1
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
2
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
3
|
Mohr DW, Gaughran SJ, Paschall J, Naguib A, Pang AWC, Dudchenko O, Aiden EL, Church DM, Scott AF. A Chromosome-Length Assembly of the Hawaiian Monk Seal (Neomonachus schauinslandi): A History of “Genetic Purging” and Genomic Stability. Genes (Basel) 2022; 13:genes13071270. [PMID: 35886053 PMCID: PMC9323584 DOI: 10.3390/genes13071270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The Hawaiian monk seal (HMS) is the single extant species of tropical earless seals of the genus Neomonachus. The species survived a severe bottleneck in the late 19th century and experienced subsequent population declines until becoming the subject of a NOAA-led species recovery effort beginning in 1976 when the population was fewer than 1000 animals. Like other recovering species, the Hawaiian monk seal has been reported to have reduced genetic heterogeneity due to the bottleneck and subsequent inbreeding. Here, we report a chromosomal reference assembly for a male animal produced using a variety of methods. The final assembly consisted of 16 autosomes, an X, and portions of the Y chromosomes. We compared variants in this animal to other HMS and to a frequently sequenced human sample, confirming about 12% of the variation seen in man. To confirm that the reference animal was representative of the HMS, we compared his sequence to that of 10 other individuals and noted similarly low variation in all. Variation in the major histocompatibility (MHC) genes was nearly absent compared to the orthologous human loci. Demographic analysis predicts that Hawaiian monk seals have had a long history of small populations preceding the bottleneck, and their current low levels of heterozygosity may indicate specialization to a stable environment. When we compared our reference assembly to that of other species, we observed significant conservation of chromosomal architecture with other pinnipeds, especially other phocids. This reference should be a useful tool for future evolutionary studies as well as the long-term management of this species.
Collapse
Affiliation(s)
- David W. Mohr
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.W.M.); (J.P.)
| | - Stephen J. Gaughran
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Justin Paschall
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.W.M.); (J.P.)
| | - Ahmed Naguib
- Bionano Genomics, Inc., 9640 Towne Centre Dr., Suite 100, San Diego, CA 92121, USA; (A.N.); (A.W.C.P.)
| | - Andy Wing Chun Pang
- Bionano Genomics, Inc., 9640 Towne Centre Dr., Suite 100, San Diego, CA 92121, USA; (A.N.); (A.W.C.P.)
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (O.D.); (E.L.A.)
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (O.D.); (E.L.A.)
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | | | - Alan F. Scott
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.W.M.); (J.P.)
- Correspondence:
| |
Collapse
|
4
|
Peart CR, Williams C, Pophaly SD, Neely BA, Gulland FMD, Adams DJ, Ng BL, Cheng W, Goebel ME, Fedrigo O, Haase B, Mountcastle J, Fungtammasan A, Formenti G, Collins J, Wood J, Sims Y, Torrance J, Tracey A, Howe K, Rhie A, Hoffman JI, Johnson J, Jarvis ED, Breen M, Wolf JBW. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution. Mol Ecol Resour 2021; 21:2455-2470. [PMID: 34097816 PMCID: PMC9732816 DOI: 10.1111/1755-0998.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.
Collapse
Affiliation(s)
- Claire R. Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Saurabh D. Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
- Max Planck institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin A. Neely
- National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina, USA
| | - Frances M. D. Gulland
- Karen Dryer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - David J. Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - William Cheng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Michael E. Goebel
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, California, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | | | | | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, New York, USA
| | - Joanna Collins
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Jonathan Wood
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Ying Sims
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - James Torrance
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alan Tracey
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Kerstin Howe
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, Cambridge, UK
| | - Jeremy Johnson
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| |
Collapse
|
5
|
Chueca LJ, Kochmann J, Schell T, Greve C, Janke A, Pfenninger M, Klimpel S. De novo Genome Assembly of the Raccoon Dog ( Nyctereutes procyonoides). Front Genet 2021; 12:658256. [PMID: 33995489 PMCID: PMC8117329 DOI: 10.3389/fgene.2021.658256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luis J Chueca
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany.,Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
| | - Judith Kochmann
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Tilman Schell
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany
| | - Carola Greve
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany
| | - Axel Janke
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Markus Pfenninger
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Mainz, Germany
| | - Sven Klimpel
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H, Kadlcikova D, Musilová P, Duarte JM, Rubes J. Satellite DNA in Neotropical Deer Species. Genes (Basel) 2021; 12:genes12010123. [PMID: 33478071 PMCID: PMC7835801 DOI: 10.3390/genes12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +4205-3333-1422
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Petra Musilová
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Jose Mauricio Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| |
Collapse
|
7
|
Dalla Benetta E, Antoshechkin I, Yang T, Nguyen HQM, Ferree PM, Akbari OS. Genome elimination mediated by gene expression from a selfish chromosome. SCIENCE ADVANCES 2020; 6:eaaz9808. [PMID: 32284986 PMCID: PMC7124933 DOI: 10.1126/sciadv.aaz9808] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/14/2020] [Indexed: 05/16/2023]
Abstract
