 305-335, Republic of Korea
| | - Jinpyo Hong
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Dong Woon Kim
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
8
|
Atif F, Prunty MC, Turan N, Stein DG, Yousuf S. Progesterone modulates diabetes/hyperglycemia-induced changes in the central nervous system and sciatic nerve. Neuroscience 2017; 350:1-12. [DOI: 10.1016/j.neuroscience.2017.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
|
9
|
Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, Liu W, Wang W, Xia QJ, Shang FF, Luo CZ, Zhou X, Liu S, McDonald J, Liu J, Zuo YX, Liu F, Wang TH. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep 2016; 6:27512. [PMID: 27282805 PMCID: PMC4901320 DOI: 10.1038/srep27512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Patients with tumors that metastasize to bone frequently suffer from debilitating pain, and effective therapies for treating bone cancer are lacking. This study employed a novel strategy in which herpes simplex virus (HSV) carrying a small interfering RNA (siRNA) targeting platelet-derived growth factor (PDGF) was used to alleviate bone cancer pain. HSV carrying PDGF siRNA was established and intrathecally injected into the cavum subarachnoidale of animals suffering from bone cancer pain and animals in the negative group. Sensory function was assessed by measuring thermal and mechanical hyperalgesia. The mechanism by which PDGF regulates pain was also investigated by comparing the differential expression of pPDGFRα/β and phosphorylated ERK and AKT. Thermal and mechanical hyperalgesia developed in the rats with bone cancer pain, and these effects were accompanied by bone destruction in the tibia. Intrathecal injection of PDGF siRNA and morphine reversed thermal and mechanical hyperalgesia in rats with bone cancer pain. In addition, we observed attenuated astrocyte hypertrophy, down-regulated pPDGFRα/β levels, reduced levels of the neurochemical SP, a reduction in CGRP fibers and changes in pERK/ERK and pAKT/AKT ratios. These results demonstrate that PDGF siRNA can effectively treat pain induced by bone cancer by blocking the AKT-ERK signaling pathway.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, PR China
| | - Mu He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ran Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - Ping Dai
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wei Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wei Wang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Fei-Fei Shang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao-Zhi Luo
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Liu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - JohnW. McDonald
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - Jin Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yun-Xia Zuo
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, PR China
| |
Collapse
|
10
|
Robinson CR, Zhang H, Dougherty PM. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 2014; 274:308-17. [PMID: 24905437 DOI: 10.1016/j.neuroscience.2014.05.051] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 12/30/2022]
Abstract
Spinal microglia are widely recognized as activated by and contributing to the generation and maintenance of inflammatory and nerve injury related chronic pain; whereas the role of spinal astrocytes has received much less attention, despite being the first glial cells identified as activated following peripheral nerve injury. Recently it was suggested that microglia do not appear to play a significant role in chemotherapy-induced peripheral neuropathy (CIPN), but in contrast astrocytes appear to have a key role. In spite of the generalizability of astrocyte recruitment across chemotherapy drugs, its correlation to the onset of the behavioral CIPN phenotype has not been determined. The astroglial and microglial markers glial fibrillary acidic protein (GFAP) and OX-42 were imaged here to examine glial reactivity in multiple models of CIPN over time and to contrast this response to that produced in the spinal nerve ligation (SNL) model. Microglia were strongly activated following SNL, but not activated at any of the time points observed following chemotherapy treatments. Astrocytes were activated following both oxaliplatin and bortezomib treatment in a manner that paralleled chemotherapy-evoked behavioral changes. Both the behavioral phenotype and activation of astrocytes were prevented by co-administration of minocycline hydrochloride in both CIPN models, suggesting a common mechanism.
Collapse
Affiliation(s)
- C R Robinson
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, United States
| | - H Zhang
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, United States
| | - P M Dougherty
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, United States.
| |
Collapse
|
11
|
Ge Y, Wu F, Sun X, Xiang Z, Yang L, Huang S, Lu Z, Sun Y, Yu WF. Intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats. PLoS One 2014; 9:e97436. [PMID: 24857932 PMCID: PMC4032255 DOI: 10.1371/journal.pone.0097436] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. METHODOLOGY/PRINCIPAL FINDINGS In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. CONCLUSION/SIGNIFICANCE Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.
