1
|
Lin Y, Wang J, Shi F, Yang L, Wu S, Qiao A, Ye S. Molecular Mechanisms of Methamphetamine-Induced Addiction via TAAR1 Activation. J Med Chem 2024; 67:18593-18605. [PMID: 39358311 PMCID: PMC11513891 DOI: 10.1021/acs.jmedchem.4c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1), a member of the trace amine receptor family, recognizes various trace amines in the brain, including endogenous β-phenylethylamine (PEA) and methamphetamine (METH). TAAR1 is a novel target for several neurological disorders, including schizophrenia, depression, and substance abuse. Herein, we report the structure of the human TAAR1-Gs protein complex bound to METH. Using functional studies, we reveal the molecular basis of METH recognition by TAAR1, and potential mechanisms underlying the selectivity of TAAR1 for different ligands. Molecular dynamics simulations further elucidated possible mechanisms for the binding of chiral amphetamine (AMPH)-like psychoactive drugs to TAAR1. Additionally, we discovered a hydrophobic core on the transmembrane helices (TM), TM5 and TM6, explaining the unique mechanism of TAAR1 activation. These findings reveal the ligand recognition pattern and activation mechanism of TAAR1, which has important implications for the development of next-generation treatments for substance abuse and various neurological disorders.
Collapse
Affiliation(s)
- Yun Lin
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiening Wang
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Fan Shi
- Department
of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Yang
- Department
of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shan Wu
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Anna Qiao
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Sheng Ye
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
2
|
Peng L, Zhang J, Feng J, Ge J, Zou Y, Chen Y, Xu L, Zeng Y, Li JX, Liu J. Activation of trace amine-associated receptor 1 ameliorates PTSD-like symptoms. Biochem Pharmacol 2024; 228:116236. [PMID: 38670437 DOI: 10.1016/j.bcp.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) negatively modulates monoaminergic transmission in the mammalian brain and participates in many psychiatric disorders. Preclinical evidence indicate that selective TAAR1 agonists have anxiolytic effects and anti-stress properties. Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by experiencing or witnessing traumatic stressors. However, it remains unknown whether TAAR1 is involved in PTSD. Here, we investigated the role of TAAR1 in two PTSD animal models, including single prolonged stress (SPS)-induced impairment of fear extinction and stress-enhanced fear learning (SEFL). SPS decreased TAAR1 mRNA levels in the prefrontal cortex and ventral tegmental area. Acute treatment of the TAAR1 partial agonist RO5263397 attenuated SPS-induced anxiety-like behavior evaluated by the elevated-plus maze test. Compared to non-stressed animals, rats that experienced SPS showed higher freezing levels in the extinction retention test, indicating an impairment of fear extinction retention after SPS exposure. Acute and chronic treatment of RO5263397 ameliorated SPS-induced impairment of fear extinction retention. In the SEFL model, compared to the No-shock group, rats that experienced severe foot shock before fear conditioning showed higher freezing levels during the tests, indicating enhanced fear learning after stress exposure. Chronic treatment of RO5263397 partially attenuated the SEFL. Moreover, chronic treatment with the selective TAAR1 full agonist RO5166017 completely prevented the SEFL. Taken together, these data showed that pharmacological activation of TAAR1 could ameliorate PTSD-like symptoms. The present study thus provides the first evidence that TAAR1 might participate in the development of PTSD, and TAAR1 agonists could be potential pharmacological treatments for this disorder.