Numerous plants and animals harbor selfish B chromosomes that "drive" or transmit themselves at super-Mendelian frequencies, despite long-term fitness costs to the organism. Currently, it is unknown how B chromosome drive is mediated, and whether B-gene expression plays a role. We used modern sequencing technologies to analyze the fine-scale sequence composition and expression of paternal sex ratio (PSR), a B chromosome in the jewel wasp Nasonia vitripennis. PSR causes female-to-male conversion by destroying the sperm's hereditary material in young embryos to drive. Using RNA interference, we demonstrate that testis-specific expression of a PSR-linked gene, named haploidizer, facilitates this genome elimination-and-sex conversion effect. haploidizer encodes a putative protein with a DNA binding domain, suggesting a functional link with the sperm-derived chromatin.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hoa Quang My Nguyen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Tata Institute for Genetics and Society–UCSD, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Pellestor F, Gatinois V. Chromoanagenesis: a piece of the macroevolution scenario. Mol Cytogenet 2020; 13:3. [PMID: 32010222 PMCID: PMC6988253 DOI: 10.1186/s13039-020-0470-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Over the last decade, new types of massive and complex chromosomal rearrangements based on the chaotic shattering and restructuring of chromosomes have been identified in cancer cells as well as in patients with congenital diseases and healthy individuals. These unanticipated phenomena are named chromothripsis, chromoanasynthesis and chromoplexy, and are grouped under the term of chromoanagenesis. As mechanisms for rapid and profound genome modifications in germlines and early development, these processes can be regarded as credible pathways for genomic evolution and speciation process. Their discovery confirms the importance of genome-centric investigations to fully understand organismal evolution. Because they oppose the model of progressive acquisition of driver mutations or rearrangements, these phenomena conceptually give support to the concept of macroevolution, known through the models of “Hopeful Monsters” and the “Punctuated Equilibrium”. In this review, we summarize mechanisms underlying chromoanagenesis processes and we show that numerous cases of chromosomal speciation and short-term adaptation could be correlated to chromoanagenesis-related mechanisms. In the frame of a modern and integrative analysis of eukaryote evolutionary processes, it seems important to consider the unexpected chromoanagenesis phenomena.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| | - Vincent Gatinois
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM 1183 «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
9
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Vodicka R, Rubes J. Comparative Study of the Bush Dog (Speothos venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet Genome Res 2019; 159:88-96. [DOI: 10.1159/000503082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
The bush dog (Speothos venaticus, 2n = 74) is a near threatened species taxonomically classified among South American canids. We revised the bush dog karyotype and performed a comparative sequence analysis of satellite and satellite-like DNAs in 6 canids: the bush dog, domestic dog (Canis familiaris, 2n = 78), grey wolf (C. lupus, 2n = 78), Chinese raccoon dog (Nyctereutes procyonoides procyonoides, 2n = 54+B), red fox (Vulpes vulpes, 2n = 34+B), and arctic fox (V. lagopus, 2n = 48-50) to specify the species position among Canidae. Using FISH with painting and BAC probes, we found that the distribution of canid evolutionarily conserved chromosome segments in the bush dog karyotype is similar to that of the domestic dog and grey wolf. The bush dog karyotype differs by 2 acrocentric chromosome pairs formed by tandem fusions of the canine (29;34) and (26;35) orthologues. An interstitial signal of the telomeric probe was observed in the (26;35) fusion site in the bush dog indicating a recent evolutionary origin of this rearrangement. Sequences and hybridisation patterns of satellite DNAs were compared, and a phylogenetic tree of the 6 canid species was constructed which confirmed the bush dog position close to the wolf-like canids, and apart from the raccoon dog and foxes.
Collapse
|
10
|
Dhar MK, Kour J, Kaul S. Origin, Behaviour, and Transmission of B Chromosome with Special Reference to Plantago lagopus. Genes (Basel) 2019; 10:E152. [PMID: 30781667 PMCID: PMC6410184 DOI: 10.3390/genes10020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
B chromosomes have been reported in many eukaryotic organisms. These chromosomes occur in addition to the standard complement of a species. Bs do not pair with any of the A chromosomes and they have generally been considered to be non-essential and genetically inert. However, due to tremendous advancements in the technologies, the molecular composition of B chromosomes has been determined. The sequencing data has revealed that B chromosomes have originated from A chromosomes and they are rich in repetitive elements. In our laboratory, a novel B chromosome was discovered in Plantago lagopus. Using molecular cytogenetic techniques, the B chromosome was found to be composed of ribosomal DNA sequences. However, further characterization of the chromosome using next generation sequencing (NGS) etc. revealed that the B chromosome is a mosaic of sequences derived from A chromosomes, 5S ribosomal DNA (rDNA), 45S rDNA, and various types of repetitive elements. The transmission of B chromosome through the female sex track did not follow the Mendelian principles. The chromosome was found to have drive due to which it was perpetuating in populations. The present paper attempts to summarize the information on nature, transmission, and origin of B chromosomes, particularly the current status of our knowledge in P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Jasmeet Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| |
Collapse
|
11
|
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019; 8:E156. [PMID: 30781835 PMCID: PMC6406668 DOI: 10.3390/cells8020156] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call "B-omics". We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Dalla Benetta E, Akbari OS, Ferree PM. Sequence Expression of Supernumerary B Chromosomes: Function or Fluff? Genes (Basel) 2019; 10:E123. [PMID: 30744010 PMCID: PMC6409846 DOI: 10.3390/genes10020123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