Collapse
Affiliation(s)
- Yanhu Ge
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Anesthesiology, 309th Hospital of CPLA, Beijing, China
| | - Feixiang Wu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xuejun Sun
- Department of Diving Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Zhenghua Xiang
- Department of Neurobiology, Second Military Medical University, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shengdong Huang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijie Lu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuming Sun
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Le Coz GM, Fiatte C, Anton F, Hanesch U. Differential neuropathic pain sensitivity and expression of spinal mediators in Lewis and Fischer 344 rats. BMC Neurosci 2014; 15:35. [PMID: 24575861 PMCID: PMC3975939 DOI: 10.1186/1471-2202-15-35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Altered hypothalamo-pituitary-adrenal (HPA) axis activity may be accompanied by a modulation of pain sensitivity. In a model of neuropathic pain (chronic constriction injury, CCI) we investigated the onset and maintenance of mechanical allodynia/hyperalgesia and the expression of biochemical mediators potentially involved in spinal cell modulation in two rat strains displaying either hypo- (Lewis-LEW) or hyper- (Fischer 344-FIS) reactivity of the HPA axis. RESULTS Mechanical pain thresholds and plasmatic corticosterone levels were assessed before and during periods of 4 or 21 days following CCI surgery. At the end of the respective protocols, the mRNA expression of glial cell markers (GFAP and Iba1) and glutamate transporters (EAAT3 and EAAT2) were examined. We observed a correlation between the HPA axis reactivity and the pain behavior but not as commonly described in the literature; LEW rats seemed to be less sensitive than FIS from 4 to 14 days after the CCI surgery when looking at the mechanical allodynia/hyperalgesia. However, the biochemical spinal markers expression we observed is conflicting. CONCLUSION We did not find a specific causal relation between the pain behavior and the glial cell activation or the expression of the glutamate transporters, suggesting that the interaction between the HPA axis and the spinal activation pattern is more complex in a context of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | - Ulrike Hanesch
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, 162a, avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg.
| |
Collapse
|
13
|
Khan N, Smith MT. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 2014; 22:1-22. [PMID: 24234347 PMCID: PMC3933737 DOI: 10.1007/s10787-013-0195-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/05/2023]
Abstract
In patients with multiple sclerosis (MS), pain is a frequent and disabling symptom. The prevalence is in the range 29-86 % depending upon the assessment protocols utilised and the definition of pain applied. Neuropathic pain that develops secondary to demyelination, neuroinflammation and axonal damage in the central nervous system is the most distressing and difficult type of pain to treat. Although dysaesthetic extremity pain, L'hermitte's sign and trigeminal neuralgia are the most common neuropathic pain conditions reported by patients with MS, research directed at gaining insight into the complex mechanisms underpinning the pathobiology of MS-associated neuropathic pain is in its relative infancy. By contrast, there is a wealth of knowledge on the neurobiology of neuropathic pain induced by peripheral nerve injury. To date, the majority of research in the MS field has used rodent models of experimental autoimmune encephalomyelitis (EAE) as these models have many clinical and neuropathological features in common with those observed in patients with MS. However, it is only relatively recently that EAE-rodents have been utilised to investigate the mechanisms contributing to the development and maintenance of MS-associated central neuropathic pain. Importantly, EAE-rodent models exhibit pro-nociceptive behaviours predominantly in the lower extremities (tail and hindlimbs) as seen clinically in patients with MS-neuropathic pain. Herein, we review research to date on the pathophysiological mechanisms underpinning MS-associated neuropathic pain as well as the pharmacological management of this condition. We also identify knowledge gaps to guide future research in this important field.
