1
|
Mo H, Zhang X, Ren L. Analysis of neuroglia and immune cells in the tumor microenvironment of breast cancer brain metastasis. Cancer Biol Ther 2024; 25:2398285. [PMID: 39238191 PMCID: PMC11382727 DOI: 10.1080/15384047.2024.2398285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Breast cancer stands as the most prevalent cancer diagnosed worldwide, often leading to brain metastasis, a challenging complication characterized by high mortality rates and a grim prognosis. Understanding the intricate mechanisms governing breast cancer brain metastasis (BCBM) remains an ongoing challenge. The unique microenvironment in the brain fosters an ideal setting for the colonization of breast cancer cells. The tumor microenvironment (TME) in brain metastases plays a pivotal role in the initiation and progression of BCBM, shaping the landscape for targeted therapeutic interventions. Current research primarily concentrates on unraveling the complexities of the TME in BCBM, with a particular emphasis on neuroglia and immune cells, such as microglia, monocyte-derived macrophages (MDMs), astrocytes and T cells. This comprehensive review delves deeply into these elements within the TME of BCBM, shedding light on their interplay, mechanisms, and potential as therapeutic targets to combat BCBM.
Collapse
Affiliation(s)
- Haixin Mo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| |
Collapse
|
2
|
Otterlei Fjørtoft M, Huse K, Rye IH. The Tumor Immune Microenvironment in Breast Cancer Progression. Acta Oncol 2024; 63:359-367. [PMID: 38779867 PMCID: PMC11332517 DOI: 10.2340/1651-226x.2024.33008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast, ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.
Collapse
Affiliation(s)
- Marit Otterlei Fjørtoft
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway
| | - Inga Hansine Rye
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Xu J, Wang P, Li Y, Shi X, Yin T, Yu J, Teng F. Development and validation of an MRI-Based nomogram to predict the effectiveness of immunotherapy for brain metastasis in patients with non-small cell lung cancer. Front Immunol 2024; 15:1373330. [PMID: 38686383 PMCID: PMC11057328 DOI: 10.3389/fimmu.2024.1373330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction The variability and unpredictability of immune checkpoint inhibitors (ICIs) in treating brain metastases (BMs) in patients with advanced non-small cell lung cancer (NSCLC) is the main concern. We assessed the utility of novel imaging biomarkers (radiomics) for discerning patients with NSCLC and BMs who would derive advantages from ICIs treatment. Methods Data clinical outcomes and pretreatment magnetic resonance images (MRI) were collected on patients with NSCLC with BMs treated with ICIs between June 2019 and June 2022 and divided into training and test sets. Metastatic brain lesions were contoured using ITK-SNAP software, and 3748 radiomic features capturing both intra- and peritumoral texture patterns were extracted. A clinical radiomic nomogram (CRN) was built to evaluate intracranial progression-free survival, progression-free survival, and overall survival. The prognostic value of the CRN was assessed by Kaplan-Meier survival analysis and log-rank tests. Results In the study, a total of 174 patients were included, and 122 and 52 were allocated to the training and validation sets correspondingly. The intratumoral radiomic signature, peritumoral radiomic signature, clinical signature, and CRN predicted intracranial objective response rate. Kaplan-Meier analyses showed a significantly longer intracranial progression-free survival in the low-CRN group than in the high-CRN group (p < 0.001). The CRN was also significantly associated with progression-free survival (p < 0.001) but not overall survival. Discussion Radiomics biomarkers from pretreatment MRI images were predictive of intracranial response. Pretreatment radiomics may allow the early prediction of benefits.
Collapse
Affiliation(s)
- Junhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peiliang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yikun Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaonan Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
6
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Zhao Z, Chen Y, Sun T, Jiang C. Nanomaterials for brain metastasis. J Control Release 2024; 365:833-847. [PMID: 38065414 DOI: 10.1016/j.jconrel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Tumor metastasis is a significant contributor to the mortality of cancer patients. Specifically, current conventional treatments are unable to achieve complete remission of brain metastasis. This is due to the unique pathological environment of brain metastasis, which differs significantly from peripheral metastasis. Brain metastasis is characterized by high tumor mutation rates and a complex microenvironment with immunosuppression. Additionally, the presence of blood-brain barrier (BBB)/blood tumor barrier (BTB) restricts drug leakage into the brain. Therefore, it is crucial to take account of the specific characteristics of brain metastasis when developing new therapeutic strategies. Nanomaterials offer promising opportunities for targeted therapies in treating brain metastasis. They can be tailored and customized based on specific pathological features and incorporate various treatment approaches, which makes them advantageous in advancing therapeutic strategies for brain metastasis. This review provides an overview of current clinical treatment options for patients with brain metastasis. It also explores the roles and changes that different cells within the complex microenvironment play during tumor spread. Furthermore, it highlights the use of nanomaterials in current brain treatment approaches.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
8
|
Souza VGP, Forder A, Telkar N, Stewart GL, Carvalho RF, Mur LAJ, Lam WL, Reis PP. Identifying New Contributors to Brain Metastasis in Lung Adenocarcinoma: A Transcriptomic Meta-Analysis. Cancers (Basel) 2023; 15:4526. [PMID: 37760494 PMCID: PMC10526208 DOI: 10.3390/cancers15184526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Lung tumors frequently metastasize to the brain. Brain metastasis (BM) is common in advanced cases, and a major cause of patient morbidity and mortality. The precise molecular mechanisms governing BM are still unclear, in part attributed to the rarity of BM specimens. In this work, we compile a unique transcriptomic dataset encompassing RNA-seq, microarray, and single-cell analyses from BM samples obtained from patients with lung adenocarcinoma (LUAD). By integrating this comprehensive dataset, we aimed to enhance understanding of the molecular landscape of BM, thereby facilitating the identification of novel and efficient treatment strategies. We identified 102 genes with significantly deregulated expression levels in BM tissues, and discovered transcriptional alterations affecting the key driver 'hub' genes CD69 (a type II C-lectin receptor) and GZMA (Granzyme A), indicating an important role of the immune system in the development of BM from primary LUAD. Our study demonstrated a BM-specific gene expression pattern and revealed the presence of dendritic cells and neutrophils in BM, suggesting an immunosuppressive tumor microenvironment. These findings highlight key drivers of LUAD-BM that may yield therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- Molecular Oncology Laboratory, Experimental Research Unit (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.F.); (N.T.); (G.L.S.); (W.L.L.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.F.); (N.T.); (G.L.S.); (W.L.L.)