B chromosomes are enigmatic heritable elements found in the genomes of numerous plant and animal species. Contrary to their broad distribution, most B chromosomes are non-essential. For this reason, they are regarded as genome parasites. In order to be stably transmitted through generations, many B chromosomes exhibit the ability to "drive", i.e., they transmit themselves at super-Mendelian frequencies to progeny through directed interactions with the cell division apparatus. To date, very little is understood mechanistically about how B chromosomes drive, although a likely scenario is that expression of B chromosome sequences plays a role. Here, we highlight a handful of previously identified B chromosome sequences, many of which are repetitive and non-coding in nature, that have been shown to be expressed at the transcriptional level. We speculate on how each type of expressed sequence could participate in B chromosome drive based on known functions of RNA in general chromatin- and chromosome-related processes. We also raise some challenges to functionally testing these possible roles, a goal that will be required to more fully understand whether and how B chromosomes interact with components of the cell for drive and transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Patrick M Ferree
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
13
|
Sequence Composition and Evolution of Mammalian B Chromosomes. Genes (Basel) 2018; 9:genes9100490. [PMID: 30309007 PMCID: PMC6211034 DOI: 10.3390/genes9100490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
B chromosomes (Bs) revealed more than a hundred years ago remain to be some of the most mysterious elements of the eukaryotic genome. Their origin and evolution, DNA composition, transcriptional activity, impact on adaptiveness, behavior in meiosis, and transfer to the next generation require intensive investigations using modern methods. Over the past years, new experimental techniques have been applied and helped us gain a deeper insight into the nature of Bs. Here, we consider mammalian Bs, taking into account data on their DNA sequencing, transcriptional activity, positions in nuclei of somatic and meiotic cells, and impact on genome functioning. Comparative cytogenetics of Bs suggests the existence of different mechanisms of their formation and evolution. Due to the long and complicated evolvement of Bs, the similarity of their morphology could be explained by the similar mechanisms involved in their development while the difference between Bs even of the same origin could appear due to their positioning at different stages of their evolution. A complex analysis of their DNA composition and other features is required to clarify the origin and evolutionary history of Bs in the species studied. The intraspecific diversity of Bs makes this analysis a very important element of B chromosome studies.
Collapse
|
14
|
Vujošević M, Rajičić M, Blagojević J. B Chromosomes in Populations of Mammals Revisited. Genes (Basel) 2018; 9:E487. [PMID: 30304868 PMCID: PMC6210394 DOI: 10.3390/genes9100487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
The study of B chromosomes (Bs) started more than a century ago, while their presence in mammals dates since 1965. As the past two decades have seen huge progress in application of molecular techniques, we decided to throw a glance on new data on Bs in mammals and to review them. We listed 85 mammals with Bs that make 1.94% of karyotypically studied species. Contrary to general view, a typical B chromosome in mammals appears both as sub- or metacentric that is the same size as small chromosomes of standard complement. Both karyotypically stable and unstable species possess Bs. The presence of Bs in certain species influences the cell division, the degree of recombination, the development, a number of quantitative characteristics, the host-parasite interactions and their behaviour. There is at least some data on molecular structure of Bs recorded in nearly a quarter of species. Nevertheless, a more detailed molecular composition of Bs presently known for six mammalian species, confirms the presence of protein coding genes, and the transcriptional activity for some of them. Therefore, the idea that Bs are inert is outdated, but the role of Bs is yet to be determined. The maintenance of Bs is obviously not the same for all species, so the current models must be adapted while bearing in mind that Bs are not inactive as it was once thought.
Collapse
Affiliation(s)
- Mladen Vujošević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Marija Rajičić
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Jelena Blagojević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| |
Collapse
|
15
|
Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours. J Appl Genet 2018; 60:63-70. [DOI: 10.1007/s13353-018-0471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
|
16
|
Kichigin IG, Lisachov AP, Giovannotti M, Makunin AI, Kabilov MR, O'Brien PCM, Ferguson-Smith MA, Graphodatsky AS, Trifonov VA. First report on B chromosome content in a reptilian species: the case of Anolis carolinensis. Mol Genet Genomics 2018; 294:13-21. [PMID: 30146671 DOI: 10.1007/s00438-018-1483-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 11/26/2022]
Abstract
Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.
Collapse
Affiliation(s)
- Ilya G Kichigin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| | - Artem P Lisachov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Massimo Giovannotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alex I Makunin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
17
|
Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes (Basel) 2018; 9:genes9080405. [PMID: 30103445 PMCID: PMC6116037 DOI: 10.3390/genes9080405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
B chromosomes (Bs) represent a variable addition to the main karyotype in some lineages of animals and plants. Bs accumulate through non-Mendelian inheritance and become widespread in populations. Despite the presence of multiple genes, most Bs lack specific phenotypic effects, although their influence on host genome epigenetic status and gene expression are recorded. Previously, using sequencing of isolated Bs of ruminants and rodents, we demonstrated that Bs originate as segmental duplications of specific genomic regions, and subsequently experience pseudogenization and repeat accumulation. Here, we used a similar approach to characterize Bs of the red fox (Vulpes vulpes L.) and the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray). We confirm the previous findings of the KIT gene on Bs of both species, but demostrate an independent origin of Bs in these species, with two reused regions. Comparison of gene ensembles in Bs of canids, ruminants, and rodents once again indicates enrichment with cell-cycle genes, development-related genes, and genes functioning in the neuron synapse. The presence of B-chromosomal copies of genes involved in cell-cycle regulation and tissue differentiation may indicate importance of these genes for B chromosome establishment.