Collapse
Affiliation(s)
- Nemat Khan
- Centre for Integrated Preclinical Drug Development and School of Pharmacy, The University of Queensland, Level 3, Steele Building, St. Lucia Campus, Brisbane, QLD 4072 Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development and School of Pharmacy, The University of Queensland, Level 3, Steele Building, St. Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
14
|
Abstract
Inflammation is the process by which an organism responds to tissue injury involving both immune cell recruitment and mediator release. Diverse causes of neuropathic pain are associated with excessive inflammation in both the peripheral and central nervous system which may contribute to the initiation and maintenance of persistent pain. Chemical mediators, such as cytokines, chemokines, and lipid mediators, released during an inflammatory response have the undesired effect of sensitizing and stimulating nociceptors, their central synaptic targets or both. These changes can promote long-term maladaptive plasticity resulting in persistent neuropathic pain. This review aims to provide an overview of inflammatory mechanisms at differing levels of the sensory neuroaxis with a focus on neuropathic pain. We will compare and contrast neuropathic pain states such as traumatic nerve injury which is associated with a vigorous inflammatory response and chemotherapy induced pain in which the inflammatory response is much more modest. Targeting excessive inflammation in neuropathic pain provides potential therapeutic opportunities and we will discuss some of the opportunities but also the clinical challenges in such an approach.
Collapse
Affiliation(s)
- A Ellis
- King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
15
|
Pellkofer HL, Havla J, Hauer D, Schelling G, Azad SC, Kuempfel T, Magerl W, Huge V. The major brain endocannabinoid 2-AG controls neuropathic pain and mechanical hyperalgesia in patients with neuromyelitis optica. PLoS One 2013; 8:e71500. [PMID: 23951176 PMCID: PMC3739748 DOI: 10.1371/journal.pone.0071500] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Recurrent myelitis is one of the predominant characteristics in patients with neuromyelitis optica (NMO). While paresis, visual loss, sensory deficits, and bladder dysfunction are well known symptoms in NMO patients, pain has been recognized only recently as another key symptom of the disease. Although spinal cord inflammation is a defining aspect of neuromyelitis, there is an almost complete lack of data on altered somatosensory function, including pain. Therefore, eleven consecutive patients with NMO were investigated regarding the presence and clinical characteristics of pain. All patients were examined clinically as well as by Quantitative Sensory Testing (QST) following the protocol of the German Research Network on Neuropathic Pain (DFNS). Additionally, plasma endocannabinoid levels and signs of chronic stress and depression were determined. Almost all patients (10/11) suffered from NMO-associated neuropathic pain for the last three months, and 8 out of 11 patients indicated relevant pain at the time of examination. Symptoms of neuropathic pain were reported in the vast majority of patients with NMO. Psychological testing revealed signs of marked depression. Compared to age and gender-matched healthy controls, QST revealed pronounced mechanical and thermal sensory loss, strongly correlated to ongoing pain suggesting the presence of deafferentation-induced neuropathic pain. Thermal hyperalgesia correlated to MRI-verified signs of spinal cord lesion. Heat hyperalgesia was highly correlated to the time since last relapse of NMO. Patients with NMO exhibited significant mechanical and thermal dysesthesia, namely dynamic mechanical allodynia and paradoxical heat sensation. Moreover, they presented frequently with either abnormal mechanical hypoalgesia or hyperalgesia, which depended significantly on plasma levels of the endogenous cannabinoid 2-arachidonoylglycerole (2-AG). These data emphasize the high prevalence of neuropathic pain and hyperalgesia in patients with NMO. The degree of mechanical hyperalgesia reflecting central sensitization of nociceptive pathways seems to be controlled by the major brain endocannabinoid 2-AG.
Collapse
Affiliation(s)
- Hannah L. Pellkofer
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
- Department of Psychiatry and Psychotherapy, Georg August University, Göttingen, Germany
| | - Joachim Havla
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Daniela Hauer
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
| | - Shahnaz C. Azad
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
| | - Tania Kuempfel
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
16
|
Wahlert A, Funkelstein L, Fitzsimmons B, Yaksh T, Hook V. Spinal astrocytes produce and secrete dynorphin neuropeptides. Neuropeptides 2013; 47:109-15. [PMID: 23290538 PMCID: PMC3606903 DOI: 10.1016/j.npep.2012.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/13/2012] [Accepted: 10/02/2012] [Indexed: 01/02/2023]
Abstract
Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.
