1
|
Delorme-Hinoux V, Mbodj A, Brando S, De Bures A, Llauro C, Covato F, Garrigue J, Guisset C, Borrut J, Mirouze M, Reichheld JP, Sáez-Vásquez J. 45S rDNA Diversity In Natura as One Step towards Ribosomal Heterogeneity in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2722. [PMID: 37514338 PMCID: PMC10386311 DOI: 10.3390/plants12142722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The keystone of ribosome biogenesis is the transcription of 45S rDNA. The Arabidopsis thaliana genome contains hundreds of 45S rDNA units; however, they are not all transcribed. Notably, 45S rDNA units contain insertions/deletions revealing the existence of heterogeneous rRNA genes and, likely, heterogeneous ribosomes for rRNAs. In order to obtain an overall picture of 45S rDNA diversity sustaining the synthesis of rRNAs and, subsequently, of ribosomes in natura, we took advantage of 320 new occurrences of Arabidopsis thaliana as a metapopulation named At66, sampled from 0 to 1900 m of altitude in the eastern Pyrenees in France. We found that the 45S rDNA copy number is very dynamic in natura and identified new genotypes for both 5' and 3' External Transcribed Spacers (ETS). Interestingly, the highest 5'ETS genotype diversity is found in altitude while the highest 3'ETS genotype diversity is found at sea level. Structural analysis of 45S rDNA also shows conservation in natura of specific 5'ETS and 3'ETS sequences/features required to control rDNA expression and the processing of rRNAs. In conclusion, At66 is a worthwhile natural laboratory, and unraveled 45S rDNA diversity represents an interesting starting material to select subsets for rDNA transcription and alter the rRNA composition of ribosomes both intra- and inter-site.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
- Association Charles Flahault, 66350 Toulouges, France
| | - Assane Mbodj
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
- Institut de Recherche pour le Développement (IRD), ECOBIO, 34000 Montpellier, France
| | - Sophie Brando
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| | - Anne De Bures
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| | - Christel Llauro
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
| | - Fabrice Covato
- FRNC, Fédération des Réserves Naturelles Catalanes, 66500 Prades, France
| | - Joseph Garrigue
- FRNC, Fédération des Réserves Naturelles Catalanes, 66500 Prades, France
| | - Claude Guisset
- Association Charles Flahault, 66350 Toulouges, France
- FRNC, Fédération des Réserves Naturelles Catalanes, 66500 Prades, France
| | | | - Marie Mirouze
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- EMR LGDP/MANGO, Mechanisms of Adaptation and Genomics, IRD-CNRS-UPVD, 66860 Perpignan, France
- Institut de Recherche pour le Développement (IRD), ECOBIO, 34000 Montpellier, France
| | - Jean-Philippe Reichheld
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Université de Perpignan Via Domitia (UPVD), Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France
| |
Collapse
|
2
|
Lima JF, Carvalho LS, Carvalho MA, Schneider MC. Chromosome diversity in Buthidae and Chactidae scorpions from Brazilian fauna: Diploid number and distribution of repetitive DNA sequences. Genet Mol Biol 2023; 46:e20220083. [PMID: 37216321 DOI: 10.1590/1678-4685-gmb-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
In this work, we analyzed cytogenetically eight Chactidae and Buthidae, including the localization of repetitive DNA sequences. The chactids possess monocentric chromosomes and the highest diploid numbers (2n=50 in Brotheas amazonicus, 2n=36 in Chactopsis amazonica, 2n=30 in Neochactas sp.) when compared with buthids (2n=10 in Tityus bahiensis, 2n=14 in Tityus apiacas and Tityus metuendus, 2n=18 in Tityus aba, 2n=26 in Ischnotelson peruassu). The localization of rDNA genes and (TTAGG)n sequences exhibited a conserved pattern of two terminal/subterminal ribosomal cistrons and terminal telomere signals. However, the comparison between the data of C-banding, DAPI after FISH and Cot-DNA fraction indicated a variable quantity and distribution of these regions, as follow: (i) positive heterochromatin and Cot-DNA signals (B. amazonicus and I. peruassu), (ii) small blocks of heterochromatin with large Cot-DNA signals (T. metuendus), (iii) positive heterochromatic regions and absence of Cot-DNA signals (T. aba and T. apiacas), and (iv) negative heterochromatin and Cot-DNA signals (T. bahiensis). Therefore, our results revealed that there still is not a clear relation between quantity of heterochromatin and presence of monocentric or holocentric chromosomes and occurrence of chromosomal rearrangements, indicating that repetitive regions in scorpions must be analyzed using different cytogenetic approaches.
Collapse
Affiliation(s)
- Juliana Figueiredo Lima
- Universidade de São Paulo (USP), Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, São Paulo, SP, Brazil
| | | | - Marcos André Carvalho
- Universidade Federal de Mato Grosso (UFMT), Departamento de Biologia e Zoologia, Cuiabá, MT, Brazil
| | | |
Collapse
|
3
|
Deon GA, Glugoski L, Hatanaka T, Sassi FDMC, Nogaroto V, Bertollo LAC, Liehr T, Al-Rikabi A, Moreira O, Cioffi MDB, Vicari MR. Evolutionary breakpoint regions and chromosomal remodeling in Harttia (Siluriformes: Loricariidae) species diversification. Genet Mol Biol 2022; 45:e20210170. [PMID: 35604463 PMCID: PMC9126045 DOI: 10.1590/1678-4685-gmb-2021-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
The Neotropical armored catfish genus Harttia presents a wide variation of chromosomal rearrangements among its representatives. Studies indicate that translocation and Robertsonian rearrangements have triggered the karyotype evolution in the genus, including differentiation of sex chromosome systems. However, few studies used powerful tools, such as comparative whole chromosome painting, to clarify this highly diversified scenario. Here, we isolated probes from the X1 (a 5S rDNA carrier) and the X2 (a 45S rDNA carrier) chromosomes of Harttia punctata, which displays an X1X1X2X2/X1X2Y multiple sex chromosome system. Those probes were applied in other Harttia species to evidence homeologous chromosome blocks. The resulting data reinforce that translocation events played a role in the origin of the X1X2Y sex chromosome system in H. punctata. The repositioning of homologous chromosomal blocks carrying rDNA sites among ten Harttia species has also been demonstrated. Anchored to phylogenetic data it was possible to evidence some events of the karyotype diversification of the studied species and to prove an independent origin for the two types of multiple sex chromosomes, XX/XY1Y2 and X1X1X2X2/X1X2Y, that occur in Harttia species. The results point to evolutionary breakpoint regions in the genomes within or adjacent to rDNA sites that were widely reused in Harttia chromosome remodeling.