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.F.); (N.T.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.F.); (N.T.); (G.L.S.); (W.L.L.)
| | - Robson F. Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Luis A. J. Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, Wales SY23 3FL, UK;
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.F.); (N.T.); (G.L.S.); (W.L.L.)
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
9
|
Abstract
Tumour cells migrate very early from primary sites to distant sites, and yet metastases often take years to manifest themselves clinically or never even surface within a patient's lifetime. This pause in cancer progression emphasizes the existence of barriers that constrain the growth of disseminated tumour cells (DTCs) at distant sites. Although the nature of these barriers to metastasis might include DTC-intrinsic traits, recent studies have established that the local microenvironment also controls the formation of metastases. In this Perspective, I discuss how site-specific differences of the immune system might be a major selective growth restraint on DTCs, and argue that harnessing tissue immunity will be essential for the next stage in immunotherapy development that reliably prevents the establishment of metastases.
Collapse
|
10
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Najjary S, Kros JM, de Koning W, Vadgama D, Lila K, Wolf J, Mustafa DAM. Tumor lineage-specific immune response in brain metastatic disease: opportunities for targeted immunotherapy regimen? Acta Neuropathol Commun 2023; 11:64. [PMID: 37061716 PMCID: PMC10105417 DOI: 10.1186/s40478-023-01542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2023] [Indexed: 04/17/2023] Open
Abstract
Metastases in the brain are the most severe and devastating complication of cancer. The incidence of brain metastasis is increasing. Therefore, the need of finding specific druggable targets for brain metastasis is demanding. The aim of this study was to compare the brain (immune) response to brain metastases of the most common tumor lineages, viz., lung adenocarcinoma and breast cancer. Targeted gene expression profiles of 11 brain metastasis of lung adenocarcinoma (BM-LUAD) were compared to 11 brain metastasis of breast cancer (BCBM) using NanoString nCounter PanCancer IO 360™ Panel. The most promising results were validated spatially using the novel GeoMx™ Digital Spatial Profiler (DSP) Technology. Additionally, Immune cell profiles and expression of drug targets were validated by multiplex immunohistochemistry. We found a more active immune response in BM-LUAD as compared to BCBM. In the BM-LUAD, 138 genes were upregulated as compared to BCBM (adj. p ≤ 0.05). Conversely, in BCBM 28 genes were upregulated (adj. p ≤ 0.05). Additionally, genes related to CD45 + cells, T cells, and cytotoxic T cells showed to be expressed higher in BM-LUAD compared to BCBM (adj. p = 0.01, adj. p = 0.023, adj. p = 0.023, respectively). The spatial quantification of the immune cells using the GeoMx DSP technique revealed the significantly higher quantification of CD14 and CD163 in tumor regions of BM-LUAD as compared to BCBM. Importantly, the immune checkpoint VISTA and IDO1 were identified as highly expressed in the BM-LUAD. Multiplex immunohistochemistry confirmed the finding and showed that VISTA is expressed mainly in BM-LUAD tumor cells, CD3 + cells, and to fewer levels in some microglial cells in BM-LUAD. This is the first report on differences in the brain immune response between metastatic tumors of different lineages. We found a far more extensive infiltration of immune cells in BM-LUAD as compared to BCBM. In addition, we found higher expression of VISTA and IDO1 in BM-LUAD. Taken together, targeted immune therapy should be considered to treat patients with BM-LUAD.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Willem de Koning
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janina Wolf
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Chhichholiya Y, Ruthuparna M, Velagaleti H, Munshi A. Brain metastasis in breast cancer: focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin Transl Oncol 2023; 25:1218-1241. [PMID: 36897508 DOI: 10.1007/s12094-022-03050-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023]
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Malayil Ruthuparna
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harini Velagaleti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
13
|
Dai J, Chen Q, Li G, Chen M, Sun H, Yan M. DIRAS3, GPR171 and RAC2 were identified as the key molecular patterns associated with brain metastasis of breast cancer. Front Oncol 2022; 12:965136. [PMID: 36212434 PMCID: PMC9532569 DOI: 10.3389/fonc.2022.965136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Brain metastasis is a primary cause of morbidity and mortality in breast cancer patients. Therefore, elucidation and understanding of the underlying mechanisms are essential for the development of new therapeutic strategies. Methods Differential gene analysis was performed for those with and without distant metastasis in The Cancer Genome Atlas (TCGA) database and those with and without recurrence in the brain in the dataset GSE12276. The differentially expressed genes procured from the two databases were intersected to obtain the intersecting genes associated with brain metastasis. Thereafter, the intersecting genes were subjected to LASSO model construction to screen for prognostic genes. The expression of the obtained genes in metastatic breast cancer was observed, and survival analysis was performed. Finally, GSEA analysis of the obtained genes was performed, and the relationship between them and immune cells was