Collapse
|
18
|
Pellestor F, Gatinois V. Chromothripsis, a credible chromosomal mechanism in evolutionary process. Chromosoma 2018; 128:1-6. [DOI: 10.1007/s00412-018-0679-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023]
|
19
|
Kukekova AV, Johnson JL, Xiang X, Feng S, Liu S, Rando HM, Kharlamova AV, Herbeck Y, Serdyukova NA, Xiong Z, Beklemischeva V, Koepfli KP, Gulevich RG, Vladimirova AV, Hekman JP, Perelman PL, Graphodatsky AS, O'Brien SJ, Wang X, Clark AG, Acland GM, Trut LN, Zhang G. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat Ecol Evol 2018; 2:1479-1491. [PMID: 30082739 DOI: 10.1038/s41559-018-0611-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
Abstract
Strains of red fox (Vulpes vulpes) with markedly different behavioural phenotypes have been developed in the famous long-term selective breeding programme known as the Russian farm-fox experiment. Here we sequenced and assembled the red fox genome and re-sequenced a subset of foxes from the tame, aggressive and conventional farm-bred populations to identify genomic regions associated with the response to selection for behaviour. Analysis of the re-sequenced genomes identified 103 regions with either significantly decreased heterozygosity in one of the three populations or increased divergence between the populations. A strong positional candidate gene for tame behaviour was highlighted: SorCS1, which encodes the main trafficking protein for AMPA glutamate receptors and neurexins and suggests a role for synaptic plasticity in fox domestication. Other regions identified as likely to have been under selection in foxes include genes implicated in human neurological disorders, mouse behaviour and dog domestication. The fox represents a powerful model for the genetic analysis of affiliative and aggressive behaviours that can benefit genetic studies of behaviour in dogs and other mammals, including humans.
Collapse
Affiliation(s)
- Anna V Kukekova
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA.
| | - Jennifer L Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA
| | - Xueyan Xiang
- China National Genebank, BGI -Shenzhen, Shenzhen, China
| | - Shaohong Feng
- China National Genebank, BGI -Shenzhen, Shenzhen, China
| | - Shiping Liu
- China National Genebank, BGI -Shenzhen, Shenzhen, China
| | - Halie M Rando
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA
| | - Anastasiya V Kharlamova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury Herbeck
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Zijun Xiong
- China National Genebank, BGI -Shenzhen, Shenzhen, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Violetta Beklemischeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA.,Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Rimma G Gulevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya V Vladimirova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Jessica P Hekman
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Aleksander S Graphodatsky
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.,Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory M Acland
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Guojie Zhang
- China National Genebank, BGI -Shenzhen, Shenzhen, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Rando HM, Farré M, Robson MP, Won NB, Johnson JL, Buch R, Bastounes ER, Xiang X, Feng S, Liu S, Xiong Z, Kim J, Zhang G, Trut LN, Larkin DM, Kukekova AV. Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly. Genes (Basel) 2018; 9:E308. [PMID: 29925783 PMCID: PMC6027122 DOI: 10.3390/genes9060308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
The genome of a red fox (Vulpes vulpes) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.
Collapse
Affiliation(s)
- Halie M Rando
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Marta Farré
- Department of Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Michael P Robson
- Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Naomi B Won
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jennifer L Johnson
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ronak Buch
- Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Estelle R Bastounes
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Xueyan Xiang
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Shaohong Feng
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Shiping Liu
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Zijun Xiong
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Jaebum Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Korea.
| | - Guojie Zhang
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Denis M Larkin
- Department of Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Anna V Kukekova
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma 2018; 127:301-311. [PMID: 29380046 DOI: 10.1007/s00412-018-0662-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.
Collapse
|
22
|
Ruban A, Schmutzer T, Scholz U, Houben A. How Next-Generation Sequencing Has Aided Our Understanding of the Sequence Composition and Origin of B Chromosomes. Genes (Basel) 2017; 8:E294. [PMID: 29068386 PMCID: PMC5704207 DOI: 10.3390/genes8110294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
Accessory, supernumerary, or-most simply-B chromosomes, are found in many eukaryotic karyotypes. These small chromosomes do not follow the usual pattern of segregation, but rather are transmitted in a higher than expected frequency. As increasingly being demonstrated by next-generation sequencing (NGS), their structure comprises fragments of standard (A) chromosomes, although in some plant species, their sequence also includes contributions from organellar genomes. Transcriptomic analyses of various animal and plant species have revealed that, contrary to what used to be the common belief, some of the B chromosome DNA is protein-encoding. This review summarizes the progress in understanding B chromosome biology enabled by the application of next-generation sequencing technology and state-of-the-art bioinformatics. In particular, a contrast is drawn between a direct sequencing approach and a strategy based on a comparative genomics as alternative routes that can be taken towards the identification of B chromosome sequences.