Collapse
Affiliation(s)
- Geize Aparecida Deon
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Larissa Glugoski
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Terumi Hatanaka
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
| | | | - Viviane Nogaroto
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | | | - Thomas Liehr
- University Hospital Jena, Institute of Human Genetics, Jena,
Germany
| | - Ahmed Al-Rikabi
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
- University Hospital Jena, Institute of Human Genetics, Jena,
Germany
| | - Orlando Moreira
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
| | - Marcelo de Bello Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e
Evolução, São Carlos, SP, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| |
Collapse
|
4
|
Ansari HA, Ellison N, Stewart AV, Williams WM. Distribution patterns of rDNA loci in the Schedonorus- Lolium complex (Poaceae). COMPARATIVE CYTOGENETICS 2022; 16:39-54. [PMID: 35437460 PMCID: PMC8971122 DOI: 10.3897/compcytogen.v16.i1.79056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The Schedonorus-Lolium complex of the subtribe Loliinae (Poaceae) includes several economically important forage and turf grasses. This complex encompasses Lolium Linnaeus, 1753, Festuca Linnaeus, 1753 subgenus Schedonorus (P. Beauvois, 1824) Petermann, 1849 and Micropyropsis Romero Zarco et Cabezudo, 1983. New FISH results of 5S and 18S-26S rDNA sequences are presented for three species and the results are interpreted in a review of distribution patterns of 5S and 18S-26S rDNA sequences among other species in the complex. Micropyropsistuberosa Romero Zarco et Cabezudo, 1983 (2n = 2x = 14) displayed a distribution pattern of rDNA sequences identical to that of F.pratensis Hudson, 1762, supporting a close phylogenetic relationship at the bottom of the phylogenetic tree. "Loliummultiflorum" Lamarck, 1779 accessions sourced from Morocco showed a different pattern from European L.multiflorum and could be a unique and previously uncharacterised taxon. North African Festucasimensis Hochstetter ex A. Richard, 1851 had a marker pattern consistent with allotetraploidy and uniparental loss of one 18S-26S rDNA locus. This allotetraploid has previously been suggested to have originated from a hybrid with Festucaglaucescens (Festucaarundinaceavar.glaucescens Boissier, 1844). However, the distribution patterns of the two rDNA sequences in this allotetraploid do not align with F.glaucescens, suggesting that its origin from this species is unlikely. Furthermore, comparisons with other higher alloploids in the complex indicate that F.simensis was a potential donor of two sub-genomes of allohexaploid Festucagigantea (Linnaeus) Villars, 1787. In the overall complex, the proximal locations of both rDNA markers were conserved among the diploid species. Two types of synteny of the two markers could, to a considerable extent, distinguish allo- and autogamous Lolium species. The ancestral parentage of the three Festuca allotetraploids has not yet been determined, but all three appear to have been sub-genome donors to the higher allopolypoids of sub-genus Schedonorus. Terminal locations of both the markers were absent from the diploids but were very frequently observed in the polyploids.
Collapse
Affiliation(s)
- Helal Ahmad Ansari
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4412, New ZealandGrasslands Research CentrePalmerston NorthNew Zealand
| | - Nicholas Ellison
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4412, New ZealandGrasslands Research CentrePalmerston NorthNew Zealand
| | - Alan Vincent Stewart
- PGG Wrightson Seeds, Kimihia Research Centre, 1375 Springs Road, RD4, Lincoln 7674, New ZealandKimihia Research CentreLincolnNew Zealand
| | - Warren Mervyn Williams
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4412, New ZealandGrasslands Research CentrePalmerston NorthNew Zealand
| |
Collapse
|
5
|
Rosselló JA, Maravilla AJ, Rosato M. The Nuclear 35S rDNA World in Plant Systematics and Evolution: A Primer of Cautions and Common Misconceptions in Cytogenetic Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:788911. [PMID: 35283933 PMCID: PMC8908318 DOI: 10.3389/fpls.2022.788911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
The ubiquitous presence of rRNA genes in nuclear, plastid, and mitochondrial genomes has provided an opportunity to use genomic markers to infer patterns of molecular and organismic evolution as well as to assess systematic issues throughout the tree of life. The number, size, location, and activity of the 35S rDNA cistrons in plant karyotypes have been used as conventional cytogenetic landmarks. Their scrutiny has been useful to infer patterns of chromosomal evolution and the data have been used as a proxy for assessing species discrimination, population differentiation and evolutionary relationships. The correct interpretation of rDNA markers in plant taxonomy and evolution is not free of drawbacks given the complexities derived from the lability of the genetic architecture, the diverse patterns of molecular change, and the fate and evolutionary dynamics of the rDNA units in hybrids and polyploid species. In addition, the terminology used by independent authors is somewhat vague, which often complicates comparisons. To date, no efforts have been reported addressing the potential problems and limitations involved in generating, utilizing, and interpreting the data from the 35S rDNA in cytogenetics. This review discusses the main technical and conceptual limitations of these rDNA markers obtained by cytological and karyological experimental work, in order to clarify biological and evolutionary inferences postulated in a systematic and phylogenetic context. Also, we provide clarification for some ambiguity and misconceptions in terminology usually found in published work that may help to improve the usage of the 35S ribosomal world in plant evolution.
Collapse
|
6
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
7
|
Thakur S, Kumar U, Malik R, Bisht D, Balyan P, Mir RR, Kumar S. Physical localization of 45S rDNA in Cymbopogon and the analysis of differential distribution of rDNA in homologous chromosomes of Cymbopogon winterianus. PLoS One 2021; 16:e0257115. [PMID: 34793445 PMCID: PMC8601443 DOI: 10.1371/journal.pone.0257115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
Cymbopogon, commonly known as lemon grass, is one of the most important aromatic grasses having therapeutic and medicinal values. FISH signals on somatic chromosome spreads off Cymbopogon species indicated the localization of 45S rDNA on the terminal region of short arms of a chromosome pair. A considerable interspecific variation in the intensity of 45S rDNA hybridization signals was observed in the cultivars of Cymbopogon winterianus and Cymbopogon flexuosus. Furthermore, in all the varieties of C. winterianus namely Bio-13, Manjari and Medini, a differential distribution of 45S rDNA was observed in a heterologous pair of chromosomes 1. The development of C. winterianus var. Manjari through gamma radiation may be responsible for breakage of fragile rDNA site from one of the chromosomes of this heterologous chromosome pair. While, in other two varieties of C. winterianus (Bio-13 and Medini), this variability may be because of evolutionary speciation due to natural cross among two species of Cymbopogon which was fixed through clonal propagation. However, in both the situations these changes were fixed by vegetative method of propagation which is general mode of reproduction in the case of C. winterianus.
Collapse
Affiliation(s)
- Shivangi Thakur
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, CCS Haryana Agricultural University, Hisar, India
| | - Rashmi Malik
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Darshana Bisht
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, Meerut, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-Kashmir), Srinagar, (J&K), India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, India
- * E-mail:
| |
Collapse
|
8
|
Zhang T, Liu G, Zhao H, Braz GT, Jiang J. Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1967-1978. [PMID: 33960617 PMCID: PMC8486243 DOI: 10.1111/pbi.13610] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Oligonucleotide (oligo)-fluorescence in situ hybridization (FISH) has rapidly becoming the new generation of FISH technique in plant molecular cytogenetics research. Genome-scale identification of single-copy oligos is the foundation of successful oligo-FISH experiments. Here, we introduce Chorus2, a software that is developed specifically for oligo selection. We demonstrate that Chorus2 is highly effective to remove all repetitive elements in selection of single-copy oligos, which is critical for the development of successful FISH probes. Chorus2 is more effective than Chorus, the original version of the pipeline, and OligoMiner for repeat removal. Chorus2 allows to select oligos that are conserved among related species, which extends the usage of oligo-FISH probes among phylogenetically related plant species. We also implemented a new function in Chorus2 that allows development of FISH probes from plant species without an assembled genome. We anticipate that Chorus2 can be used in plants as well as in mammalian and other non-plant species. Chorus2 will broadly facilitate the design of FISH probes for various types of application in molecular cytogenetics research.
Collapse
Affiliation(s)
- Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Hainan Zhao
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Guilherme T. Braz
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Jiming Jiang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
| |
Collapse
|
9
|
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC. Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 2021; 75:2027-2041. [PMID: 34155627 DOI: 10.1111/evo.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.
Collapse
Affiliation(s)
- Emiliano Martí
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Lucas Albuquerque
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, 77843
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, DE-07743, Germany
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| |
Collapse
|
10
|
Yañez-Santos AM, Paz RC, Paz-Sepúlveda PB, Urdampilleta JD. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Chromosome Res 2021; 29:261-284. [PMID: 34086192 DOI: 10.1007/s10577-021-09663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
Collapse
Affiliation(s)
- Anahí Mara Yañez-Santos
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Paula Beatriz Paz-Sepúlveda
- Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) - Comisión de Investigaciones Científicas (CIC) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
11
|
Siljak-Yakovlev S, Pustahija F, Vičić-Bočkor V, Robin O. Molecular Cytogenetics (Fluorescence In Situ Hybridization - FISH and Fluorochrome Banding): Resolving Species Relationships and Genome Organization. Methods Mol Biol 2021; 2222:363-379. [PMID: 33301102 DOI: 10.1007/978-1-0716-0997-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorochrome banding (chromomycin, Hoechst, and DAPI) and fluorescence in situ hybridization (FISH) are excellent molecular cytogenetic tools providing various possibilities in the study of chromosomal evolution and genome organization. The constitutive heterochromatin and rRNA genes are the most widely used FISH markers. The rDNA is organized into two distinct gene families (18S-5.8S-26S and 5S) whose number and location vary within the complex of closely related species. Therefore, they are widely used as chromosomal landmarks to provide valuable evidence concerning genome evolution at chromosomal levels.