Collapse
Affiliation(s)
- Linlin Peng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Zhang
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jialu Feng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Ge
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yu Zou
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yun Chen
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Lang Xu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yan Zeng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| |
Collapse
|
3
|
Wang L, Clark EA, Hanratty L, Koblan KS, Foley A, Dedic N, Bristow LJ. TAAR1 and 5-HT 1B receptor agonists attenuate autism-like irritability and aggression in rats prenatally exposed to valproic acid. Pharmacol Biochem Behav 2024; 245:173862. [PMID: 39197535 DOI: 10.1016/j.pbb.2024.173862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Despite the rising prevalence of autism spectrum disorder (ASD), there remains a significant unmet need for pharmacotherapies addressing its core and associative symptoms. While some atypical antipsychotics have been approved for managing associated irritability and aggression, their use is constrained by substantial side effects. This study aimed firstly to develop behavioral measures to explore frustration, irritability and aggression phenotypes in the rat prenatal valproic acid (VPA) model of ASD. Additionally, we investigated the potential of two novel mechanisms, 5-HT1B and TAAR1 agonism, to alleviate these behaviors. Male offspring exposed to prenatal VPA were trained to achieve stable performance on a cued operant task, followed by pharmacological assessment in an operant frustration test, bottle brush test and resident intruder test. VPA exposed rats demonstrated behaviors indicative of frustration and irritability, as well as increased aggression compared to controls. The irritability-like behavior and aggression were further exacerbated in animals previously experiencing a frustrative event during the operant test. Single administration of the 5-HT1B agonist CP-94253 or TAAR1 agonist RO5263397 attenuated the frustration-like behavior compared to vehicle. Additionally, both agonists reduced irritability-like behavior under both normal and frustrative conditions. While CP-94253 reduced aggression in the resident intruder test under both conditions, RO5263397 only produced effects in rats that previously experienced a frustrative event. Our study describes previously uncharacterized phenotypes of frustration, irritability, and aggression in the rat prenatal VPA model of ASD. Administration of selective TAAR1 or 5-HT1B receptor agonists alleviated these deficits, warranting further exploration of both targets in ASD treatment.
Collapse
Affiliation(s)
- Lien Wang
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | - Erin A Clark
- Sumitomo Pharma America, Inc., Marlborough, MA, USA
| | | | | | | | - Nina Dedic
- Sumitomo Pharma America, Inc., Marlborough, MA, USA.
| | | |
Collapse
|
4
|
Wang X, Chen Y, Dong J, Ge J, Liu X, Liu J. Neurobiology of Stress-Induced Nicotine Relapse. Int J Mol Sci 2024; 25:1482. [PMID: 38338760 PMCID: PMC10855331 DOI: 10.3390/ijms25031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3β4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China (Y.C.); (J.D.)
| |
Collapse
|
5
|
Liu J, Wu R, Li JX. TAAR1 as an emerging target for the treatment of psychiatric disorders. Pharmacol Ther 2024; 253:108580. [PMID: 38142862 DOI: 10.1016/j.pharmthera.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trace amines, a group of amines expressed at the nanomolar level in the mammalian brain, can modulate monoamine transmission. The discovery of and the functional research on the trace amine-associated receptors (TAARs), especially the most well-characterized TAAR1, have largely facilitated our understanding of the function of the trace amine system in the brain. TAAR1 is expressed in the mammalian brain at a low level and widely distributed in the monoaminergic system, including the ventral tegmental area and substantial nigra, where the dopamine neurons reside in the mammalian brain. Growing in vitro and in vivo evidence has demonstrated that TAAR1 could negatively modulate monoamine transmission and play a crucial role in many psychiatric disorders, including schizophrenia, substance use disorders, sleep disorders, depression, and anxiety. Notably, in the last two decades, many studies have repeatedly confirmed the pharmacological effects of the selective TAAR1 ligands in various preclinical models of psychiatric disorders. Recent clinical trials of the dual TAAR1 and serotonin receptor agonist ulotaront also revealed a potential efficacy for treating schizophrenia. Here, we review the current understanding of the TAAR1 system and the recent advances in the elucidation of behavioral and physiological properties of TAAR1 agonists evaluated both in preclinical animal models and clinical trials. We also discuss the potential TAAR1-dependent signaling pathways and the cellular mechanisms underlying the inhibitory effects of TAAR1 activation on drug addiction. We conclude that TAAR1 is an emerging target for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Jianfeng Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; School of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Ruyan Wu