Collapse
Affiliation(s)
- Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany.
| |
Collapse
|
23
|
Li XY, Liu XL, Ding M, Li Z, Zhou L, Zhang XJ, Gui JF. A novel male-specific SET domain-containing gene setdm identified from extra microchromosomes of gibel carp males. Sci Bull (Beijing) 2017; 62:528-536. [PMID: 36659360 DOI: 10.1016/j.scib.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 01/21/2023]
Abstract
Various genes have been screened on extra chromosomes, but their molecular characterization, expression pattern and biological function are still unclear. Here, we utilized a male-specific sequence of polyploid gibel carp (Carassius gibelio) to identify a novel male-specific SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) domain-containing gene setdm on extra microchromosomes of gibel carp males. And setdm was characterized in molecule and expression aspects, in which its expression was specific to testis, and had relative high transcription during middle/late stages of testis development. Moreover, prominent expression of Setdm in spermatogenic cells was observed in testis through immunofluorescence co-localization analysis. These results suggest that biological function of setdm might be related to testis development and spermatogenesis of gibel carp. Additionally, the homeologous gene setdmf of setdm, was also characterized, and its expression was gonad-specific, in which its expressed product was detected to mainly distribute in gametogenic cells of testis and ovary, and to have dynamic expression pattern similar to that of setdm. Based on the current results, we propose that the novel male-specific setdm on extra microchromosomes might be functional divergence gene of the gonad-specific setdmf. Therefore, these findings will help us to further understand evolutionary fate and functional role of genes on extra microchromosomes.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
24
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Rubes J. Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox. Cytogenet Genome Res 2017; 150:118-127. [PMID: 28122375 DOI: 10.1159/000455081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox.
Collapse
Affiliation(s)
- Miluse Vozdova
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Ma W, Gabriel TS, Martis MM, Gursinsky T, Schubert V, Vrána J, Doležel J, Grundlach H, Altschmied L, Scholz U, Himmelbach A, Behrens SE, Banaei-Moghaddam AM, Houben A. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. THE NEW PHYTOLOGIST 2017; 213:916-928. [PMID: 27468091 DOI: 10.1111/nph.14110] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/18/2016] [Indexed: 05/21/2023]
Abstract
B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.
Collapse
Affiliation(s)
- Wei Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Tobias Sebastian Gabriel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Mihaela Maria Martis
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- National Bioinformatics Infrastructure Sweden, Department of Clinical and Experimental Medicine, Linköping University, SE-558185, Linköping, Sweden
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Heidrun Grundlach
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Ali Mohammad Banaei-Moghaddam
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, PO Box 13145-1384, Tehran, Iran
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| |
Collapse
|
26
|
Exploring Supernumeraries - A New Marker for Screening of B-Chromosomes Presence in the Yellow Necked Mouse Apodemus flavicollis. PLoS One 2016; 11:e0160946. [PMID: 27551940 PMCID: PMC4994964 DOI: 10.1371/journal.pone.0160946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Since the density of simple sequence repeats (SSRs) may vary between different chromosomes of the same species in eukaryotic genomes, we screened SSRs of the whole genome of the yellow necked mouse, Apodemus flavicollis, in order to reveal SSR profiles specific for animals carrying B chromosomes. We found that the 2200 bp band was amplified by primer (CAG)4AC to a highly increased level in samples with B chromosomes. This quantitative difference (B-marker) between animals with (+B) and without (0B) B chromosomes was used to screen 20 populations (387 animals). The presence/absence of Bs was confirmed in 96.5% of 342 non mosaic individuals, which recommends this method for noninvasive B-presence detection. A group of 45 animals with mosaic and micro B (μB) karyotypes was considered separately and showed 55.6% of overall congruence between karyotyping and molecular screening results. Relative quantification by qPCR of two different targeted sequences from B-marker indicated that these B-specific fragments are multiplied on B chromosomes. It also confirms our assumption that different types of Bs with variable molecular composition may exist in the same individual and between individuals of this species. Our results substantiate the origin of Bs from the standard chromosomal complement. The B-marker showed 98% sequence identity with the serine/threonine protein kinase VRK1 gene, similarly to findings reported for Bs from phylogenetically highly distant mammalian species. Evolutionarily conserved protein-coding genes found in Bs, including this one in A. flavicollis, could suggest a common evolutionary pathway.
Collapse
|
27
|
Makunin AI, Kichigin IG, Larkin DM, O’Brien PCM, Ferguson-Smith MA, Yang F, Proskuryakova AA, Vorobieva NV, Chernyaeva EN, O’Brien SJ, Graphodatsky AS, Trifonov VA. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics 2016; 17:618. [PMID: 27516089 PMCID: PMC4982142 DOI: 10.1186/s12864-016-2933-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. RESULTS In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. CONCLUSIONS Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements.
Collapse
Affiliation(s)
- Alexey I. Makunin
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Patricia C. M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | | | | | | | - Ekaterina N. Chernyaeva
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander S. Graphodatsky
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
28
|
Deakin JE, Kruger-Andrzejewska M. Marsupials as models for understanding the role of chromosome rearrangements in evolution and disease. Chromosoma 2016; 125:633-44. [PMID: 27255308 DOI: 10.1007/s00412-016-0603-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/28/2022]
Abstract
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia.
| | | |
Collapse
|
29
|
Kumke K, Macas J, Fuchs J, Altschmied L, Kour J, Dhar MK, Houben A. Plantago lagopus B Chromosome Is Enriched in 5S rDNA-Derived Satellite DNA. Cytogenet Genome Res 2016; 148:68-73. [PMID: 27173804 DOI: 10.1159/000444873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Using advanced sequencing technology, we in silico characterized the high-copy DNA composition of Plantago lagopus with and without B chromosomes. The nuclear genome (2.46 pg/2C) was found to be relatively rich in repetitive sequences, with highly and moderately repeated elements making up 68% of the genome. Besides a centromere-specific marker, we identified a B-specific satellite and a repeat enriched in polymorphic A chromosome segments. The B-specific tandem repeat PLsatB originated from sequence amplification including 5S rDNA fragments.