explored. Results A total of 335 differential genes for the occurrence of distant metastases were obtained based on the TCGA database. A total of 1070 differential genes for recurrence to the brain were obtained based on the dataset GSE12276. The Venn diagram showed 24 intersecting genes associated with brain metastasis. The LASSO prognostic model contained a total of five genes (GBP2, GPR171, DIRAS3, RAC2, and CACNA1D). Expression difference analysis showed that GBP2, GPR171, DIRAS3, and RAC2 were significantly down-regulated in expression in metastatic breast cancer compared with primary breast cancer tumors. Only GPR171, DIRAS3, and RAC2 were strongly correlated with the overall survival of breast cancer patients. Their correlation analysis with immune cells showed that the correlation coefficient between the expression levels of DIRAS3 and immune cells was low, and the expression levels of GPR171 and RAC2 were more closely correlated with B cells and macrophages. Conclusions The expression of DIRAS3, GPR171 and RAC2, genes associated with brain metastasis, was reduced in metastatic breast cancer, and GPR171 was found to promote brain metastasis of breast cancer cells by inducing B cells and thereby.
Collapse
|
14
|
Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol 2022; 15:80. [PMID: 35690784 PMCID: PMC9188021 DOI: 10.1186/s13045-022-01298-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in cancer therapeutics, glioblastoma (GBM) remains one of the most difficult cancers to treat in both the primary and recurrent settings. GBM presents a unique therapeutic challenge given the immune-privileged environment of the brain and the aggressive nature of the disease. Furthermore, it can change phenotypes throughout the course of disease—switching between mesenchymal, neural, and classic gene signatures, each with specific markers and mechanisms of resistance. Recent advancements in the field of immunotherapy—which utilizes strategies to reenergize or alter the immune system to target cancer—have shown striking results in patients with many types of malignancy. Immune checkpoint inhibitors, adoptive cellular therapy, cellular and peptide vaccines, and other technologies provide clinicians with a vast array of tools to design highly individualized treatment and potential for combination strategies. There are currently over 80 active clinical trials evaluating immunotherapies for GBM, often in combination with standard secondary treatment options including re-resection and anti-angiogenic agents, such as bevacizumab. This review will provide a clinically focused overview of the immune environment present in GBM, which is frequently immunosuppressive and characterized by M2 macrophages, T cell exhaustion, enhanced transforming growth factor-β signaling, and others. We will also outline existing immunotherapeutic strategies, with a special focus on immune checkpoint inhibitors, chimeric antigen receptor therapy, and dendritic cell vaccines. Finally, we will summarize key discoveries in the field and discuss currently active clinical trials, including combination strategies, burgeoning technology like nucleic acid and nanoparticle therapy, and novel anticancer vaccines. This review aims to provide the most updated summary of the field of immunotherapy for GBM and offer both historical perspective and future directions to help inform clinical practice.
Collapse
|
15
|
Efficacy of PD-1/PD-L1 Inhibitors versus Chemotherapy in Lung Cancer with Brain Metastases: A Systematic Review and Meta-Analysis. J Immunol Res 2022; 2022:4518898. [PMID: 35637793 PMCID: PMC9146465 DOI: 10.1155/2022/4518898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are widely used to treat local or metastatic lung cancer. However, the efficacy of ICI in patients with brain metastases (BM) from lung cancer is unknown. This study aimed to evaluate the efficacy of PD-1/PD-L1 ICIs compared with chemotherapy for patients with lung cancer with BM. Electronic databases (PubMed, Embase, The Cochrane Library, and Web of Science) were searched. The meta-analysis assessed overall survival (OS) and progression-free survival (PFS) of the PD-1/PD-L1 inhibitors axis and its relationship with pathological type, drug modality, and the treatment line number in patients with BM from lung cancer. We included 694 patients with BM from lung cancer from 11 randomized controlled trials. Statistical analysis showed that compared with chemotherapy, PD-1/PD-L1 inhibitors could significantly prolong OS (hazard ratio (HR) = 0.75, 95%confidence interval (95%CI) = 0.51–0.99) and PFS (HR = 0.65, 95%CI = 0.51–0.80). In the subgroup analysis, ICIs plus chemotherapy improved PFS (HR = 0.60, 95%CI = 0.40–0.80), but not OS (HR = 0.75, 95%CI = 0.30–1.19). The efficacy of ICI monotherapy in patients with BM was significantly different between OS and PFS: OS pooled HR = 0.81 (95%CI = 0.57–1.05) and PFS = 0.78 (95%CI = 0.62–0.94). Among different pathological types, the OS pooled HR was 0.67 (95%CI = 0.39–0.95) for non-small cell lung cancer (NSCLC) and 0.94 (95%CI = 0.56–1.33) for small cell lung cancer (SCLC); the PFS pooled HR was 0.58 (95%CI = 0.39–0.76) for NSCLC and 0.79 (95%CI = 0.65–0.93) for SCLC. Subgroups analysis of treatment line showed that no advantage for OS with ICIs as first-line or subsequent-line therapy, whereas ICIs as first-line (HR = 0.63, 95%CI = 0.53–0.74) and second-line (HR = 0.62, 95%CI = 0.62–0.96) benefitted PFS. This meta-analysis implied that compared with chemotherapy, PD-1/PD-L1 inhibitors significantly improved efficacy treatment of patients with BM from lung cancer. Further studies are needed to confirm the role of ICIs in different pathological types and drug treatment modalities.