- Department of in vivo pharmacology, Discovery Biology, WuXi Biology, WuXi AppTec Co., Ltd., Shanghai 200120, PR China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Recław R, Lachowicz M, Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Kowalski MT, Kudliński B, Grzywacz A. Analysis of the Methylation Level of the DAT1 Dopamine Transporter Gene in Patients Addicted to Stimulants, Taking into Account an Analysis of Personality Traits. Int J Mol Sci 2023; 25:532. [PMID: 38203701 PMCID: PMC10779366 DOI: 10.3390/ijms25010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Drug addiction is a chronic biochemical drug use disorder that affects the human brain and behavior and leads to the uncontrolled use of legal or illicit drugs. It has been shown that three factors are involved in the development of addiction: genetic factors, a diverse environment, and the effect of medication on gene expression. The comprehensive approach and holistic analysis of the problem are due to the multigenic and multifactorial nature of addiction. Dopamine, one of the major neurotransmitters in the brain, is believed to be the "culprit" that leads to a drug abuse-induced "high". That is why, in our research, we focused mainly on the genes related to dopaminergic reuptake. In the present study, we chose methylation of the DAT1 dopamine transporter gene based on molecular reasons related to the dopaminergic theory of addiction. This study included two groups: 226 stimulant-dependent and 290 non-stimulant-dependent subjects. The analysis consisted of a case-control comparison of people addicted to psychostimulants compared to a control group of healthy and non-addicted people. There were differences in the levels of statistical significance between the groups. Our research shows lower methylation of islands 1, 9, and 14 in addicted people and greater methylation of islands 32 and 33. The difference in individual CpG methylation islands of the gene under study provides valuable information about the DNA methylation process in patients addicted to psychostimulants. Pearson's linear correlation analysis in stimulant dependence showed a negative correlation between total methylation island levels and the NEO-FFI Neuroticism scale. In subjects with neuroticism, the methylation level was statistically significantly lower. Pearson's linear correlation analysis of stimulant-dependent subjects showed a positive correlation between total methylation island levels and the NEO-FFI Openness scale and the NEO-FFI Conscientiousness scale.
Collapse
Affiliation(s)
- Remigiusz Recław
- Foundation Strong in the Spirit, 60 Sienkiewicza St., 90-058 Łodz, Poland;
| | - Milena Lachowicz
- Department of Psychology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1 St., 80-336 Gdansk, Poland;
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland; (K.C.); (J.C.)
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Michał Tomasz Kowalski
- Clinical Department of Cardiology, Nowa Sól Multidisciplinary Hospital, 67-100 Nowa Sol, Poland;
| | - Bartosz Kudliński
- Department of Emergency Medicine, Anesthesiology and Intensive Care in K. Marcinkowski University Hospital, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Gora, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| |
Collapse
|
7
|
Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, Huang S, Yuan Q, Zhang X, Wang L, Jiang K, Chen H, Li Z, Liu W, Wang S, Xu HE, Xu F. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature 2023; 624:663-671. [PMID: 37935377 DOI: 10.1038/s41586-023-06775-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous β-phenylethylamine (β-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and β-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.
Collapse
Affiliation(s)
- Heng Liu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - You Zheng
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijie Huang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kexin Jiang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Zhen Li
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China.
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Fei Xu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
8
|
Sayson LV, Lee HJ, Ortiz DM, Kim M, Custodio RJP, Lee CH, Lee YS, Cheong JH, Kim HJ. The differential vulnerabilities of Per2 knockout mice to the addictive properties of methamphetamine and cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110782. [PMID: 37141987 DOI: 10.1016/j.pnpbp.2023.110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
With the pervasive occurrence of substance abuse worldwide, unraveling the neuropharmacology of drugs of abuse, such as psychostimulants, is undeniably essential. Mice lacking Period 2 (Per2), a gene associated with the biological time-regulating system or circadian rhythm, have been proposed as a potential animal model for drug abuse vulnerability, demonstrating a greater preference for methamphetamine (METH) reward than wild-type (WT) mice. However, the responses of Per2 knockout (KO) mice to the reinforcing effects of METH or other psychostimulants are yet to be established. In this study, the responses of WT and Per2 KO mice to various psychostimulants via intravenous self-administration were determined, along with their behaviors in METH- or cocaine (COC)-induced conditioned place preference and spontaneous locomotion in the open-field test. Per2 KO mice exhibited greater addiction-like responses to METH and 5-EAPB (1-(1-benzofuran-5-yl)-N-ethylpropan-2-amine), but their responses to COC and dimethocaine were comparable to WT mice, indicating a divergent influence of Per2 deficiency on abuse susceptibility to specific psychostimulants. To potentially define the underlying mechanism for this phenotype, 19 differentially expressed genes were identified, through RNA sequencing, which might respond specifically to repeated METH, but not COC, administration in the mouse striatum and were narrowed down to those previously associated with immediate early genes or synaptic plasticity. The correlation between locomotor activity and mRNA expression levels revealed a moderate correlation between METH-induced behavior and Arc or Junb expression in Per2 KO mice only, suggesting their essential role that may lead to the higher vulnerability of Per2 KO mice to METH, but not COC. These findings indicate a potentially unique effect of Per2 expression level on the involvement of Arc and Junb in determining specific vulnerabilities to drugs, and possibly including abuse potential.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors - IfADo, Ardeystr. 67, 44139 Dortmund, Germany
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.