Collapse
Affiliation(s)
- Andrew Wahlert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - Lydiane Funkelstein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | | | - Tony Yaksh
- Dept. of Anesthesiology, University of California, San Diego, La Jolla, CA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
- Depts. of Neurosciences, Pharmacology, and Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
17
|
Currie GL, Delaney A, Bennett MI, Dickenson AH, Egan KJ, Vesterinen HM, Sena ES, Macleod MR, Colvin LA, Fallon MT. Animal models of bone cancer pain: systematic review and meta-analyses. Pain 2013; 154:917-26. [PMID: 23582155 DOI: 10.1016/j.pain.2013.02.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/29/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pain can significantly decrease the quality of life of patients with advanced cancer. Current treatment strategies often provide inadequate analgesia and unacceptable side effects. Animal models of bone cancer pain are used in the development of novel pharmacological approaches. Here we conducted a systematic review and meta-analysis of publications describing in vivo modelling of bone cancer pain in which behavioural, general health, macroscopic, histological, biochemical, or electrophysiological outcomes were reported and compared to appropriate controls. In all, 150 publications met our inclusion criteria, describing 38 different models of bone cancer pain. Reported methodological quality was low; only 31% of publications reported blinded assessment of outcome, and 11% reported random allocation to group. No publication reported a sample size calculation. Studies that reported measures to reduce bias reported smaller differences in behavioural outcomes between tumour-bearing and control animals, and studies that presented a statement regarding a conflict of interest reported larger differences in behavioural outcomes. Larger differences in behavioural outcomes were reported in female animals, when cancer cells were injected into either the tibia or femur, and when MatLyLu prostate or Lewis Lung cancer cells were used. Mechanical-evoked pain behaviours were most commonly reported; however, the largest difference was observed in spontaneous pain behaviours. In the spinal cord astrocyte activation and increased levels of Substance P receptor internalisation, c-Fos, dynorphin, tumor necrosis factor-α and interleukin-1β have been reported in bone cancer pain models, suggesting several potential therapeutic targets. However, the translational impact of animal models on clinical pain research could be enhanced by improving methodological quality.
Collapse
Affiliation(s)
- Gillian L Currie
- Department of Clinical Neurosciences, Chancellors Building, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Saghaei E, Abbaszadeh F, Naseri K, Ghorbanpoor S, Afhami M, Haeri A, Rahimi F, Jorjani M. Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats. Neurosci Res 2013; 75:316-23. [PMID: 23419864 DOI: 10.1016/j.neures.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022]
Abstract
In our previous study we showed that central pain syndrome (CPS) induced by electrolytic injury caused in the unilateral spinothalamic tract (STT) is a concomitant of glial alteration at the site of injury. Here, we investigated the activity of glial cells in thalamic ventral posterolateral nuclei (VPL) and their contribution to CPS. We also examined whether post-injury administration of a pharmacological dose of estradiol can attenuate CPS and associated molecular changes. Based on the results,in the ipsilateral VPL the microglial phenotype switched o hyperactive mode and Iba1 expression was increased significantly on days 21 and 28 post-injury. The same feature was observed in contralateral VPL on day 28 (P<.05). These changes were strongly correlated with the onset of CPS (r(2)=0.670). STT injury did not induce significant astroglial response in both ipsilateral and contralateral VPL. Estradiol attenuated bilateral mechanical hypersensitivity 14 days after STT lesion (P<.05). Estradiol also suppressed microglial activation in the VPL. Taken together, these findings indicate that selective STT lesion induces bilateral microglia activation in VPL which might contribute to mechanical hypersensitivity. Furthermore, a pharmacological dose of estradiol reduces central pain possibly via suppression of glial activity in VPL region.