Collapse
Affiliation(s)
- Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Huang W, Du Y, Zhao X, Jin W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC PLANT BIOLOGY 2016; 16:88. [PMID: 27083560 PMCID: PMC4833949 DOI: 10.1186/s12870-016-0775-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The dispensable maize (Zea mays L.) B chromosome is highly heterochromatic and widely believed to be devoid of functional genes. Although low-copy B chromosome causes no obvious phenotype variation, its existence might influence A genome gene expression. Previous studies suggested that B chromosomes are evolved from standard chromosomes; therefore, they might contain genic regions showing homology with A chromosome sequences. RESULTS Our data suggested that maize B chromosome influences the A-genome transcription with stronger effect associated with an increase in copy number of B chromosome. In total 130 differently expressed genes were detected in comparison between with and without B chromosome lines. These differentially expressed genes are mainly involved in cell metabolism and nucleotide binding. Using Starter + B, we amplified ten B chromosome loci with high sequence similarity to A-genome genes. Fluorescence in situ hybridization (FISH) confirmed that at least four ~5 kb-sized genes are located on the B chromosome. In addition, through de novo assembly of the reads not unmapped to maize B73 reference genome together with PCR validation, we found three B-located LTR; in particular, one of them, the 3.2 kb comp75688, is expressed in a B-dosage dependent manner. CONCLUSION We found that in the presence of maize B chromosome, the transcription of A genome genes was altered, with more impact by the increase of the B chromosome number. The B-located transcriptionally active genes showed high similarity to their A-genome homologues, and retrotransposons on B chromosome also have partial homologous to A genome sequences. Our data shed more lights on the genome structure and evolution of the maize B chromosome.
Collapse
Affiliation(s)
- Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yan Du
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xin Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
31
|
Johnson JL, Wittgenstein H, Mitchell SE, Hyma KE, Temnykh SV, Kharlamova AV, Gulevich RG, Vladimirova AV, Fong HWF, Acland GM, Trut LN, Kukekova AV. Genotyping-By-Sequencing (GBS) Detects Genetic Structure and Confirms Behavioral QTL in Tame and Aggressive Foxes (Vulpes vulpes). PLoS One 2015; 10:e0127013. [PMID: 26061395 PMCID: PMC4465646 DOI: 10.1371/journal.pone.0127013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.
Collapse
Affiliation(s)
- Jennifer L. Johnson
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Helena Wittgenstein
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, United States of America
| | - Sharon E. Mitchell
- Institute of Biotechnology, Genomic Diversity Facility, Cornell University, Ithaca, NY, 14853, United States of America
| | - Katie E. Hyma
- Institute of Biotechnology, Genomic Diversity Facility, Cornell University, Ithaca, NY, 14853, United States of America
| | - Svetlana V. Temnykh
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, United States of America
| | - Anastasiya V. Kharlamova
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Rimma G. Gulevich
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Hiu Wa Flora Fong
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Gregory M. Acland
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, United States of America
| | - Lyudmila N. Trut
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anna V. Kukekova
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- * E-mail:
| |
Collapse
|
32
|
Omeir R, Thomas R, Teferedegne B, Williams C, Foseh G, Macauley J, Brinster L, Beren J, Peden K, Breen M, Lewis AM. A novel canine kidney cell line model for the evaluation of neoplastic development: karyotype evolution associated with spontaneous immortalization and tumorigenicity. Chromosome Res 2015; 23:663-80. [PMID: 25957863 PMCID: PMC4666904 DOI: 10.1007/s10577-015-9474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 01/01/2023]
Abstract
The molecular mechanisms underlying spontaneous neoplastic transformation in cultured mammalian cells remain poorly understood, confounding recognition of parallels with the biology of naturally occurring cancer. The broad use of tumorigenic canine cell lines as research tools, coupled with the accumulation of cytogenomic data from naturally occurring canine cancers, makes the domestic dog an ideal system in which to investigate these relationships. We developed a canine kidney cell line, CKB1-3T7, which allows prospective examination of the onset of spontaneous immortalization and tumorigenicity. We documented the accumulation of cytogenomic aberrations in CKB1-3T7 over 24 months in continuous culture. The majority of aberrations emerged in parallel with key phenotypic changes in cell morphology, growth kinetics, and tumor incidence and latency. Focal deletion of CDKN2A/B emerged first, preceding the onset and progression of tumorigenic potential, and progressed to a homozygous deletion across the cell population during extended culture. Interestingly, CKB1-3T7 demonstrated a tumorigenic phenotype in vivo prior to exhibiting loss of contact inhibition in vitro. We also performed the first genome-wide characterization of the canine tumorigenic cell line MDCK, which also exhibited CDKN2A/B deletion. MDCK and CKB1-3T7 cells shared several additional aberrations that we have reported previously as being highly recurrent in spontaneous canine cancers, many of which, as with CDKN2A/B deletion, are evolutionarily conserved in their human counterparts. The conservation of these molecular events across multiple species, in vitro and in vivo, despite their contrasting karyotypic architecture, is a powerful indicator of a common mechanism underlying emerging neoplastic activity. Through integrated cytogenomic and phenotypic characterization of serial passages of CKB1-3T7 from initiation to development of a tumorigenic phenotype, we present a robust and readily accessible model (to be made available through the American Type Culture Collection) of spontaneous neoplastic transformation that overcomes many of the limitations of earlier studies.