Collapse
Affiliation(s)
- Sonja Siljak-Yakovlev
- University Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France.
| | - Fatima Pustahija
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Vedrana Vičić-Bočkor
- Faculty of Science, Department of Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Odile Robin
- University Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
12
|
Silvestri MC, Ortiz AM, Robledo GA, Lavia GI. Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation. AN ACAD BRAS CIENC 2020; 92:e20191364. [PMID: 32901677 DOI: 10.1590/0001-3765202020191364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
The species of the genus Arachis (Leguminosae) are ordered into nine sections. The assignment of genome types in this genus has been based on cross-compatibility analysis and molecular cytogenetic studies. The latter has also allowed karyotypically establishing well-defined genomes and reassigning the genome of several species. However, most of these studies have been focused mainly on the sections Arachis and Rhizomatosae. To increase the knowledge about the chromosome diversity of the whole genus, here we performed a detailed karyotype characterization of representative species of most of the sections and genomes of Arachis. This characterization included chromosome morphology, CMA/DAPI chromosome banding, and chromosome marker localization (rDNAloci and one satDNA sequence) by fluorescent in situ hybridization (FISH). Based on the data obtained and other previously published data, we established the karyotype similarities by cluster analysis and defined eleven karyotype groups. The grouping was partly coincident with the traditional genome assignment, except for some groups and some individual species. Karyotype similarities among some genomes were also found. The main characteristics of each karyotype group of Arachis were summarized. Together, our results provide information that may be beneficial for future cytogenetic and evolutionary studies, and also contribute to the identification of interspecific hybrids.
Collapse
Affiliation(s)
- MarÍa C Silvestri
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Alejandra M Ortiz
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - GermÁn A Robledo
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| | - Graciela I Lavia
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
13
|
She CW, Mao Y, Jiang XH, He CP. Comparative molecular cytogenetic characterization of five wild Vigna species (Fabaceae). COMPARATIVE CYTOGENETICS 2020; 14:243-264. [PMID: 32676173 PMCID: PMC7334243 DOI: 10.3897/compcytogen.v14i2.51154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
To extend our knowledge on karyotype variation of the genus Vigna Savi, 1824, the chromosomal organization of rRNA genes and fluorochrome banding patterns of five wild Vigna species were studied. Sequential combined PI (propidium iodide) and DAPI (4',6-diamidino-2-phenylindole) (CPD) staining and fluorescence in situ hybridization (FISH) with 5S and 45S rDNA probes were used to analyze the karyotypes of V. luteola (Jacquin, 1771) Bentham, 1959, V. vexillata (Linnaeus, 1753) A. Richard, 1845, V. minima (Roxburgh, 1832) Ohwi & H. Ohashi, 1969, V. trilobata (Linnaeus, 1753) Verdcourt, 1968, and V. caracalla (Linnaeus, 1753) Verdcourt,1970. For further phylogenetic analysis, genomic in situ hybridization (GISH) with the genomic DNA of V. umbellata (Thunberg, 1794) Ohwi & H.Ohashi, 1969 onto the chromosomes of five wild Vigna species was also performed. Detailed karyotypes were established for the first time using chromosome measurements, fluorochrome bands, and rDNA-FISH signals. All species had chromosome number 2n = 2x = 22, and symmetrical karyotypes that composed of only metacentric or metacentric and submetacentric chromosomes. CPD staining revealed all 45S rDNA sites in the five species analyzed, (peri)centromeric GC-rich heterochromatin in V. luteola, V. trilobata and V. caracalla, interstitial GC-rich and pericentromeric AT-rich heterochromatin in V. caracalla. rDNA-FISH revealed two 5S loci in V. caracalla and one 5S locus in the other four species; one 45S locus in V. luteola and V. caracalla, two 45S loci in V. vexillata and V. trilobata, and five 45S loci in V. minima. The karyotypes of the studied species could be clearly distinguished by the karyotypic parameters, and the patterns of the fluorochrome bands and the rDNA sites, which revealed high interspecific variation among the five species. The V. umbellata genomic DNA probe produced weak signals in all proximal regions of V. luteola and all (peri)centromeric regions of V. trilobata. The combined data demonstrate that distinct genome differentiation has occurred among the five species during evolution. The phylogenetic relationships between the five wild species and related cultivated species of Vigna are discussed based on our present and previous molecular cytogenetic data.
Collapse
Affiliation(s)
- Chao-Wen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Ying Mao
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Xiang-Hui Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Chun-Ping He
- College of Chemistry and Material Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| |
Collapse
|
14
|
Chromosome Dynamics Regulating Genomic Dispersion and Alteration of Nucleolus Organizer Regions (NORs). Cells 2020; 9:cells9040971. [PMID: 32326514 PMCID: PMC7227013 DOI: 10.3390/cells9040971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleolus organizer regions (NORs) demonstrate differences in genomic dispersion and transcriptional activity among all organisms. I postulate that such differences stem from distinct genomic structures and their interactions from chromosome observations using fluorescence in situ hybridization and silver nitrate staining methods. Examples in primates and Australian bulldog ants indicate that chromosomal features indeed play a significant role in determining the properties of NORs. In primates, rDNA arrays that are located on the short arm of acrocentrics frequently form reciprocal associations ("affinity"), but they lack such associations ("non-affinity") with other repeat arrays-a binary molecular effect. These "rules" of affinity vs. non-affinity are extrapolated from the chromosomal configurations of meiotic prophase. In bulldog ants, genomic dispersions of rDNA loci expand much more widely following an increase in the number of acrocentric chromosomes formed by centric fission. Affinity appears to be a significantly greater force: associations likely form among rDNA and heterochromatin arrays of acrocentrics-thus, more acrocentrics bring about more rDNA loci. The specific interactions among NOR-related genome structures remain unclear and require further investigation. Here, I propose that there are limited and non-limited genomic dispersion systems that result from genomic affinity rules, inducing specific chromosomal configurations that are related to NORs.
Collapse
|
15
|
Degrandi TM, Gunski RJ, Garnero ADV, Oliveira EHCD, Kretschmer R, Souza MSD, Barcellos SA, Hass I. The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories. Genet Mol Biol 2020; 43:e20180331. [PMID: 32251493 PMCID: PMC7197993 DOI: 10.1590/1678-4685-gmb-2018-0331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/08/2019] [Indexed: 03/08/2023] Open
Abstract
The distribution of 45S rDNA cluster in avian karyotypes varies in different
aspects, such as position, number of bearer chromosomes, and bearers being
macro- or microchromosomes. The present study investigated the patterns of
variation in the 45S rDNA-bearer chromosomes of birds in order to understand the
evolutionary dynamics of the cluster configuration and its contribution to the
evolution of bird karyotypes. A total of 73 bird species were analyzed,
including both published data and species for which rDNA-FISH was conducted for
the first time. In most birds, the 45S rDNA clusters were located in a single
pair of microchromosomes. Hence, the location of 45S rDNA in macrochromosomes,
observed only in Neognathae species, seems to be a derived state, probably the
result of chromosomal fusion between microchromosomes and distinct
macrochromosomes. Additionally, the 45S rDNA was observed in multiple
microchromosomes in different branches of the bird phylogeny, suggesting
recurrence of dispersion processeses, such as duplications and translocations.