Collapse
Affiliation(s)
- Elham Saghaei
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JMC, Jarvis MF, Ding M, Heegaard AM. Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice. Eur J Pharmacol 2012; 688:27-34. [PMID: 22634164 DOI: 10.1016/j.ejphar.2012.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 04/24/2012] [Accepted: 05/15/2012] [Indexed: 12/16/2022]
Abstract
The purinergic P2X3 and P2X2/3 receptors are in the peripheral nervous system almost exclusively confined to afferent sensory neurons, where they are found both at peripheral and central synapses. The P2X3 receptor is implicated in both neuropathic and inflammatory pain. However, the role of the P2X3 receptor in chronic cancer-induced bone pain is less known. Here we investigated the effect of systemic acute and chronic administration of the selective P2X3, P2X2/3 receptor antagonist (5-[[[(3-Phenoxyphenyl)methyl][(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl]-1,2,4-benzenetricarboxylic acid sodium salt hydrate) (A-317491) in a murine model of cancer-induced bone pain. Chronic administration of A-317491 (30 μmol/kgs.c., b.i.d.) resulted in a transient attenuation of pain related behaviours in the early stage of the bone cancer model, but had no effect in the late and more progressed stage of bone cancer. Also, acute administration of A-317491 (100 μmol/kgs.c.) had no effect in the progressed stage of the bone cancer pain model. Thus, systemically administered A-317491 did not demonstrate a robust effect in the present mouse model of cancer-induced bone pain.
Collapse
Affiliation(s)
- Rikke Rie Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
21
|
|
22
|
Hayashi K, Hashimoto M, Koda M, Naito AT, Murata A, Okawa A, Takahashi K, Yamazaki M. Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model. J Neurosurg Spine 2011; 15:582-93. [PMID: 21854127 DOI: 10.3171/2011.7.spine10775] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT Clinical use of autologous induced pluripotent stem cells (iPSCs) could circumvent immune rejection and bioethical issues associated with embryonic stem cells. Spinal cord injury (SCI) is a devastating trauma with long-lasting disability, and current therapeutic approaches are not satisfactory. In the present study, the authors used the neural stem sphere (NSS) method to differentiate iPSCs into astrocytes, which were evaluated after their transplantation into injured rat spinal cords. METHODS Induced pluripotent stem cell-derived astrocytes were differentiated using the NSS method and injected 3 and 7 days after spinal contusion-based SCI. Control rats were injected with DMEM in the same manner. Locomotor recovery was assessed for 8 weeks, and sensory and locomotion tests were evaluated at 8 weeks. Immunohistological parameters were then assessed. RESULTS Transplant recipients lived for 8 weeks without tumor formation. Transplanted cells stretched their processes along the longitudinal axis, but they did not merge with the processes of host GFAP-positive astrocytes. Locomotion was assessed in 3 ways, but none of the tests detected statistically significant improvements compared with DMEM-treated control rats after 8 weeks. Rather, iPSC transplantation caused even greater sensitivity to mechanical stimulus than DMEM treatment. CONCLUSIONS Astrocytes can be generated by serum treatment of NSS-generated cells derived from iPSCs. However, transplantation of such cells is poorly suited for repairing SCI.
Collapse
Affiliation(s)
- Koichi Hayashi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhuo M, Wu G, Wu LJ. Neuronal and microglial mechanisms of neuropathic pain. Mol Brain 2011; 4:31. [PMID: 21801430 PMCID: PMC3163530 DOI: 10.1186/1756-6606-4-31] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/30/2011] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain is generally defined as a chronic pain state resulting from peripheral and/or central nerve injury. Effective treatment for neuropathic pain is still lacking, due in part to poor understanding of pathological mechanisms at the molecular level. Neuronal mechanisms of neuropathic pain, especially synaptic plasticity, are the major focus of many investigators. N-methyl-D-aspartate (NMDA) receptor dependent synaptic plasticity at the spinal and cortical levels is believed to contribute to enhanced sensory responses after injury. Glial cells, including astrocytes and microglia, have recently been implicated in neuropathic pain. These glial cells form close interactions with neurons and thus may modulate nociceptive transmission under pathological conditions. In this review, we present recent progress in the study of neuronal and microglial mechanisms underlying neuropathic pain. We propose that activity-dependent neuronal plasticity is a key target for treatment in neuropathic pain.