| |
Collapse
|
9
|
Natural Sympathomimetic Drugs: From Pharmacology to Toxicology. Biomolecules 2022; 12:biom12121793. [PMID: 36551221 PMCID: PMC9775352 DOI: 10.3390/biom12121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Sympathomimetic agents are a group of chemical compounds that are able to activate the sympathetic nervous system either directly via adrenergic receptors or indirectly by increasing endogenous catecholamine levels or mimicking their intracellular signaling pathways. Compounds from this group, both used therapeutically or abused, comprise endogenous catecholamines (such as adrenaline and noradrenaline), synthetic amines (e.g., isoproterenol and dobutamine), trace amines (e.g., tyramine, tryptamine, histamine and octopamine), illicit drugs (e.g., ephedrine, cathinone, and cocaine), or even caffeine and synephrine. In addition to the effects triggered by stimulation of the sympathetic system, the discovery of trace amine associated receptors (TAARs) in humans brought new insights about their sympathomimetic pharmacology and toxicology. Although synthetic sympathomimetic agents are mostly seen as toxic, natural sympathomimetic agents are considered more complacently in the terms of safety in the vision of the lay public. Here, we aim to discuss the pharmacological and mainly toxicological aspects related to sympathomimetic natural agents, in particular of trace amines, compounds derived from plants like ephedra and khat, and finally cocaine. The main purpose of this review is to give a scientific and updated view of those agents and serve as a reminder on the safety issues of natural sympathomimetic agents most used in the community.
Collapse
|
10
|
Fan FS. Residues of ractopamine, a livestock feed additive, in meat might alleviate misuse of cocaine, nicotine, methamphetamine, and morphine. Nutr Health 2022; 29:171-174. [PMID: 36266952 DOI: 10.1177/02601060221134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Substance misuse brings tremendous harm to global health. Strategies for the treatment and prevention of drug addiction are in urgent need. Aim: Trace amine-associated receptor 1 (TAAR1) widely distributed in the central nervous system has been identified as a hopeful target in the management of certain substance abuse. Discovery of food ingredients that act on TAAR1 might help health care providers develop chemoprevention for substance misuse disorders. Methods: Animal experiments clearly demonstrated the capability of TAAR1 agonists in attenuating addictive behavior regarding cocaine, nicotine, methamphetamine, and morphine. Ractopamine, a livestock feed additive used in the United States for over 20 years, has proven to be a full TAAR1 agonist. Literature review and internet web database survey were performed to see if ractopamine residues in meat could affect substance addiction behavior. Results: Integrating all available epidemiologic studies revealed that the prevalence of cocaine, nicotine, methamphetamine, and opioid misuse showed steadily downward or stable trends coincidently during the same time period of ractopamine use in the United States. Conclusion: A hypothesis is thus raised here that ractopamine residues in meat might have contributed secretly to the smoothened prevalence curves of cocaine, nicotine, methamphetamine, and opioids addiction.