Collapse
|
16
|
Li M, Hou X, Sai K, Wu L, Chen J, Zhang B, Wang N, Wu L, Zheng H, Zhang J, Mou Y, Chen L. Immune suppressive microenvironment in brain metastatic non-small cell lung cancer: comprehensive immune microenvironment profiling of brain metastases versus paired primary lung tumors (GASTO 1060). Oncoimmunology 2022; 11:2059874. [PMID: 35402080 PMCID: PMC8986255 DOI: 10.1080/2162402x.2022.2059874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Lung cancer is one of the most common causes of brain metastases and is always associated with poor prognosis. We investigated the immunophenotypes of primary lung tumors and paired brain metastases, as well as immunophenotypes in the synchronous group (patients with brain metastases upon initial diagnosis) and metachronous group (patients developed brain metastases during the course of their disease). RNA sequencing of eighty-six samples from primary lung tumors and paired brain metastases of 43 patients was conducted to analyze the tumor immune microenvironment. Our data revealed that matched brain metastases compared with primary lung tumors exhibited reduced tumor infiltrating lymphocytes (TILs), a higher fraction of neutrophils infiltration, decreased scores of immune-related signatures, and a lower proportion of tumor microenvironment immune type I (high PD-L1/high CD8A) tumors. Additionally, we found a poor correlation of PD-L1 expression between paired brain metastases and primary lung tumors. In addition, gene set enrichment analysis (GSEA) showed that some gene sets associated with the immune response were enriched in the metachronous group, while other gene sets associated with differentiation and metastasis were enriched in the synchronous group in the primary lung tumors. Moreover, the tumor immune microenvironment between paired brain metastases and primary lung tumors displayed more differences in the metachronous group than in the synchronous group. Our work illustrates that brain metastatic tumors are more immunosuppressed than primary lung tumors, which may help guide immunotherapeutic strategies for NSCLC brain metastases.
Collapse
Affiliation(s)
- Meichen Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Xue Hou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Ke Sai
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Lihong Wu
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Jing Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Baishen Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Na Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Hongbo Zheng
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, P.R. China
| | - Yonggao Mou
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
17
|
Gao L, Wu J, Wang H, Yang Y, Zheng Z, Ni B, Wang X, Peng Y, Li Y. LMO1 Plays an Oncogenic Role in Human Glioma Associated With NF-kB Pathway. Front Oncol 2022; 12:770299. [PMID: 35280742 PMCID: PMC8907846 DOI: 10.3389/fonc.2022.770299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background LIM domain only protein1(LMO1), a nuclear transcription coregulator, is implicated in the pathogenesis of T-cell acute lymphoblastic leukemia and neuroblastoma. However, the clinical significance and potential mechanism of LMO1 in human gliomas remain to be determined. Methods In this study, expression level data and clinical information were obtained via three databases. The Cox proportional hazards regression model was used to predict outcomes for glioma patients. In vitro and in vivo assays were used to explore the function of LMO1 in human glioma. Gene set enrichment analysis (GSEA), RNA-seq and western blot were used to explore the potential molecular mechanisms. A prognostic model was built for predicting the overall survival(OS) of human glioma patients. Results High LMO1 expression was associated with a high tumor grade and a poor prognosis in patients. High levels of LMO1 mRNA were correlated with poor prognosis in patients with isocitrate dehydrogenase (IDH)-wild-type (wt) and 1p/19q non-codeletion gliomas. Gene silencing of LMO1 significantly inhibited tumor growth, invasion and migration in vitro. In contrast, LMO1 over-expression promoted tumor growth, invasion and migration. Mechanically, LMO1 may positively regulate the level of NGFR mRNA and protein. NGFR mediated the regulation between LMO1 and NF-kB activation. Consistently, the nude mice study further confirmed that knockdown of LMO1 blocked tumor growth via NGFR-NF-kB axis. Finally, The nomogram based on the LMO1 signature for overall survival (OS) prediction in human glioma patients exhibited good performance in the individual mortality risk. Conclusion This study provides new insights and evidences that high level expression of LMO1 is significantly correlated with progression and prognosis in human gliomas. LMO1 played a critical role in tumorigenesis and progression. The present study first investigated the LMO1–NGFR–NF-kB axis regulate cell growth and invasion in human glioma cells, whereby targeting this pathway may be a therapeutic target for glioma.