Collapse
Affiliation(s)
- R Omeir
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - R Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, 27607, USA
| | - B Teferedegne
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - C Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - G Foseh
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - J Macauley
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - L Brinster
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J Beren
- Office of Counter-Terrorism and Emergency Coordination, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - K Peden
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - M Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, 27607, USA. .,Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA. .,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27607, USA.
| | - A M Lewis
- Laboratory of DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
33
|
Johnson JL, Kozysa A, Kharlamova AV, Gulevich RG, Perelman PL, Fong HWF, Vladimirova AV, Oskina IN, Trut LN, Kukekova AV. Platinum coat color in red fox (Vulpes vulpes) is caused by a mutation in an autosomal copy of KIT. Anim Genet 2015; 46:190-9. [PMID: 25662789 DOI: 10.1111/age.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2014] [Indexed: 12/30/2022]
Abstract
The red fox (Vulpes vulpes) demonstrates a variety of coat colors including platinum, a common phenotype maintained in farm-bred fox populations. Foxes heterozygous for the platinum allele have a light silver coat and extensive white spotting, whereas homozygosity is embryonic lethal. Two KIT transcripts were identified in skin cDNA from platinum foxes. The long transcript was identical to the KIT transcript of silver foxes, whereas the short transcript, which lacks exon 17, was specific to platinum. The KIT gene has several copies in the fox genome: an autosomal copy on chromosome 2 and additional copies on the B chromosomes. To identify the platinum-specific KIT sequence, the genomes of one platinum and one silver fox were sequenced. A single nucleotide polymorphism (SNP) was identified at the first nucleotide of KIT intron 17 in the platinum fox. In platinum foxes, the A allele of the SNP disrupts the donor splice site and causes exon 17, which is part of a segment that encodes a conserved tyrosine kinase domain, to be skipped. Complete cosegregation of the A allele with the platinum phenotype was confirmed by linkage mapping (LOD 25.59). All genotyped farm-bred platinum foxes from Russia and the US were heterozygous for the SNP (A/G), whereas foxes with different coat colors were homozygous for the G allele. Identification of the platinum mutation suggests that other fox white-spotting phenotypes, which are allelic to platinum, would also be caused by mutations in the KIT gene.
Collapse
Affiliation(s)
- J L Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Banaei-Moghaddam AM, Martis MM, Macas J, Gundlach H, Himmelbach A, Altschmied L, Mayer KF, Houben A. Genes on B chromosomes: Old questions revisited with new tools. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:64-70. [DOI: 10.1016/j.bbagrm.2014.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
35
|
Zurano JP, Ojeda DS, Bidau CJ, Molina WF, Ledesma MA, Martinez PA. A comparison of heterochromatic regions in three species of neotropical canids. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Makunin AI, Dementyeva PV, Graphodatsky AS, Volobouev VT, Kukekova AV, Trifonov VA. Genes on B chromosomes of vertebrates. Mol Cytogenet 2014; 7:99. [PMID: 25538793 PMCID: PMC4274688 DOI: 10.1186/s13039-014-0099-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/05/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND There is a growing body of evidence that B chromosomes, once regarded as totally heterochromatic and genetically inert, harbor multiple segmental duplications containing clusters of ribosomal RNA genes, processed pseudogenes and protein-coding genes. Application of novel molecular approaches further supports complex composition and possible phenotypic effects of B chromosomes. RESULTS Here we review recent findings of gene-carrying genomic segments on B chromosomes from different vertebrate groups. We demonstrate that the genetic content of B chromosomes is highly heterogeneous and some B chromosomes contain multiple large duplications derived from various chromosomes of the standard karyotype. Although B chromosomes seem to be mostly homologous to each other within a species, their genetic content differs between species. There are indications that some genomic regions are more likely to be located on B chromosomes. CONCLUSIONS The discovery of multiple autosomal genes on B chromosomes opens a new discussion about their possible effects ranging from sex determination to fitness and adaptation, their complex interactions with host genome and role in evolution.
Collapse
Affiliation(s)
- Alexey I Makunin
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
- />Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Polina V Dementyeva
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
| | - Alexander S Graphodatsky
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
- />Novosibirsk State University, Novosibirsk, Russia
| | - Vitaly T Volobouev
- />Museum National d’Histoire Naturelle, Origine, Structure et Evolution de la Biodiversite, Paris, France
| | - Anna V Kukekova
- />Department of Animal Sciences, The University of Illinois at Urbana-Champaign, Champaign, USA
| | - Vladimir A Trifonov
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
- />Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
37
|
Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma. Chromosome Res 2014; 22:305-19. [PMID: 24599718 DOI: 10.1007/s10577-014-9406-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/08/2023]
Abstract
Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.