Collapse
Affiliation(s)
- Frank S Fan
- Department of Medicine, Ministry of Health and Welfare Taitung Hospital, Taitung County, Taiwan
| |
Collapse
|
11
|
Krasavin M, Peshkov AA, Lukin A, Komarova K, Vinogradova L, Smirnova D, Kanov EV, Kuvarzin SR, Murtazina RZ, Efimova EV, Gureev M, Onokhin K, Zakharov K, Gainetdinov RR. Discovery and In Vivo Efficacy of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 4-(2-Aminoethyl)- N-(3,5-dimethylphenyl)piperidine-1-carboxamide Hydrochloride (AP163) for the Treatment of Psychotic Disorders. Int J Mol Sci 2022; 23:ijms231911579. [PMID: 36232878 PMCID: PMC9569940 DOI: 10.3390/ijms231911579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Starting from a screening hit, a set of analogs was synthesized based on a 4-(2-aminoethyl)piperidine core not associated previously with trace amine-associated receptor 1 (TAAR1) modulation in the literature. Several structure–activity relationship generalizations have been drawn from the observed data, some of which were corroborated by molecular modeling against the crystal structure of TAAR1. The four most active compounds (EC50 for TAAR1 agonistic activity ranging from 0.033 to 0.112 μM) were nominated for evaluation in vivo. The dopamine transporter knockout (DAT-KO) rat model of dopamine-dependent hyperlocomotion was used to evaluate compounds’ efficacy in vivo. Out of four compounds, only one compound (AP163) displayed a statistically significant and dose-dependent reduction in hyperlocomotion in DAT-KO rats. As such, compound AP163 represents a viable lead for further preclinical characterization as a potential novel treatment option for disorders associated with increased dopaminergic function, such as schizophrenia.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| | - Anatoly A. Peshkov
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Daria Smirnova
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maxim Gureev
- Center of Bio- and Chemoinformatics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Konstantin Zakharov
- Accellena Research and Development Inc., 88A Sredniy pr. V.O., Saint Petersburg 199106, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| |
Collapse
|
12
|
Raony Í, Domith I, Lourenco MV, Paes-de-Carvalho R, Pandolfo P. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110555. [PMID: 35346791 DOI: 10.1016/j.pnpbp.2022.110555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has recently been implicated in several psychiatric conditions related to monoaminergic dysfunction, such as schizophrenia, substance use disorders, and mood disorders. Although attention-deficit/hyperactivity disorder (ADHD) is also related to changes in monoaminergic neurotransmission, studies that assess whether TAAR1 participates in the neurobiology of ADHD are lacking. We hypothesized that TAAR1 plays an important role in ADHD and might represent a potential therapeutic target. Here, we investigate if TAAR1 modulates behavioral phenotypes in Spontaneously Hypertensive Rats (SHR), the most validated animal model of ADHD, and Wistar Kyoto rats (WKY, used as a control strain). Our results showed that TAAR1 is downregulated in ADHD-related brain regions in SHR compared with WKY. While intracerebroventricular (i.c.v.) administration of the selective TAAR1 antagonist EPPTB impaired cognitive performance in SHR, i.c.v. administration of highly selective TAAR1 full agonist RO5256390 decreased motor hyperactivity, novelty-induced locomotion, and induced an anxiolytic-like behavior. Overall, our findings show that changes in TAAR1 levels/activity underlie behavior in SHR, suggesting that TAAR1 plays a role in the neurobiology of ADHD. Although additional confirmatory studies are required, TAAR1 might be a potential pharmacological target for individuals with this disorder.
Collapse
Affiliation(s)
- Ícaro Raony
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil
| | - Pablo Pandolfo
- Laboratory of Neurobiology of Animal Behavior, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24020-141, Brazil.
| |
Collapse
|
13
|
TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc. Mol Psychiatry 2022; 27:2136-2145. [PMID: 35079125 PMCID: PMC9829124 DOI: 10.1038/s41380-022-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Abstract
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Collapse
|
14
|
Synan C, Bowen C, Heal DJ, Froger-Colléaux C, Beardsley PM, Dedic N, Hopkins SC, Campbell U, Koblan KS. Ulotaront, a novel TAAR1 agonist with 5-HT1A agonist activity, lacks abuse liability and attenuates cocaine cue-induced relapse in rats. Drug Alcohol Depend 2022; 231:109261. [PMID: 35033729 DOI: 10.1016/j.drugalcdep.2021.109261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ulotaront (SEP-363856) is a trace amine-associated receptor 1 (TAAR1) agonist with 5-hydroxytryptamine type 1A (5-HT1A) agonist activity that is currently in Phase 3 clinical development for the treatment of schizophrenia. Unlike available antipsychotics, the efficacy of ulotaront is not mediated by blockade of dopamine D2 or serotonin 5-HT2A receptors. In a short-term randomized clinical trial, ulotaront has demonstrated significant efficacy in the treatment of adults with an acute exacerbation of schizophrenia. Given ulotaront's novel mechanism of action a series of preclinical studies were performed to evaluate its potential abuse liability. METHODS A battery of studies were conducted in male and female rats to evaluate whether ulotaront produces behavioral changes suggestive of human abuse potential. In addition, studies were undertaken to probe the potential for ulotaront to block reinstatement of cocaine-seeking behavior in male rats. RESULTS Ulotaront was not self-administered by rats trained to self-administer amphetamine, cocaine, or heroin. The subjective qualities of ulotaront were distinct from those produced by amphetamine in a drug discrimination procedure. Ulotaront, and buspirone, a non-scheduled anxiolytic with 5-HT1A agonism, partially generalized to the interoceptive cue elicited by 3, 4-methylenedioxymethamphetamine (MDMA). In addition, ulotaront demonstrated a trend to reduce cocaine-primed induced reinstatement, and dose-dependently reduced cue-reinstated responding. CONCLUSION The current results suggest that the TAAR1/5-HT1A agonist ulotaront is not likely to pose a risk for recreational abuse in humans and may have potential therapeutic utility as a treatment of substance use disorders.