Collapse
Affiliation(s)
- Lei Gao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyu Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongliao Zheng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowen Ni
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Badiuk SR, Thiessen JD, Maleki Vareki S, Foster PJ, Chen JZ, Wong E. Glial activation positron emission tomography imaging in radiation treatment of breast cancer brain metastases. Phys Imaging Radiat Oncol 2022; 21:115-122. [PMID: 35359488 PMCID: PMC8961463 DOI: 10.1016/j.phro.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/20/2022] Open
Abstract
Brain metastases affect more breast cancer patients than ever before due to increased overall patient survival with improved molecularly targeted treatments. Approximately 25–34% of breast cancer patients develop brain metastases in their lifetime. Due to the blood–brain barrier (BBB), the standard treatment for breast cancer brain metastases (BCBM) is surgery, stereotactic radiosurgery (SRS) and/or whole brain radiation therapy (WBRT). At the cost of cognitive side effects, WBRT has proven efficacy in treating brain metastases when used with local therapies such as SRS and surgery. This review investigated the potential use of glial activation positron emission tomography (PET) imaging for radiation treatment of BCBM. In order to put these studies into context, we provided background on current radiation treatment approaches for BCBM, our current understanding of the brain microenvironment, its interaction with the peripheral immune system, and alterations in the brain microenvironment by BCBM and radiation. We summarized preclinical literature on the interactions between glial activation and cognition and clinical studies using translocator protein (TSPO) PET to image glial activation in the context of neurological diseases. TSPO-PET is not employed clinically in assessing and guiding cancer therapies. However, it has gained traction in preclinical studies where glial activation was investigated from primary brain cancer, metastases and radiation treatments. Novel glial activation PET imaging and its applications in preclinical studies using breast cancer models and glial immunohistochemistry are highlighted. Lastly, we discuss the potential clinical application of glial activation imaging to improve the therapeutic ratio of radiation treatments for BCBM.
Collapse
Affiliation(s)
- Sawyer Rhae Badiuk
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Jonathan D Thiessen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Imaging, University of Western Ontario, London, ON N6A 3K7, Canada
- Imaging Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A5 W9, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Oncology, Division of Experimental Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paula J Foster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Jeff Z Chen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
19
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
20
|
Wang Y, Zhang Q, Chen C, Hu Y, Miao L, Zhou Y. Association of Brain Metastases With Immune Checkpoint Inhibitors Efficacy in Advanced Lung Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:721760. [PMID: 34956860 PMCID: PMC8694212 DOI: 10.3389/fonc.2021.721760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In pivotal immunotherapy trials, the efficacy of immune checkpoint inhibitors as treatments for lung cancer patients with brain metastases remains controversial. The aim of this study was to assess the relative efficacy of immunotherapy versus standard systemic therapy in advanced lung cancer patients with and without brain metastases. METHODS Systematic searches of PubMed, Embase, Cochrane database, and conference proceedings up to Aug 6, 2020 without year and language restrictions. The main outcomes were the overall survival in patients with and without brain metastases measured by hazard ratios, and the difference in efficacy between patients with and without brain metastases was measured by ratio of hazard ratios. RESULTS Nine eligible randomized controlled trials involving 6241 patients (682 [11%] with brain metastases and 5559 [89%] without brain metastases) were included in the analysis. A survival benefit of immunotherapy was observed for both patients with brain metastases (HR, 0.75; 95%CI, 0.53-0.97; P = .026) and patients without brain metastases (HR, 0.75; 95%CI, 0.67-0.83; P <.001). However, patients without brain metastases benefit more from immunotherapy than patients with brain metastases (HR, 1.37; 95%CI, 1.15-1.63; P = .001). Additionally, subgroup analyses indicated that tumor type affect the efficacy of immunotherapy in patients with brain metastases (HR, 1.04 vs 1.54; interaction, P = .041). CONCLUSIONS Immunotherapy can significantly improve overall survival for advanced lung cancer patients with asymptomatic brain metastases, especially in patients with non-small-cell lung cancer, but the magnitude of benefit is brain metastases dependent. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020206597.