Overall, this study indicated that the redistribution of the 45S rDNA sites in
bird chromosomes followed different evolutionary trajectories with respect to
each lineage of the class Aves.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Kretschmer
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Biociências, Porto Alegre, RS, Brazil
| | | | | | - Iris Hass
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Curitiba, PR, Brazil
| |
Collapse
|
16
|
Desta ZA, Kolano B, Shamim Z, Armstrong SJ, Rewers M, Sliwinska E, Kushwaha SK, Parkin IAP, Ortiz R, de Koning DJ. Field cress genome mapping: Integrating linkage and comparative maps with cytogenetic analysis for rDNA carrying chromosomes. Sci Rep 2019; 9:17028. [PMID: 31745130 PMCID: PMC6863836 DOI: 10.1038/s41598-019-53320-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Field cress (Lepidium campestre L.), despite its potential as a sustainable alternative oilseed plant, has been underutilized, and no prior attempts to characterize the genome at the genetic or molecular cytogenetic level have been conducted. Genetic maps are the foundation for anchoring and orienting annotated genome assemblies and positional cloning of candidate genes. Our principal goal was to construct a genetic map using integrated approaches of genetic, comparative and cytogenetic map analyses. In total, 503 F2 interspecific hybrid individuals were genotyped using 7,624 single nucleotide polymorphism markers. Comparative analysis demonstrated that ~57% of the sequenced loci in L. campestre were congruent with Arabidopsis thaliana (L.) genome and suggested a novel karyotype, which predates the ancestral crucifer karyotype. Aceto-orcein chromosome staining and fluorescence in situ hybridization (FISH) analyses confirmed that L. campestre, L. heterophyllum Benth. and their hybrids had a chromosome number of 2n = 2x = 16. Flow cytometric analysis revealed that both species possess 2C roughly 0.4 picogram DNA. Integrating linkage and comparative maps with cytogenetic map analyses assigned two linkage groups to their particular chromosomes. Future work could incorporate FISH utilizing A. thaliana mapped BAC clones to allow the chromosomes of field cress to be identified reliably.
Collapse
Affiliation(s)
- Zeratsion Abera Desta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden.
| | - Bozena Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Zeeshan Shamim
- Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
- School of Biosciences, University of Birmingham, Birmingham, B 15 2TT, United Kingdom
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Birmingham, B 15 2TT, United Kingdom
| | - Monika Rewers
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego Ave. 7, 85-789, Bydgoszcz, Poland
| | - Sandeep Kumar Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundesvagen 10, Box 101, SE-23053, Alnarp, Sweden
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE 75007, Uppsala, Sweden
| |
Collapse
|
17
|
How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. Chromosoma 2019; 128:165-175. [DOI: 10.1007/s00412-019-00706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
18
|
Scaldaferro MA, Moscone EA. Cytology and DNA Content Variation of Capsicum Genomes. COMPENDIUM OF PLANT GENOMES 2019. [DOI: 10.1007/978-3-319-97217-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Maragheh FP, Janus D, Senderowicz M, Haliloglu K, Kolano B. Karyotype analysis of eight cultivated Allium species. J Appl Genet 2018; 60:1-11. [PMID: 30353472 PMCID: PMC6373409 DOI: 10.1007/s13353-018-0474-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
The karyotypes of Allium, a genus that comprises many crops and ornamental plants, are relatively poorly studied. To extend our knowledge on karyotype structure of the genus, the chromosomal organization of rRNA genes and CMA/DAPI bands was studied. Fluorescence in situ hybridization using 5S and 35S rDNA probes and banding methods (silver staining and CMA3/DAPI staining) were used to analyze the karyotypes of eight cultivated Allium L. species. Analyzed Allium taxa revealed three different basic chromosome numbers (x = 7, 8, 9) and three different ploidy levels (diploid, triploid, and tetraploid). The rDNA sites chromosomal organization is reported the first time for the six species (A. moly, A. oreophilum, A. karataviense, A. nigrum, A. sphaerocephalon, A. porrum). The Allium species that were analyzed showed a high level of interspecies polymorphism in the number and localization of the rDNA sites. The fluorescence in situ hybridization patterns of 35S rDNA sites were more polymorphic than those of the 5S rDNA in the diploid species. Several groups of similar chromosomes could be distinguished among the chromosomes that had rDNA sites in the polyploid species. Each of the groups had three chromosomes (triploid A. sphaerocephalon L.) or four chromosomes (tetraploid A. porrum L.) suggesting their autopolyploid origin. In the genomes of four of the analyzed species, only some of the 35S rDNA sites were transcriptionally active. Fluorochrome banding revealed that the CMA3+ bands were associated with the 35S rDNA sites in all of the species that were analyzed, except A. fistulosum L. in which positive CMA3+ bands were detected in the terminal position of all of the chromosome arms. The rDNA sequences, nucleolar organizer regions (NORs), and CMA/DAPI bands are very good chromosome markers that allowed to distinguished from two to five pairs of homologous chromosomes in analyzed Allium species. The karyotypes of the studied species could be clearly distinguished by the number and position of the rDNA sites, NORs, and CMA/DAPI bands, which revealed high interspecific differentiation among the taxa.
Collapse
Affiliation(s)
- Farzaneh Pordel Maragheh
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland.,Faculty of Agriculture, Department of Field Crops, Ataturk University, 25240, Erzurum, Turkey
| | - Daniel Janus
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Magdalena Senderowicz
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Kamil Haliloglu
- Faculty of Agriculture, Department of Field Crops, Ataturk University, 25240, Erzurum, Turkey
| | - Bozena Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland.
| |
Collapse
|
20
|
Zoldoš V, Biruš I, Muratovic E, Šatovic Z, Vojta A, Robin O, Pustahija F, Bogunic F, Vicic Bockor V, Siljak-Yakovlev S. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions. Genome Biol Evol 2018; 10:291-303. [PMID: 29342280 PMCID: PMC5786246 DOI: 10.1093/gbe/evy010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations.
Collapse
Affiliation(s)
- Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Ivan Biruš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Edina Muratovic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina
| | - Zlatko Šatovic
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Aleksandar Vojta
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Odile Robin
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Fatima Pustahija
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Faruk Bogunic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Vedrana Vicic Bockor
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Sonja Siljak-Yakovlev
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
21
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
22
|
Joachimiak AJ, Hasterok R, Sliwinska E, Musiał K, Grabowska-Joachimiak A. FISH-aimed karyotype analysis in Aconitum subgen. Aconitum reveals excessive rDNA sites in tetraploid taxa. PROTOPLASMA 2018; 255. [PMID: 29541843 PMCID: PMC6133112 DOI: 10.1007/s00709-018-1238-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The location of 5S and 35S rDNA sequences in chromosomes of four Aconitum subsp. Aconitum species was analyzed after fluorescence in situ hybridization (FISH). Both in diploids (2n = 2x = 16; Aconitum variegatum, A. degenii) and tetraploids (2n = 4× = 32; A. firmum, A. plicatum), rDNA repeats were localized exclusively on the shorter arms of chromosomes, in subterminal or pericentromeric sites. All analyzed species showed similar basal genome size (Cx = 5.31-5.71 pg). The most striking features of tetraploid karyotypes were the conservation of diploid rDNA loci and emergence of many additional 5S rDNA clusters. Chromosomal distribution of excessive ribosomal sites suggests their role in the secondary diploidization of tetraploid karyotypes.