Collapse
|
38
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
39
|
Ruíz-Estévez M, López-León MD, Cabrero J, Camacho JPM. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans. Genetica 2013; 141:337-45. [PMID: 24008810 DOI: 10.1007/s10709-013-9733-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/31/2013] [Indexed: 11/26/2022]
Abstract
B chromosomes are considered to be genetically inert elements. However, some of them are able to show nucleolus organizer region (NOR) activity, as detected by both cytological and molecular means. The grasshopper Eyprepocnemis plorans shows a B chromosome polymorphism characterized by the existence of many B variants. One of them, B24, shows NOR activity in about half of B-carrying males in the Torrox population. Molecular data have suggested the recent origin for B chromosomes in this species, and on this basis it would be expected that NOR activity was widespread among the different B variants. Here we test this hypothesis in four different B chromosome variants (B1, B2, B5, and B24) from 11 natural populations of the grasshopper E. plorans covering the south and east of the Iberian Peninsula plus the Balearic Islands. We used two different approaches: (1) the cytological observation of nucleoli attached to the distal region of the B chromosome (where the rDNA is located), and (2) the molecular detection of the rDNA transcripts carrying an adenine insertion characteristic of B chromosome ITS2 sequences. The results showed NOR expression not only for B24 but also for the B1 and B2 variants. However, the level of B-NOR expression in these latter variants, measured by the proportion of cells showing nucleoli attached to the B chromosomes, was much lower than that previously reported for B24. This suggests the possibility that structural or genetic background conditions are enhancing the expressivity of the rDNA in the B24 variant.
Collapse
Affiliation(s)
- Mercedes Ruíz-Estévez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | | |
Collapse
|
40
|
Trifonov VA, Dementyeva PV, Larkin DM, O'Brien PCM, Perelman PL, Yang F, Ferguson-Smith MA, Graphodatsky AS. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol 2013; 11:90. [PMID: 23915065 PMCID: PMC3751663 DOI: 10.1186/1741-7007-11-90] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 11/25/2022] Open
Abstract
Background Most eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes. Results Here, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts. Conclusions Discovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution.
Collapse
|
41
|
Kociucka B, Sosnowski J, Kubiak A, Nowak A, Pawlak P, Szczerbal I. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the chinese raccoon dog. Cytogenet Genome Res 2013; 139:243-9. [PMID: 23485799 DOI: 10.1159/000348434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Great progress has been achieved over the last years in studies on chromosome arrangement in mammalian cell nuclei. Growing evidence indicates that the genome's spatial organization is of functional relevance. So far, no attention has been paid to the nuclear organization of B chromosomes (Bs). In this study we have examined nuclear positioning of Bs in 2 species from the Canidae family--the red fox and the Chinese raccoon dog. Using 2D and 3D fluorescence in situ hybridization and 2 gene-specific probes (C-KIT and PDGFRA), we analyzed the location of Bs in fibroblast nuclei. We found that small Bs of the red fox occupied mostly the interior of the nucleus, while medium-sized Bs of the Chinese raccoon dog were observed in the peripheral area of the nucleus as well as in intermediate and interior locations. The more uniform distribution of B chromosomes in the Chinese raccoon dog may be the result of differences in their size, since 3 morphological types of Bs are distinguished in this species. Our results indicate that 3D positioning of B chromosomes in fibroblast nuclei of the 2 canid species is in agreement with the chromosome size-dependent theory.
Collapse
Affiliation(s)
- B Kociucka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Avila F, Das PJ, Kutzler M, Owens E, Perelman P, Rubes J, Hornak M, Johnson WE, Raudsepp T. Development and application of camelid molecular cytogenetic tools. J Hered 2012; 105:858-69. [PMID: 23109720 DOI: 10.1093/jhered/ess067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.
Collapse
Affiliation(s)
- Felipe Avila
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Pranab J Das
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Michelle Kutzler
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Elaine Owens
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Polina Perelman
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Jiri Rubes
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Miroslav Hornak
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Warren E Johnson
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak)
| | - Terje Raudsepp
- From the Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 (Avila, Das, and Raudsepp); Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331 (Kutzler); Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843 (Owens); Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702 (Perelman and Johnson); Laboratory of Cytogenetics of Animals, Institute of Molecular and Cellular Biology, Novosibirsk, Russia (Perelman); and Veterinary Research Institute, Brno, Czech Republic (Rubes and Hornak).
| |
Collapse
|
43
|
Mazzuchelli J, Kocher TD, Yang F, Martins C. Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genomics 2012; 13:463. [PMID: 22958299 PMCID: PMC3463429 DOI: 10.1186/1471-2164-13-463] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. RESULTS The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. CONCLUSIONS Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes.
Collapse
Affiliation(s)
- Juliana Mazzuchelli
- Department of Morphology, Bioscience Institute, UNESP - São Paulo State University, 18618-970, Botucatu, SP, Brazil
| | | | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Cesar Martins
- Department of Morphology, Bioscience Institute, UNESP - São Paulo State University, 18618-970, Botucatu, SP, Brazil
| |
Collapse
|
44
|
Perelman P, Beklemisheva V, Yudkin D, Petrina T, Rozhnov V, Nie W, Graphodatsky A. Comparative Chromosome Painting in Carnivora and Pholidota. Cytogenet Genome Res 2012; 137:174-93. [DOI: 10.1159/000341389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|