Collapse
Affiliation(s)
- Yanning Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qianning Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Chuansheng Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Yuxuan Hu
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Liyun Miao
- Department of Respiratory and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yujie Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
21
|
Xiao L, Zhou J, Liu H, Zhou Y, Chen W, Cui W, Zhao Y. RNA Sequence Profiling Reveals Unique Immune and Metabolic Features of Breast Cancer Brain Metastases. Front Oncol 2021; 11:679262. [PMID: 34513670 PMCID: PMC8427193 DOI: 10.3389/fonc.2021.679262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
There is an urgent need to improve our understanding of breast cancer brain metastases (BCBMs). Thus, we obtained transcriptome data of BCBMs, primary breast cancers (BCs), and extracranial metastases (BCEMs) from the Gene Expression Omnibus (GEO) database, including GSE43837, GSE14017, and GSE14018, for immune and metabolic analysis. Firstly, we performed immune and metabolic analysis on BCBMs and primary breast cancers of GSE43837 using RNA sequence. We identified significant immunosuppression and gene signatures associated with immune infiltration in BCBMs; the lower the expression of the signatures, the worse the prognosis of breast cancer patients in the Kaplan–Meier (KM) plotter [Breast cancer] database. We also identified increased oxidative phosphorylation (OXPHOS) utilization in BCBMs compared with BCs and gene signatures associated with increased OXPHOS utilization in BCBMs; the higher the expression of the signatures, the worse the prognosis of breast cancer patients in the KM plotter [Breast cancer] database, which can predict the prognosis of breast cancer patients better, as it can also predict the prognosis of patients with different breast cancer subtypes. In addition, we performed immune and metabolic analysis on BCBMs and extracranial metastases of GSE14017 and GSE14018 using RNA sequence. Compared with extracranial metastases, we identified more significant immunosuppression but no difference in OXPHOS utilization in BCBMs, which may be because OXPHOS was also involved in extracranial metastases. We have proven that OXPHOS was functionally significant in metastasis in vitro assays. Oligomycin, an OXPHOS inhibitor, substantially attenuated the migration and invasion potential of breast cancer cells. Our study provides new insights into the pathogenesis of BCBMs.
Collapse
Affiliation(s)
- Limei Xiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Jie Zhou
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongyi Liu
- School of Medicine, Xiamen University, Xiamen, China
| | - Yuanyuan Zhou
- School of Medicine, Xiamen University, Xiamen, China
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Wugeng Cui
- School of Medical Science, Ningbo University, Ningbo, China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, China
| |
Collapse
|
22
|
Guan Z, Lan H, Cai X, Zhang Y, Liang A, Li J. Blood-Brain Barrier, Cell Junctions, and Tumor Microenvironment in Brain Metastases, the Biological Prospects and Dilemma in Therapies. Front Cell Dev Biol 2021; 9:722917. [PMID: 34504845 PMCID: PMC8421648 DOI: 10.3389/fcell.2021.722917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastasis is the most commonly seen brain malignancy, frequently originating from lung cancer, breast cancer, and melanoma. Brain tumor has its unique cell types, anatomical structures, metabolic constraints, and immune environment, which namely the tumor microenvironment (TME). It has been discovered that the tumor microenvironment can regulate the progression, metastasis of primary tumors, and response to the treatment through the particular cellular and non-cellular components. Brain metastasis tumor cells that penetrate the brain–blood barrier and blood–cerebrospinal fluid barrier to alter the function of cell junctions would lead to different tumor microenvironments. Emerging evidence implies that these tumor microenvironment components would be involved in mechanisms of immune activation, tumor hypoxia, antiangiogenesis, etc. Researchers have applied various therapeutic strategies to inhibit brain metastasis, such as the combination of brain radiotherapy, immune checkpoint inhibitors, and monoclonal antibodies. Unfortunately, they hardly access effective treatment. Meanwhile, most clinical trials of target therapy patients with brain metastasis are always excluded. In this review, we summarized the clinical treatment of brain metastasis in recent years, as well as their influence and mechanisms underlying the differences between the composition of tumor microenvironments in the primary tumor and brain metastasis. We also look forward into the feasibility and superiority of tumor microenvironment-targeted therapies in the future, which may help to improve the strategy of brain metastasis treatment.
Collapse
Affiliation(s)
- Zhiyuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyu Lan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichi Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Annan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Ahuja S, Lazar IM. Systems-Level Proteomics Evaluation of Microglia Response to Tumor-Supportive Anti-Inflammatory Cytokines. Front Immunol 2021; 12:646043. [PMID: 34566949 PMCID: PMC8458581 DOI: 10.3389/fimmu.2021.646043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Microglia safeguard the CNS against injuries and pathogens, and in the presence of certain harmful stimuli are capable of inducing a disease-dependent inflammatory response. When exposed to anti-inflammatory cytokines, however, these cells possess the ability to switch from an inflammatory to an immunosuppressive phenotype. Cancer cells exploit this property to evade the immune system, and elicit an anti-inflammatory microenvironment that facilitates tumor attachment and growth. Objective The tumor-supportive biological processes that are activated in microglia cells in response to anti-inflammatory cytokines released from cancer cells were explored with mass spectrometry and proteomic technologies. Methods Serum-depleted and non-depleted human microglia cells (HMC3) were treated with a cocktail of IL-4, IL-13, IL-10, TGFβ, and CCL2. The cellular protein extracts were analyzed by LC-MS/MS. Using functional annotation clustering tools, statistically significant proteins that displayed a change in abundance between cytokine-treated and non-treated cells were mapped to their biological networks and pathways. Results The proteomic analysis of HMC3 cells enabled the identification of ~10,000 proteins. Stimulation with anti-inflammatory cytokines resulted in the activation of distinct, yet integrated clusters of proteins that trigger downstream a number of tumor-promoting biological processes. The observed changes could