Collapse
Affiliation(s)
- Andrzej J Joachimiak
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, PL-30-387, Kraków, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Plant Genetics and Biotechnology, University of Technology and Life Sciences in Bydgoszcz, Kaliskiego 7, 85-789, Bydgoszcz, Poland
| | - Krystyna Musiał
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, PL-30-387, Kraków, Poland
| | | |
Collapse
|
23
|
Chiarini F, Sazatornil F, Bernardello G. Data reassessment in a phylogenetic context gives insight into chromosome evolution in the giant genus Solanum (Solanaceae). SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1431320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Franco Chiarini
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
| | - Federico Sazatornil
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
| | - Gabriel Bernardello
- CONICET, Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Casilla de Correo 495, 5000 Córdoba Argentina
| |
Collapse
|
24
|
High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). PLoS One 2017; 12:e0187131. [PMID: 29088249 PMCID: PMC5663423 DOI: 10.1371/journal.pone.0187131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
The nuclear genome harbours hundreds to several thousand copies of ribosomal DNA. Despite their essential role in cellular ribogenesis few studies have addressed intrapopulation, interpopulation and interspecific levels of rDNA variability in wild plants. Some studies have assessed the extent of rDNA variation at the sequence and copy-number level with large sampling in several species. However, comparable studies on rDNA site number variation in plants, assessed with extensive hierarchical sampling at several levels (individuals, populations, species) are lacking. In exploring the possible causes for ribosomal loci dynamism, we have used the diploid genus Anacyclus (Asteraceae) as a suitable system to examine the evolution of ribosomal loci. To this end, the number and chromosomal position of 45S rDNA sites have been determined in 196 individuals from 47 populations in all Anacyclus species using FISH. The 45S rDNA site-number has been assessed in a significant sample of seed plants, which usually exhibit rather consistent features, except for polyploid plants. In contrast, the level of rDNA site-number variation detected in Anacyclus is outstanding in the context of angiosperms particularly regarding populations of the same species. The number of 45S rDNA sites ranged from four to 11, accounting for 14 karyological ribosomal phenotypes. Our results are not even across species and geographical areas, and show that there is no clear association between the number of 45S rDNA loci and the life cycle in Anacyclus. A single rDNA phenotype was detected in several species, but a more complex pattern that included intra-specific and intra-population polymorphisms was recorded in A. homogamos, A. clavatus and A. valentinus, three weedy species showing large and overlapping distribution ranges. It is likely that part of the cytogenetic changes and inferred dynamism found in these species have been triggered by genomic rearrangements resulting from contemporary hybridisation.
Collapse
|
25
|
She CW, Wei L, Jiang XH. Molecular cytogenetic characterization and comparison of the two cultivated Canavalia species (Fabaceae). COMPARATIVE CYTOGENETICS 2017; 11:579-600. [PMID: 29114355 PMCID: PMC5672272 DOI: 10.3897/compcytogen.v11i4.13604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 05/25/2023]
Abstract
The two cultivated Canavalia (Adanson, 1763) species, Canavalia gladiata (N. J. von Jacquin, 1788) A. P. de Candolle, 1825 and Canavalia ensiformis (Linnaeus, 1753) A. P. de Candolle, 1825 are closely related based on morphological and molecular phylogenetic data. However, the similarities and differences in genome organization between them have not been evaluated at molecular cytogenetic level. Here, detailed karyotypes of both species were constructed using combined PI and DAPI (CPD) staining, rDNA-FISH and self-genomic in situ hybridization (sGISH). For further comparison, comparative genomic in situ hybridization (cGISH) and sequence analysis of 5S rDNA were applied. Their chromosomes were accurately identified by sGISH and rDNA-FISH signals. Both species had the karyotype formula 2n = 22 = 18m + 4m-SAT, but the karyotype of C. ensiformis was shorter and more asymmetric than that of C. gladiata. They displayed similar CPD bands at all 45S rDNA sites and centromeres. C. gladiata had ten centromeric 5S rDNA loci and two SC (secondary constriction)-associated 45S rDNA loci. C. ensiformis had nine centromeric and one interstitial 5S loci, two SC-associated and one proximal 45S loci. Their sGISH signal patterns displayed both basic similarities and distinct differences. Reciprocal cGISH generated prominent signals in all pericentromeric regions and 45S sites. There was lower level of sequence identity of the non-transcribed spacer between their 5S rDNA repeats. These data confirmed the evolutionary closeness between C. gladiata and C. ensiformis and demonstrated obvious differentiation between their genomes, and supported the opinion that C. ensiformis is more advanced in evolution than C. gladiata.
Collapse
Affiliation(s)
- Chao-Wen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, China
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, China
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, China
| | - Lin Wei
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, China
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, China
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, China
| | - Xiang-Hui Jiang
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, China
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, China
| |
Collapse
|
26
|
Siljak-Yakovlev S, Godelle B, Zoldos V, Vallès J, Garnatje T, Hidalgo O. Evolutionary implications of heterochromatin and rDNA in chromosome number and genome size changes during dysploidy: A case study in Reichardia genus. PLoS One 2017; 12:e0182318. [PMID: 28792980 PMCID: PMC5549912 DOI: 10.1371/journal.pone.0182318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/16/2017] [Indexed: 12/31/2022] Open
Abstract
In this study we showed that constitutive heterochromatin, GC-rich DNA and rDNA are implicated in chromosomal rearrangements during the basic chromosome number changing (dysploidy) in Reichardia genus. This small Mediterranean genus comprises 8–10 species and presents three basic chromosome numbers (x = 9, 8 and 7). To assess genome evolution and differentiation processes, studies were conducted in a dysploid series of six species: R. dichotoma, R. macrophylla and R. albanica (2n = 18), R. tingitana and R. gaditana (2n = 16), and R. picroides (2n = 14). The molecular phylogeny reconstruction comprised three additional species (R. crystallina and R. ligulata, 2n = 16 and R. intermedia, 2n = 14). Our results indicate that the way of dysploidy is descending. During this process, a positive correlation was observed between chromosome number and genome size, rDNA loci number and pollen size, although only the correlation between chromosome number and genome size is still recovered significant once considering the phylogenetic effect. Fluorescent in situ hybridisation also evidenced changes in number, position and organisation of two rDNA families (35S and 5S), including the reduction of loci number and, consequently, reduction in the number of secondary constrictions and nuclear organising regions from three to one per diploid genome. The potential mechanisms of chromosomal and genome evolution, strongly implicating heterochromatin, are proposed and discussed, with particular consideration for Reichardia genus.
Collapse
Affiliation(s)
- Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- * E-mail: (SY); (JV)
| | - Bernard Godelle
- Institut des Sciences de l’Evolution (CNRS-UMR 5554), Université Montpellier II, Place Eugène Bataillon, Montpellier, France
| | - Vlatka Zoldos
- Department of Biology, Division of Molecular Biology, University of Zagreb, Faculty of Science, Zagreb, Croatia
| | - Joan Vallès
- Laboratori de Botànica (UB) - Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Catalonia, Spain
- * E-mail: (SY); (JV)
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
27
|
Barros AV, Wolski MAV, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene 2017; 608:20-27. [DOI: 10.1016/j.gene.2017.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
|
28
|
Mattos VF, Carvalho LS, Cella DM, Schneider MC. Location of 45S Ribosomal Genes in Mitotic and Meiotic Chromosomes of Buthid Scorpions. Zoolog Sci 2016; 31:603-7. [PMID: 25186932 DOI: 10.2108/zs140005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Buthid scorpions exhibit a high variability in diploid number within genera and even within species. Cytogenetically, Buthidae differs from other families of Scorpiones based on its low diploid numbers, holocentric chromosomes, and complex chromosomal chains, which form during meiosis. In this study, we analyzed the distribution of the 45S ribosomal DNA (rDNA) genes in the mitotic and meiotic chromosomes of seven buthid species belonging to the genera Rhopalurus and Tityus with the ultimate goal of elucidating the chromosome organization in these scorpions. The chromosome number ranged from 2n=6 to 2n=28. Despite the high variance in diploid number, all species examined carried their 45S rDNA sites in the terminal region of exactly two chromosomes. Analyses of meiotic cells revealed 45S rDNA clusters in the chromosomal chains of Rhopalurus agamemnon, Tityus bahiensis, Tityus confluens, and Tityus martinpaechi, or in bivalent-like configuration in Rhopalurus rochai, Tityus bahiensis, Tityus confluens, Tityus fasciolatus, and Tityus paraguayensis. In the species examined, the 45S rDNA sites colocalized with constitutive heterochromatin regions. In light of the high chromosome variability and maintenance of number and terminal position of 45S rDNA sites in buthids, the heterochromatin may act to conserve the integrity of the ribosomal genes.