Collapse
Affiliation(s)
- Colleen Synan
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | - Carrie Bowen
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | - David J Heal
- DevelRx Ltd, BioCity, Nottingham, United Kingdom
| | | | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nina Dedic
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | | | - Una Campbell
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | | |
Collapse
|
15
|
Guo L, Dai W, Xu Z, Liang Q, Miller ET, Li S, Gao X, Baldwin MW, Chai R, Li Q. Evolution of brain-expressed biogenic amine receptors into olfactory trace amine-associated receptors. Mol Biol Evol 2022; 39:6503506. [PMID: 35021231 PMCID: PMC8890504 DOI: 10.1093/molbev/msac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family of trace amine-associated receptors (TAARs) is distantly related to G protein-coupled biogenic aminergic receptors. TAARs are found in the brain as well as in the olfactory epithelium where they detect biogenic amines. However, the functional relationship of receptors from distinct TAAR subfamilies and in different species is still uncertain. Here, we perform a thorough phylogenetic analysis of 702 TAAR-like (TARL) and TAAR sequences from 48 species. We show that a clade of Tarl genes has greatly expanded in lampreys, whereas the other Tarl clade consists of only one or two orthologs in jawed vertebrates and is lost in amniotes. We also identify two small clades of Taar genes in sharks related to the remaining Taar genes in bony vertebrates, which are divided into four major clades. We further identify ligands for 61 orphan TARLs and TAARs from sea lamprey, shark, ray-finned fishes, and mammals, as well as novel ligands for two 5-hydroxytryptamine receptor 4 orthologs, a serotonin receptor subtype closely related to TAARs. Our results reveal a pattern of functional convergence and segregation: TARLs from sea lamprey and bony vertebrate olfactory TAARs underwent independent expansions to function as chemosensory receptors, whereas TARLs from jawed vertebrates retain ancestral response profiles and may have similar functions to TAAR1 in the brain. Overall, our data provide a comprehensive understanding of the evolution and ligand recognition profiles of TAARs and TARLs.