be classified into four major categories, i.e., mitochondrial gene expression, ECM remodeling, immune response, and impaired cell cycle progression. Intracellular immune activation was mediated mainly by the transducers of MAPK, STAT, TGFβ, NFKB, and integrin signaling pathways. Abundant collagen formation along with the expression of additional receptors, matrix components, growth factors, proteases and protease inhibitors, was indicative of ECM remodeling processes supportive of cell-cell and cell-matrix adhesion. Overexpression of integrins and their modulators was reflective of signaling processes that link ECM reorganization with cytoskeletal re-arrangements supportive of cell migration. Antigen processing/presentation was represented by HLA class I histocompatibility antigens, and correlated with upregulated proteasomal subunits, vesicular/viral transport, and secretory processes. Immunosuppressive and proangiogenic chemokines, as well as anti-angiogenic factors, were detectable in low abundance. Pronounced pro-inflammatory, chemotactic or phagocytic trends were not observed, however, the expression of certain receptors, signaling and ECM proteins indicated the presence of such capabilities. Conclusions Comprehensive proteomic profiling of HMC3 cells stimulated with anti-inflammatory cytokines revealed a spectrum of microglia phenotypes supportive of cancer development in the brain via microenvironment-dependent biological mechanisms.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
24
|
Wang E, Shibutani M, Nagahara H, Fukuoka T, Iseki Y, Okazaki Y, Kashiwagi S, Tanaka H, Maeda K, Hirakawa K, Ohira M. Abundant intratumoral fibrosis prevents lymphocyte infiltration into peritoneal metastases of colorectal cancer. PLoS One 2021; 16:e0255049. [PMID: 34293030 PMCID: PMC8297902 DOI: 10.1371/journal.pone.0255049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) have been reported to reflect the anti-tumor immune status. However, recent investigations have demonstrated that intratumoral fibrosis is important as a factor affecting the infiltration of TILs. This study investigated the organ specificities of TIL infiltration and intratumoral fibrosis in primary colorectal cancer and distant metastases, as well as the relationship between the distribution of TILs and intratumoral fibrosis. METHODS Patients who underwent resection of primary tumors or distant metastases for colorectal cancer with distant metastases were enrolled. We evaluated the TIL infiltration by immunohistochemical staining with CD3&CD8 and intratumoral fibrosis by immunohistochemical staining with α-SMA positive cancer-associated fibroblasts and Masson's trichrome staining against collagen fibers. The "ImageJ" was used to evaluate fibrosis, and the density of TILs in the dense and sparse areas of fibrosis was calculated. The Immunoscore (IS) was obtained based on the density of CD3+/CD8+TILs in the tumor center and invasive margin of the primary tumor. RESULTS The degree of CD3+/CD8+TIL infiltration in peritoneal metastases was significantly lower than that in liver and lung metastases. The area ratio of α-SMA positive cancer-associated fibroblasts and collagen fibers in peritoneal metastases was significantly higher than that of liver and lung metastases. Furthermore, the density of TILs in the high-fibrosis area was significantly lower than that in the low-fibrosis area. In the high-IS group of primary tumors, the degree of TIL infiltration in distant metastases was significantly higher than that in the low-IS group. CONCLUSION The infiltration of T lymphocytes into tumors is prevented in peritoneal metastases of colorectal cancer due to the high intratumoral fibrosis, which may lead to treatment resistance and a poor prognosis.
Collapse
Affiliation(s)
- En Wang
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Masatsune Shibutani
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
- * E-mail:
| | - Hisashi Nagahara
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Tatsunari Fukuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yasuhito Iseki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yuki Okazaki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Shinichiro Kashiwagi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City General Hospital, Miyakojima-ku, Osaka, Japan
| | - Kosei Hirakawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| |
Collapse
|
25
|
Giridharan N, Glitza Oliva IC, O'Brien BJ, Parker Kerrigan BC, Heimberger AB, Ferguson SD. Targeting the Tumor Microenvironment in Brain Metastasis. Neurosurg Clin N Am 2021; 31:641-649. [PMID: 32921358 DOI: 10.1016/j.nec.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade. In this review, the authors summarize the contribution of the TME to the development and progression of brain metastasis. They also highlight opportunities for TME-directed targeted therapy.
Collapse
Affiliation(s)
- Nisha Giridharan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 430, Houston, TX 77030, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030-4009, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
| |
Collapse
|
26
|
MRI and PET of Brain Tumor Neuroinflammation in the Era of Immunotherapy, From the AJR Special Series on Inflammation. AJR Am J Roentgenol 2021; 218:582-596. [PMID: 34259035 DOI: 10.2214/ajr.21.26159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the emergence of immune-modulating therapies, brain tumors present significant diagnostic imaging challenges. These challenges include planning personalized treatment and adjudicating accurate monitoring approaches and therapeutically specific response criteria. This has been due, in part, to the reliance on nonspecific imaging metrics, such as gadolinium-contrast-enhanced MRI or FDG PET, and rapidly evolving biologic understanding of neuroinflammation. The importance of the tumor-immune interaction and ability to therapeutically augment inflammation to improve clinical outcomes necessitates that the radiologist develop a working knowledge of the immune system and its role in clinical neuroimaging. In this article, we review relevant biologic concepts of the tumor microenvironment of primary and metastatic brain tumors, these tumors' interactions with the immune system, and MRI and PET methods for imaging inflammatory elements associated with these malignancies. Recognizing the growing fields of immunotherapeutics and precision oncology, we highlight clinically translatable imaging metrics for the diagnosis and monitoring of brain tumor neuroinflammation. Practical guidance is provided for implementing iron nanoparticle imaging, including imaging indications, protocol, interpretation, and pitfalls. A comprehensive understanding of the inflammatory mechanisms within brain tumors and their imaging features will facilitate the development of innovative non-invasive prognostic and predictive imaging strategies for precision oncology.