Collapse
Affiliation(s)
- Viviane Fagundes Mattos
- 1 Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Biologia, Avenida 24-A, 1515, Caixa Postal 199, 13506-900, Rio Claro, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
29
|
Totta C, Rosato M, Ferrer-Gallego P, Lucchese F, Rosselló JA. Temporal frames of 45S rDNA site-number variation in diploid plant lineages: lessons from the rock rose genusCistus(Cistaceae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chiara Totta
- Università degli Studi Roma Tre; Viale G. Marconi 446 00146 Rome Italy
| | - Marcela Rosato
- Jardín Botánico-ICBiBE-Unidad Asociada CSIC; Universidad de Valencia; c/Quart 80 E46008 Valencia Spain
| | - Pablo Ferrer-Gallego
- CIEF, Servicio de Vida Silvestre; Generalitat Valenciana; Avda. Comarques del País Valencià 114 E46930 Valencia Spain
| | - Fernando Lucchese
- Università degli Studi Roma Tre; Viale G. Marconi 446 00146 Rome Italy
| | - Josep A. Rosselló
- Jardín Botánico-ICBiBE-Unidad Asociada CSIC; Universidad de Valencia; c/Quart 80 E46008 Valencia Spain
- Carl Faust Fdn.; PO Box 112 E17300 Blanes Spain
| |
Collapse
|
30
|
Scaldaferro MA, da Cruz MVR, Cecchini NM, Moscone EA. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae). Genome 2016; 59:95-113. [PMID: 26853884 DOI: 10.1139/gen-2015-0099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA.
Collapse
Affiliation(s)
- Marisel A Scaldaferro
- a Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina.,b Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, CP 5000, Córdoba, Argentina
| | | | - Nicolás M Cecchini
- d Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS Room W519P, Chicago, USA
| | - Eduardo A Moscone
- a Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| |
Collapse
|
31
|
Rosato M, Kovařík A, Garilleti R, Rosselló JA. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants. PLoS One 2016; 11:e0162544. [PMID: 27622766 PMCID: PMC5021289 DOI: 10.1371/journal.pone.0162544] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes.
Collapse
Affiliation(s)
- Marcela Rosato
- Jardín Botánico, ICBiBE-Unidad Asociada CSIC, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ–61265, Czech Republic
| | - Ricardo Garilleti
- Departamento de Botánica, Facultad de Farmacia, Universidad de Valencia, E-46100, Burjassot, Spain
| | - Josep A. Rosselló
- Jardín Botánico, ICBiBE-Unidad Asociada CSIC, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
- Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300, Blanes, Catalonia, Spain
- * E-mail:
| |
Collapse
|
32
|
A Survey of Genetic Variation and Genome Evolution within the Invasive Fallopia Complex. PLoS One 2016; 11:e0161854. [PMID: 27575805 PMCID: PMC5004975 DOI: 10.1371/journal.pone.0161854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/13/2016] [Indexed: 11/24/2022] Open
Abstract
The knotweed taxa Fallopia japonica, F. sachalinensis and their interspecific hybrid F. × bohemica are some of the most aggressive invaders in Europe and North America and they are serious threats to native biodiversity. At the same time, they constitute a unique model system for the creation of hybrids and studies of the initiation of evolutionary processes. In the presented study, we focused on (i) examining genetic diversity in selected populations of three Fallopia taxa in the invaded (Poland) and native ranges (Japan), (ii) establishing genome size and ploidy levels and (iii) identifying ribosomal DNA (rDNA)-bearing chromosomes in all of the taxa from the invaded range. We found that the genetic diversity within particular taxa was generally low regardless of their geographical origin. A higher level of clonality was observed for the Polish populations compared to the Japanese populations. Our study suggests that the co-occurrence of F. sachalinensis together with the other two taxa in the same stand may be the source of the higher genetic variation within the F. × bohemica hybrid. Some shift towards the contribution of F. japonica alleles was also observed for selected F. × bohemica individuals, which indicates the possibility of producing more advanced generations of F. × bohemica hybrids. All of the F. sachalinensis individuals were hexaploid (2n = 6x = 66; 2C = 6.01 pg), while those of F. japonica were mostly octoploid (2n = 8x = 88; 2C = 8.87 pg) and all of the F. × bohemica plants except one were hexaploid (2n = 6x = 66; 2C = 6.46 pg). Within the chromosome complement of F. japonica, F. sachalinensis and F. × bohemica, the physical mapping of the rDNA loci provided markers for 16, 13 and 10 chromosomes, respectively. In F. × bohemica, a loss of some of rDNA loci was observed, which indicates the occurrence of genome changes in the hybrid.
Collapse
|
33
|
Comparative cytogenetic analysis of four species of Dendropsophus (Hylinae) from the Brazilian Atlantic forest. J Genet 2016; 95:349-55. [PMID: 27350679 DOI: 10.1007/s12041-016-0645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We conducted a cytogenetic study of four hyline frog species (Dendropsophus elegans, D. microps, D. minutus and D. werneri) from southern Brazil. All species had 2n = 30 chromosomes, with interspecific and intraspecific variation in the numbers of metacentric, submetacentric, subtelocentric and telocentric chromosomes. C-banding and fluorochrome staining revealed conservative GC-rich heterochromatin localized in the pericentromeric regions of all species. The location of the nucleolus organizer regions, as confirmed by fluorescent in situ hybridization, differed between species. Telomeric probes detected sites that were restricted to the terminal regions of all chromosomes and no interstitial or centromeric signals were observed. Our study corroborates the generic synapomorphy of 2n = 30 chromosomes for Dendropsophus and adds data that may become useful for future taxonomic revisions and a broader understanding of chromosomal evolution among hylids.
Collapse
|
34
|
Roa F, Guerra M. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet Genome Res 2015; 146:243-9. [PMID: 26489031 DOI: 10.1159/000440930] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.
Collapse
|
35
|
Książczyk T, Zwierzykowska E, Molik K, Taciak M, Krajewski P, Zwierzykowski Z. Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. PROTOPLASMA 2015; 252:985-996. [PMID: 25480732 PMCID: PMC4491343 DOI: 10.1007/s00709-014-0734-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
We focus on the identification of complete and recombined ribosomal DNA-bearing chromosomes, and the dynamics of chromosomal number and position of ribosomal DNA (rDNA) loci in the F2-F4 generations derived from the F1 hybrid of Festuca pratensis Huds. (2n = 4x = 28) × Lolium perenne L. (2n = 4x = 28). Lolium genomic DNA and rRNA genes were mapped by means of genomic and fluorescence in situ hybridization (GISH and FISH). The results revealed that plants of the three generations share various rDNA loci profiles with chromosome structural changes, possibly as a result of chromosomal inter- and intra-rearrangements. We observed an asymmetrical variation in the number of recombinant arms with and without rDNA loci between parental genomes. The Lolium genome was more affected by rearrangements in arms with rDNA loci, while Festuca was more affected in arms without them. Statistically significant differences between L. perenne and F. pratensis genomes concerned the number of recombined chromosomes without rDNA, and the number of recombined rDNA-bearing chromosomal arms of marked chromosomes, showing a tendency of F. pratensis genome-like chromosomes to be less stable, compared with L. perenne. We postulate a novel genome-dependent range and type of chromosome variation in plants of the F2-F4 generations derived from F. pratensis × L. perenne hybrid.
Collapse
Affiliation(s)
- Tomasz Książczyk
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland,
| | | | | | | | | | | |
Collapse
|
36
|
Rocha LC, Bustamante FDO, Silveira RAD, Torres GA, Mittelmann A, Techio VH. Functional repetitive sequences and fragile sites in chromosomes of Lolium perenne L. PROTOPLASMA 2015; 252:451-60. [PMID: 25141824 DOI: 10.1007/s00709-014-0690-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/13/2014] [Indexed: 05/26/2023]
Abstract
Lolium perenne is considered a high-quality forage widely used in temperate regions to meet the shortage of forage during the winter. In this species, some peculiarities related to cytogenetic aspects have already been described, as the variability in number and position of 45S ribosomal DNA (rDNA) sites and the expression of fragile sites, which require further studies to support the understanding of their causes and consequences. In this way, this study aimed to evaluate the relationship between the expression of fragile sites and functional repetitive sequences (rDNA and telomeric) in chromosomes of diploid and polyploid cultivars of L. perenne. The techniques of FISH, Ag-NOR and fluorescence banding were used to assess the distribution of sites of 45S rDNA, 5S, telomeric sequences, and the transcriptional activity of the 45S ribosomal genes and the distribution of AT- and/or GC-rich sequences in L. perenne, respectively. There was variability in the number and location of 45S rDNA sites, which was not observed for 5S rDNA sites. One of the genotypes showed two 45S rDNA sites on the same chromosome, located in different chromosome arms. Breaks and gaps were found in 45S rDNA sites in most metaphases evaluated for both cultivars. Telomeric sequences were not detected at the end of the chromosomal fragments corresponding to the location of breaks at 45S sites. Apparently, the transcriptional activity was modified in fragile sites. Variation in the number and size of nucleoli, nucleolar fusions and dissociations were observed. All CMA(+) bands were colocalized with the 45S sites.