Collapse
Affiliation(s)
- Lingna Guo
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenxuan Dai
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengrong Xu
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qiaoyi Liang
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Shengju Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Maude W Baldwin
- Max Planck Institute for Ornithology, Evolution of Sensory Systems Research Group, Seewiesen, Germany
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| |
Collapse
|
16
|
Kohno M, Dennis LE, McCready H, Hoffman WF. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment. Mol Psychiatry 2022; 27:220-229. [PMID: 34117366 PMCID: PMC8664889 DOI: 10.1038/s41380-021-01180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Dopamine system deficiencies and associated behavioral phenotypes may be a critical barrier to success in treating stimulant use disorders. Similarities in dopamine dysfunction between cocaine and methamphetamine use disorder but also key differences may impact treatment efficacy and outcome. This review will first compare the epidemiology of cocaine and methamphetamine use disorder. A detailed account of the pharmacokinetic and pharmacodynamic properties associated with each drug will then be discussed, with an emphasis on effects on the dopamine system and associated signaling pathways. Lastly, treatment results from pharmacological clinical trials will be summarized along with a more comprehensive review of the involvement of the trace amine-associated receptor on dopamine signaling dysfunction among stimulants and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA. .,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA. .,Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA. .,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| | - Laura E. Dennis
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Holly McCready
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - William F. Hoffman
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Mental Health Division, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
17
|
Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:335-371. [PMID: 35341570 PMCID: PMC10948018 DOI: 10.1016/bs.apha.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although μ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
18
|
Docherty JR, Alsufyani HA. Pharmacology of Drugs Used as Stimulants. J Clin Pharmacol 2021; 61 Suppl 2:S53-S69. [PMID: 34396557 DOI: 10.1002/jcph.1918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
Psychostimulant, cardiovascular, and temperature actions of stimulants involve adrenergic (norepinephrine), dopaminergic (dopamine), and serotonergic (serotonin) pathways. Stimulants such as amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), or mephedrone can act on the neuronal membrane monoamine transporters NET, DAT, and SERT and/or the vesicular monoamine transporter 2 to inhibit reuptake of neurotransmitter or cause release by reverse transport. Stimulants may have additional effects involving pre- and postsynaptic/junctional receptors for norepinephrine, dopamine, and serotonin and other receptors. As a result, stimulants may have a wide range of possible actions. Agents with cocaine or MDMA-like actions can induce serious and potentially fatal adverse events via thermodysregulatory, cardiovascular, or other mechanisms. MDMA-like stimulants may cause hyperthermia that can be life threathening. Recreational users of stimulants should be aware of the dangers of hyperthermia in a rave/club environment.
Collapse
Affiliation(s)
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
20
|
Liu J, Seaman R, Johnson B, Wu R, Vu J, Tian J, Zhang Y, Li JX. Activation of trace amine-associated receptor 1 selectively attenuates the reinforcing effects of morphine. Br J Pharmacol 2021; 178:933-945. [PMID: 33247948 DOI: 10.1111/bph.15335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Trace amine-associated TA1 receptors play critical roles in regulating dopamine transmission. Previous studies showed that pharmacologically or genetically manipulating the activity of TA1 receptors modulates addiction-like behaviours associated with psychostimulants. However, little is known about whether TA1 receptor modulation would regulate the behavioural effects of opioids. EXPERIMENTAL APPROACH Effects of the selective TA1 receptor partial agonist RO5263397 on the addiction-related and antinociceptive effects of morphine were systematically assessed in male rats and mice. KEY RESULTS RO5263397 attenuated the expression of morphine-induced behavioural sensitization in wildtype but not TA1 receptor knockout mice. RO5263397 shifted the dose-effect curve of morphine self-administration downward and reduced the breakpoint in a progressive ratio schedule of reinforcement but did not affect food self-administration in rats. RO5263397 decreased the cue- and drug-induced reinstatement of morphine-seeking behaviour in rats. RO5263397 alone did not trigger reinstatement of morphine-seeking behaviour or change locomotor activity in rats with a history of morphine self-administration. However, RO5263397 did not affect the expression of morphine-induced conditioned place preference in mice or rats. RO5263397 did not affect naltrexone-precipitated jumping behaviour or naltrexone-induced conditioned place aversion in morphine-dependent mice. Furthermore, RO5263397 did not affect the analgesic effects of morphine in an acute nociception model in mice and a chronic pain model in rats. CONCLUSION AND IMPLICATIONS These results indicated that TA1 receptor activation selectively attenuated the reinforcing, but not withdrawal or antinociceptive effects of morphine, suggesting that selective TA1 receptor agonists might be useful to combat opioid addiction, while sparing the analgesic effects.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jingwei Tian