Collapse
Affiliation(s)
- Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | | | | |
Collapse
|
24
|
LeBlanc BW, Zerah ML, Kadasi LM, Chai N, Saab CY. Minocycline injection in the ventral posterolateral thalamus reverses microglial reactivity and thermal hyperalgesia secondary to sciatic neuropathy. Neurosci Lett 2011; 498:138-42. [DOI: 10.1016/j.neulet.2011.04.077] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 12/14/2022]
|
25
|
Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H, Koyanagi S, Ohdo S, Ji RR, Salter MW, Inoue K. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. ACTA ACUST UNITED AC 2011; 134:1127-39. [PMID: 21371995 DOI: 10.1093/brain/awr025] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuropathic pain, a debilitating pain condition, is a common consequence of damage to the nervous system. Optimal treatment of neuropathic pain is a major clinical challenge because the underlying mechanisms remain unclear and currently available treatments are frequently ineffective. Emerging lines of evidence indicate that peripheral nerve injury converts resting spinal cord glia into reactive cells that are required for the development and maintenance of neuropathic pain. However, the mechanisms underlying reactive astrogliosis after nerve injury are largely unknown. In the present study, we investigated cell proliferation, a critical process in reactive astrogliosis, and determined the temporally restricted proliferation of dorsal horn astrocytes in rats with spinal nerve injury, a well-known model of neuropathic pain. We found that nerve injury-induced astrocyte proliferation requires the Janus kinase-signal transducers and activators of transcription 3 signalling pathway. Nerve injury induced a marked signal transducers and activators of transcription 3 nuclear translocation, a primary index of signal transducers and activators of transcription 3 activation, in dorsal horn astrocytes. Intrathecally administering inhibitors of Janus kinase-signal transducers and activators of transcription 3 signalling to rats with nerve injury reduced the number of proliferating dorsal horn astrocytes and produced a recovery from established tactile allodynia, a cardinal symptom of neuropathic pain that is characterized by pain hypersensitivity evoked by innocuous stimuli. Moreover, recovery from tactile allodynia was also produced by direct suppression of dividing astrocytes by intrathecal administration of the cell cycle inhibitor flavopiridol to nerve-injured rats. Together, these results imply that the Janus kinase-signal transducers and activators of transcription 3 signalling pathway are critical transducers of astrocyte proliferation and maintenance of tactile allodynia and may be a therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 2010; 7:482-93. [PMID: 20880510 PMCID: PMC2950097 DOI: 10.1016/j.nurt.2010.05.016] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/20/2022] Open
Abstract
Clinical management of chronic pain after nerve injury (neuropathic pain) and tumor invasion (cancer pain) is a real challenge due to our limited understanding of the cellular mechanisms that initiate and maintain chronic pain. It has been increasingly recognized that glial cells, such as microglia and astrocytes in the CNS play an important role in the development and maintenance of chronic pain. Notably, astrocytes make very close contacts with synapses and astrocyte reaction after nerve injury, arthritis, and tumor growth is more persistent than microglial reaction, and displays a better correlation with chronic pain behaviors. Accumulating evidence indicates that activated astrocytes can release pro-inflammatory cytokines (e.g., interleukin [IL]-1β) and chemokines (e.g., monocyte chemoattractant protein-1 [MCP-1]/also called CCL2) in the spinal cord to enhance and prolong persistent pain states. IL-1β can powerfully modulate synaptic transmission in the spinal cord by enhancing excitatory synaptic transmission and suppressing inhibitory synaptic transmission. IL-1β activation (cleavage) in the spinal cord after nerve injury requires the matrix metalloprotease-2. In particular, nerve injury and inflammation activate the c-Jun N-terminal kinase in spinal astrocytes, leading to a substantial increase in the expression and release of MCP-1. The MCP-1 increases pain sensitivity via direct activation of NMDA receptors in dorsal horn neurons. Pharmacological inhibition of the IL-1β, c-Jun N-terminal kinase, MCP-1, or matrix metalloprotease-2 signaling via spinal administration has been shown to attenuate inflammatory, neuropathic, or cancer pain. Therefore, interventions in specific signaling pathways in astrocytes may offer new approaches for the management of chronic pain.