Collapse
Affiliation(s)
- Laiane Corsini Rocha
- Department of Biology, Federal University of Lavras, P.O. Box 3037, 37200-000, Lavras, Minas Gerais State, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
She CW, Jiang XH, Ou LJ, Liu J, Long KL, Zhang LH, Duan WT, Zhao W, Hu JC. Molecular cytogenetic characterisation and phylogenetic analysis of the seven cultivated Vigna species (Fabaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:268-80. [PMID: 24750425 DOI: 10.1111/plb.12174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 05/07/2023]
Abstract
The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual-colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD-banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species.
Collapse
MESH Headings
- Base Sequence
- Chromosomes, Plant/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Fabaceae/cytology
- Fabaceae/genetics
- Genome, Plant/genetics
- In Situ Hybridization, Fluorescence
- Karyotype
- Mitosis/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Leaves/cytology
- Plant Leaves/genetics
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- C-W She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, China; Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, China; Department of Life Sciences, Huaihua University, Huaihua, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Evolutionary dynamics of rDNA clusters in chromosomes of five clam species belonging to the family Veneridae (Mollusca, Bivalvia). BIOMED RESEARCH INTERNATIONAL 2014; 2014:754012. [PMID: 24967400 PMCID: PMC4054880 DOI: 10.1155/2014/754012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/26/2022]
Abstract
The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae.
Collapse
|
39
|
Molecular cytogenetics (FISH and fluorochrome banding): resolving species relationships and genome organization. Methods Mol Biol 2014; 1115:309-23. [PMID: 24415481 DOI: 10.1007/978-1-62703-767-9_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorochrome banding (chromomycin, Hoechst, and DAPI) and fluorescence in situ hybridization (FISH) are excellent molecular cytogenetic tools providing various possibilities in the study of chromosomal evolution and genome organization. The constitutive heterochromatin and rRNA genes are the most widely used FISH markers. The rDNA is organized into two distinct gene families (18S-5.8S-26S and 5S) whose number and location vary within the complex of closely related species. Therefore, they are widely used as chromosomal landmarks to provide valuable evidence concerning genome evolution at chromosomal levels.
Collapse
|
40
|
Falistocco E, Marconi G, Falcinelli M. Comparative cytogenetic study on Trifolium subterraneum (2n = 16) and Trifolium israeliticum (2n = 12). Genome 2013; 56:307-13. [PMID: 23957670 DOI: 10.1139/gen-2013-0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in chromosome number have played an important role in the evolution of the genus Trifolium. Along with a few species of polyploid origin there are several cases of dysploidy as evidenced by the presence of four basic chromosome numbers (x = 8, 7, 6, 5). Trifolium subterraneum and Trifolium israeliticum are related species with chromosome complements 2n = 16 and 2n = 12, respectively. Although they represent an interesting case of speciation based on chromosome number reduction, no attempts to demonstrate their cytogenetic affinity have been carried out to date. With this study we performed a comparative cytogenetic study with the purpose of clarifying the evolutionary relationship between these species and to verify whether genomic rearrangements, other than modification of the chromosome number, are associated with the speciation process. Although karyomorphological analysis supports the hypothesis that chromosome rearrangements had a role in the reduction of the chromosome number, the physical mapping of the rDNA sequences revealed a significant remodelling of the 45S and 5S rDNA sites that greatly contributed to the differentiation of the 2n = 16 and 2n = 12 karyotypes. The nucleotide analysis of 5S rDNA repeats confirmed that the two species are related but constitute distinct entities. The observed genomic changes lead to the hypothesis that the 2n = 12 species is the result of an evolutionary pathway that passed through intermediate forms. It cannot be excluded that the most direct ancestor of T. israeliticum is a species with 2n = 14.
Collapse
Affiliation(s)
- Egizia Falistocco
- Department of Applied Biology, University of Perugia, Borgo XX Giugno, 06100 Perugia, Italy.
| | | | | |
Collapse
|
41
|
Proux-Wéra E, Byrne KP, Wolfe KH. Evolutionary mobility of the ribosomal DNA array in yeasts. Genome Biol Evol 2013; 5:525-31. [PMID: 23419706 PMCID: PMC3622299 DOI: 10.1093/gbe/evt022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ribosomal DNA (rDNA) of eukaryotes is organized as large tandem arrays. Here, we compare the genomic locations of rDNA among yeast species and show that, despite its huge size (>1 Mb), the rDNA array has moved around the genome several times within the family Saccharomycetaceae. We identify an ancestral, nontelomeric, rDNA site that is conserved across many species including Saccharomyces cerevisiae. Within the genus Lachancea, however, the rDNA apparently transposed from the ancestral site to a new site internal to a different chromosome, becoming inserted into a short intergenic region beside a tRNA gene. In at least four other yeast lineages, the rDNA moved from the ancestral site to telomeric locations. Remarkably, both the ancestral rDNA site and the new site in Lachancea are adjacent to protein-coding genes whose products maintain the specialized chromatin structure of rDNA (HMO1 and CDC14, respectively). In almost every case where the rDNA was lost from the ancestral site, the entire array disappeared without any other rearrangements in the region, leaving just an intergenic spacer of less than 2 kb. The mechanism by which this large and complex locus moves around the genome is unknown, but we speculate that it may involve the formation of double-strand DNA breaks by Fob1 protein or the formation of extrachromosomal rDNA circles.
Collapse
|
42
|
Bruschi DP, Busin CS, Toledo LF, Vasconcellos GA, Strussmann C, Weber LN, Lima AP, Lima JD, Recco-Pimentel SM. Evaluation of the taxonomic status of populations assigned to Phyllomedusa hypochondrialis (Anura, Hylidae, Phyllomedusinae) based on molecular, chromosomal, and morphological approach. BMC Genet 2013; 14:70. [PMID: 23937545 PMCID: PMC3751434 DOI: 10.1186/1471-2156-14-70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/30/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The taxonomic and phylogenetic relationships of the genus Phyllomedusa have been amply discussed. The marked morphological similarities among some species hamper the reliable identification of specimens and may often lead to their incorrect taxonomic classification on the sole basis of morphological traits. Phenotypic variation was observed among populations assigned to either P. azurea or P. hypochondrialis. In order to evaluate whether the variation observed in populations assigned to P. hypochondrialis is related to that in genotypes, a cytogenetic analysis was combined with phylogenetic inferences based on mitochondrial and nuclear sequences. RESULTS The inter- and intra-population variation in the external morphology observed among the specimens analyzed in the present study do not reflect the phylogenetic relationships among populations. A monophyletic clade was recovered, grouping all the specimens identified as P. hypochondrialis and specimens assigned P. azurea from Minas Gerais state. This clade is characterized by conserved chromosomal morphology and a common C-banding pattern. Extensive variation in the nucleolar organizing region (NOR) was observed among populations, with four distinct NOR positions being recognized in the karyotypes. Intra-population polymorphism of the additional rDNA clusters observed in specimens from Barreiras, Bahia state, also highlights the marked genomic instability of the rDNA in the genome of this group. Based on the topology obtained in the phylogenetic analyses, the re-evaluation of the taxonomic status of the specimens from the southernmost population known in Brazil is recommended. CONCLUSIONS The results of this study support the need for a thorough revision of the phenotypic features used to discriminate P. azurea and P. hypochondrialis. The phylogenetic data presented here also contribute to an extension of the geographic range of P. hypochondrialis, which is known to occur in the Amazon basin and neighboring areas of the Cerrado savanna, where it may be sympatric with P. azurea, within contact zones. The misidentification of specimens may have led to inconsistencies in the original definition of the geographic range of P. azurea. The variability observed in the NOR of P. hypochondrialis reinforces the conclusion that these sites represent hotspots of rearrangement. Intraspecific variation in the location of these sites is the result of constant rearrangements that are not detected by classical cytogenetic methods or are traits of an ancestral, polymorphic karyotype, which would not be phylogenetically informative for this group.