- School of Pharmacy, Yantai University, Yantai, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
21
|
Phillips TJ, Roy T, Aldrich SJ, Baba H, Erk J, Mootz JRK, Reed C, Chesler EJ. Confirmation of a Causal Taar1 Allelic Variant in Addiction-Relevant Methamphetamine Behaviors. Front Psychiatry 2021; 12:725839. [PMID: 34512422 PMCID: PMC8428522 DOI: 10.3389/fpsyt.2021.725839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitivity to rewarding and reinforcing drug effects has a critical role in initial use, but the role of initial aversive drug effects has received less attention. Methamphetamine effects on dopamine re-uptake and efflux are associated with its addiction potential. However, methamphetamine also serves as a substrate for the trace amine-associated receptor 1 (TAAR1). Growing evidence in animal models indicates that increasing TAAR1 function reduces drug self-administration and intake. We previously determined that a non-synonymous single nucleotide polymorphism (SNP) in Taar1 predicts a conformational change in the receptor that has functional consequences. A Taar1 m1J mutant allele existing in DBA/2J mice expresses a non-functional receptor. In comparison to mice that possess one or more copies of the reference Taar1 allele (Taar1 +/+ or Taar1 +/m1J ), mice with the Taar1 m1J/m1J genotype readily consume methamphetamine, express low sensitivity to aversive effects of methamphetamine, and lack sensitivity to acute methamphetamine-induced hypothermia. We used three sets of knock-in and control mice in which one Taar1 allele was exchanged with the alternative allele to determine if other methamphetamine-related traits and an opioid trait are impacted by the same Taar1 SNP proven to affect MA consumption and hypothermia. First, we measured sensitivity to conditioned rewarding and aversive effects of methamphetamine to determine if an impact of the Taar1 SNP on these traits could be proven. Next, we used multiple genetic backgrounds to study the consistency of Taar1 allelic effects on methamphetamine intake and hypothermia. Finally, we studied morphine-induced hypothermia to confirm prior data suggesting that a gene in linkage disequilibrium with Taar1, rather than Taar1, accounts for prior observed differences in sensitivity. We found that a single SNP exchange reduced sensitivity to methamphetamine conditioned reward and increased sensitivity to conditioned aversion. Profound differences in methamphetamine intake and hypothermia consistently corresponded with genotype at the SNP location, with only slight variation in magnitude across genetic backgrounds. Morphine-induced hypothermia was not dependent on Taar1 genotype. Thus, Taar1 genotype and TAAR1 function impact multiple methamphetamine-related effects that likely predict the potential for methamphetamine use. These data support further investigation of their potential roles in risk for methamphetamine addiction and therapeutic development.
Collapse
Affiliation(s)
- Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States.,Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tyler Roy
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| | - Sara J Aldrich
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Elissa J Chesler
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| |
Collapse
|
22
|
Freyberg Z, Saavedra JM. Trace Amines and Trace Amine-Associated Receptors: A New Frontier in Cell Signaling. Cell Mol Neurobiol 2020; 40:189-190. [PMID: 32006222 DOI: 10.1007/s10571-020-00800-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Trace amines, including β-phenylethylamine, p-octopamine, p-tyramine, and tryptamine, are produced in high levels in invertebrates where they play major roles in homeostasis regulation in a manner similar to that of adrenergic systems in mammals (Rutigliano et al. in Front Pharmacol 8:987, 2017; Gainetdinov et al. in Pharmacol Rev 70(3):549-620, 2018; Nagaya et al. in Neurosci Lett 329(3):324-328, 2002). In mammals, however, their levels are very low, initially prompting these molecules to be termed "trace" or "minor" amines in mammals with only a secondary role in the regulation of more abundant biogenic amines including catecholamines and serotonin (Gainetdinov et al. in Pharmacol Rev 70(3):549-620, 2018). The more recent discovery of trace amine-associated receptors (TAARs) revealed major, previously unsuspected roles of the trace amines and has led to increasing interest within the scientific community. For example, TAARs have been proposed to modulate signaling through dopamine (Schwartz et al. in Expert Opin Ther Targets 22(6):513-526, 2018). Furthermore, these receptors are implicated in both numerous physiological functions including regulation of sleep, olfaction, metabolism, and immunity as well in disease (e.g., substance abuse, neuropsychiatric disorders) (Gainetdinov et al. in Pharmacol Rev 70(3):549-620, 2018; Rutigliano et al. in Front Pharmacol 8:987, 2017). Consequently, trace amine and TAAR research is rapidly growing and is of great translational relevance. In this Special Issue, leaders in trace amine and TAAR research offer both reviews and original research papers that cover a wide range of topics from involvement of TAAR signaling in metabolic regulation and neurophysiology to implications of this signaling in neuropsychiatric diseases including substance abuse and schizophrenia. While a diverse range of topics is covered by these works, the common theme running through all of them is the increasing awareness that trace amine and TAAR signaling represent novel signaling mechanisms in the brain and periphery. These topics are both highly timely and of considerable importance not only for those working in the field but also for the neuroscience community at large.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|