Collapse
Affiliation(s)
- Yong-Jing Gao
- grid.62560.370000000403788294Department of Anesthesiology, Sensory Plasticity Laboratory, Pain Research Center, Brigham and Women’s Hospital and Harvard Medical School, 02115 Boston, Massachusetts
| | - Ru-Rong Ji
- grid.62560.370000000403788294Department of Anesthesiology, Sensory Plasticity Laboratory, Pain Research Center, Brigham and Women’s Hospital and Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
27
|
Gao YJ, Ji RR. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia. J Neurochem 2010; 115:505-14. [PMID: 20722971 DOI: 10.1111/j.1471-4159.2010.06946.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of extracellular signal-regulated kinase (ERK) in spinal cord neurons could serve as a marker for sensitization of dorsal horn neurons in persistent pain. ERK is normally activated by high-threshold noxious stimuli. We investigated how low-threshold mechanical stimuli could activate ERK after complete Freund's adjuvant (CFA)-induced inflammation. Unilateral injection of CFA induced ipsilateral heat hyperalgesia and bilateral mechanical allodynia. CFA-induced ERK activation in ipsilateral dorsal horn neurons declined after 2 days. Interestingly, low-threshold mechanical stimulation given by light touch either on the inflamed paw or the contralateral non-inflamed paw dramatically increased ERK phosphorylation in the dorsal horn ipsilateral to touch stimulation. Notably, light touch induced ERK phosphorylation mainly in superficial neurons in laminae I-IIo. Intrathecal administration of the astroglial toxin L-α-aminoadipate on post-CFA day 2 reversed CFA-induced bilateral mechanical allodynia but not heat hyperalgesia. Furthermore, L-α-aminoadipate, the glial inhibitor fluorocitrate, and a peptide inhibitor of c-Jun N-terminal Kinase all reduced light touch-evoked ERK activation ipsilateral to touch. Collectively, these data suggest that (i) ERK can be activated in superficial dorsal horn neurons by low-threshold mechanical stimulation under pathological condition and (ii) ERK activation by light touch is associated with mechanical allodynia and requires an astrocyte network.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
28
|
Whitehead KJ, Smith CGS, Delaney SA, Curnow SJ, Salmon M, Hughes JP, Chessell IP. Dynamic regulation of spinal pro-inflammatory cytokine release in the rat in vivo following peripheral nerve injury. Brain Behav Immun 2010; 24:569-76. [PMID: 20035858 DOI: 10.1016/j.bbi.2009.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/02/2023] Open
Abstract
Spinal release of cytokines may play a critical role in the maladapted nociceptive signaling underlying chronic pain states. In order to investigate this biology, we have developed a novel 'high flux' intrathecal microdialysis approach in combination with multiplex bead-based immunoassay technology to concurrently monitor the spinal release of interleukin (IL)-1beta, IL-6 and tumour necrosis factor (TNF)alpha in rats with unilateral sciatic nerve chronic constriction injury (CCI). Intrathecal microdialysis was performed under isoflurane/N(2)O anaesthesia in rats with confirmed mechanical hypersensitivity. In a first study, C-fiber strength electrical stimulation of the operated nerve in neuropathic rats was found to evoke a dramatic increase in IL-1beta efflux ( approximately 15-fold) that was significantly greater than that observed in the sham-operated group. Spinal IL-6 efflux was also responsive to primary afferent stimulation, whereas TNFalpha was not. In a second study, treatment with the glial inhibitor propentofylline for 7days normalized CCI-induced mechanical hypersensitivity. In the same animals, this treatment also significantly reduced intrathecal IL-1beta, IL-6 and TNFalpha and prevented afferent stimulation-evoked cytokine release of both IL-1beta and IL-6. These results provide support for glia as the source of the majority of intrathecal IL-1beta, IL-6 and TNFalpha that accompanies mechanical hypersensitivity in the CCI rat. Moreover, our studies demonstrate the ability of a neurone-glia signaling mechanism to dynamically modulate this release and support a role of spinal IL-1beta in the phasic transmission of abnormal pain signals.
Collapse
Affiliation(s)
- K J Whitehead
- Pain Signalling Group, Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|