Collapse
Affiliation(s)
- Daniel Pacheco Bruschi
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), 13083-863 Campinas, SP, Brazil
| | - Carmen Sílvia Busin
- Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade de Passo Fundo (UPF), CEP 99001-970 Passo Fundo, RS, Brazil
| | - Luís Felipe Toledo
- Museu de Zoologia "Prof. Adão José Cardoso", Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas, SP, Brazil
| | - Gilda Andrade Vasconcellos
- Departamento de Biologia, Centro de Ciências da Saúde, Universidade Federal do Maranhão, 65085-580 São Luis, MA, Brazil
| | - Christine Strussmann
- Departamento de Ciências Básicas e Produção Animal, Faculdade de Agronomia, Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT, Brazil
| | - Luiz Norberto Weber
- Departamento de Biologia, Centro de Ciências da Saúde, Universidade Federal do Maranhão, 65085-580 São Luis, MA, Brazil
| | | | - Jucivaldo Dias Lima
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Divisão de Zoologia, 68912-250 Macapá, AP, Brazil
| | - Shirlei Maria Recco-Pimentel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), 13083-863 Campinas, SP, Brazil
| |
Collapse
|
43
|
Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity (Edinb) 2013; 111:410-21. [PMID: 23838690 DOI: 10.1038/hdy.2013.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 11/08/2022] Open
Abstract
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.
Collapse
|
44
|
Barros e Silva A, dos Santos Soares Filho W, Guerra M. Linked 5S and 45S rDNA Sites Are Highly Conserved through the Subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 2013; 140:62-9. [DOI: 10.1159/000350695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
|
45
|
Chacón J, Sousa A, Baeza CM, Renner SS. Ribosomal DNA distribution and a genus-wide phylogeny reveal patterns of chromosomal evolution in Alstroemeria (Alstroemeriaceae). AMERICAN JOURNAL OF BOTANY 2012; 99:1501-12. [PMID: 22956470 DOI: 10.3732/ajb.1200104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
PREMISE OF THE STUDY Understanding the flexibility of monocot genomes requires a phylogenetic framework, which so far is available for few of the ca. 2800 genera. Here we use a molecular tree for the South American genus Alstroemeria to place karyological information, including fluorescent in situ hybridization (FISH) signals, in an explicit evolutionary context. METHODS From a phylogeny based on plastid, nuclear, and mitochondrial sequences for most species of Alstroemeria, we selected early-branching (Chilean) and derived (Brazilian) species for which we obtained 18S-25S and 5S rDNA FISH signals; we also analyzed chromosome numbers, 1C-values, and telomere FISH signals (in two species). KEY RESULTS Chromosome counts for Alstroemeria cf. rupestris and A. pulchella confirm 2n = 16 as typical of the genus, which now has chromosomes counted for 29 of its 78 species. The rDNA sites are polymorphic both among and within species, and interstitial telomeric sites in Alstroemeria cf. rupestris suggest chromosome fusion. CONCLUSIONS In spite of a constant chromosome number, closely related species of Alstroemeria differ drastically in their rDNA, indicating rapid increase, decrease, or translocations of these genes. Previously proposed Brazilian and Chilean karyotype groups are not natural, and the n = 8 chromosomes in Alstroemeria compared to n = 9 in its sister genus Bomarea may result from a Robertsonian fusion.
Collapse
Affiliation(s)
- Juliana Chacón
- Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany.
| | | | | | | |
Collapse
|
46
|
Viana AJC, Souza MM. Comparative cytogenetics between the species Passiflora edulis and Passiflora cacaoensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:820-827. [PMID: 22404746 DOI: 10.1111/j.1438-8677.2011.00557.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Passiflora edulis Sims is the most economically important species of the genus Passiflora. A new species was described recently, Passiflora cacaoensis Bernacci & Souza, which displayed morphologic characteristics very similar to P. edulis. Due to the need for delimitation of the two species, karyomorphological and banding analyses were carried out. Both species have 2n = 18, with the same karyotype formula 16 m + 2sm. There was variation between the species regarding the location of satellites and the width of chromosome pairs 2, 4 and 8. C banding revealed the presence of constitutive heterochromatin in the centromeric and telomeric regions of all chromosomes in both species. However, only in P. cacaoensis did chromosomes 3 and 9 have a large quantity of heterochromatin. Fluorochrome banding revealed CMA(+) bands only in the satellites, but no DAPI(+) bands. Fluorescence in situ hybridisation (FISH) showed that in P. cacaoensis the rDNA 5S probe is located in a single site in the subterminal position of the long arm of chromosome 5. However, for the rDNA 45S probe, two sites were detected in terminal positions of the long arms of chromosome 7, with a bigger and stronger signal, and of chromosome 9. According to the asymmetry index and the quantity of heterochromatin, P. cacaoensis is a more basal species than P. edulis. The cytogenetic data indicate that P. cacaoensis is closely related to P. edulis, but is a different species.
Collapse
Affiliation(s)
- A J C Viana
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - M M Souza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| |
Collapse
|
47
|
Classical and molecular cytogenetics of Khawia sinensis (Cestoda: Caryophyllidea), invasive parasite of carp, Cyprinus carpio. Parasitol Res 2011; 110:1937-44. [DOI: 10.1007/s00436-011-2720-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
|
48
|
Britton-Davidian J, Cazaux B, Catalan J. Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: micro-evolutionary insights. Heredity (Edinb) 2011; 108:68-74. [PMID: 22086078 DOI: 10.1038/hdy.2011.105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Variation in the number and chromosomal location of nucleolar organizer regions (NORs) was studied in the house mouse, Mus musculus (2n=40). From an origin in Western Asia, this species colonized the Middle East, Europe and Asia. This expansion was accompanied by diversification into five subspecies. NOR diversity was revealed by fluorescence in situ hybridization using 18S and 28S probes on specimens spanning Asia to Western Europe. The results showed that the house mouse genome possessed a large number of NOR-bearing autosomes and a surprisingly high rate of polymorphism for the presence/absence of rRNA genes on all these chromosomes. All NOR sites were adjacent to the centromere except for two that were telomeric. Subspecific differentiation established from the NOR frequency data was concordant with the overall pattern of radiation proposed from molecular studies, but highlighted several discrepancies that need to be further addressed. NOR diversity in M. musculus consisted of a large number of polymorphic NORs that were common to at least two subspecies, and a smaller number of NORs that were unique to one subspecies. The most parsimonious scenario argues in favor of a subspecific differentiation by lineage sorting of ancestral NOR polymorphisms; only the unique NORs would have appeared by inter-chromosomal transposition, except for the two telomeric ones that may have originated by hybridization with another species. Such a scenario provides an alternative view from the one prevailing in most systematic and phylogenetic analyses that NORs have a high transposition rate due to concerted evolution of rRNA genes.
Collapse
Affiliation(s)
- J Britton-Davidian
- Institut des Sciences de l'Evolution, Université Montpellier 2, Montpellier cedex, France.
| | | | | |
Collapse
|
49
|
|
50
|
Lan T, Albert VA. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid. BMC PLANT BIOLOGY 2011; 11:126. [PMID: 21910890 PMCID: PMC3184063 DOI: 10.1186/1471-2229-11-126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/12/2011] [Indexed: 05/07/2023]
Abstract
Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH) studies using 5S and 25S ribosomal DNA (rDNA) probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS) to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus) to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS) sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These results make the genus a model system for the study of complex chromosomal evolution in plants.
Collapse
Affiliation(s)
- Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|