Collapse
|
27
|
Pathak R, Amini A, Hill A, Massarelli E, Salgia R. Immunotherapy in Non-Small Cell Lung Cancer Patients with Brain Metastases: Clinical Challenges and Future Directions. Cancers (Basel) 2021; 13:3407. [PMID: 34298620 PMCID: PMC8303291 DOI: 10.3390/cancers13143407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized the treatment landscape for patients with non-small cell lung cancers. Existing treatment paradigms for brain metastases in lung cancer patients leave patients with adverse neurocognitive function, poor quality of life, and dismal prognosis, thus highlighting the need to develop more effective systemic therapies. Although data are limited, emerging knowledge suggests promising activity and safety of immune checkpoint inhibitors in brain metastases in non-small cell lung cancer patients. This review aims to summarize the current data, highlight the challenges of incorporating immune checkpoint inhibitors in treating these patients, and identify areas for future research.
Collapse
Affiliation(s)
- Ranjan Pathak
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| | - Arya Amini
- Department of Radiation Oncology, City of Hope, Duarte, CA 91010, USA;
| | - Addie Hill
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA; (A.H.); (E.M.); (R.S.)
| |
Collapse
|
28
|
Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain 2021; 144:1046-1066. [PMID: 33893488 PMCID: PMC8105040 DOI: 10.1093/brain/awab012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
29
|
de Melo Gagliato D, Buzaid AC, Perez-Garcia J, Cortes J. Immunotherapy in Breast Cancer: Current Practice and Clinical Challenges. BioDrugs 2021; 34:611-623. [PMID: 32870473 DOI: 10.1007/s40259-020-00436-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapy is currently approved for a subset of patients diagnosed with advanced triple negative breast cancer (TNBC), based on the phase III randomized controlled trial, IMpassion130. The anti-programmed cell death ligand-1 (PD-L1) immune checkpoint inhibitor atezolizumab combined with nanoparticle albumin-bound (nab)-paclitaxel is currently the standard first-line therapy in patients with metastatic TNBC who have a PD-L1-positive peritumoral immune infiltrate. Although this approval is limited to only a subset of patients, strategies to expand indications in breast cancer for this treatment modality are being extensively evaluated. A substantial need exists for the identification of patient characteristics, disease settings, immune markers, ideal partners for combination with immune checkpoint inhibitors, and the ideal sequence with traditional anticancer therapies. Additionally, in light of the results of the KEYNOTE-522 study of adjuvant pembrolizumab in TNBC, evaluation of immunotherapy in the early disease setting is a subject of great interest. This review article discusses current knowledge on immune checkpoint inhibitors in clinical practice, and provides an overview of a variety of markers evaluated to predict benefit of immunotherapy and of promising new strategies to enhance immune response and enable more patients to benefit from immunotherapy.
Collapse
Affiliation(s)
| | - Antonio C Buzaid
- Centro Oncológico da Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Centro Oncológico do Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Perez-Garcia
- IOB Institute of Oncology, Quiron Group, Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | - Javier Cortes
- IOB Institute of Oncology, Quiron Group, Barcelona, Spain.
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain.
- Medica Scientia Innovation Research (MedSIR), New Jersey, USA.
- Vall D´Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
30
|
McAvoy MB, Choi BD, Jones PS. Immune Therapy for Central Nervous System Metastasis. Neurosurg Clin N Am 2020; 31:627-639. [PMID: 32921357 DOI: 10.1016/j.nec.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Brain metastases lead to substantial morbidity and mortality among patients with advanced malignancies. Although treatment options have traditionally included largely palliative measures, studies of brain metastasis response to immunotherapy are promising. Immune checkpoint inhibitors have shown efficacy in studies of patients with melanoma, renal cell carcinoma, and lung cancer brain metastases. Patients with brain metastases are more frequently included in clinical trials, ushering in a new era in immunotherapy and management for patients with brain metastases. Gaining an understanding of the molecular determination for response to immunotherapies remains a major challenge and is an active area of future research.
Collapse
Affiliation(s)
- Malia B McAvoy
- University of Washington Medical Center, Department of Neurological Surgery, Box 356470, 1959 NE Pacific Street, Seattle, WA 98195-6470, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC 3, Boston, MA 02114, USA
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC 745, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Rep 2020; 28:1785-1798.e6. [PMID: 31412247 DOI: 10.1016/j.celrep.2019.07.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the deadliest skin cancer due to its high rate of metastasis, frequently to the brain. Brain metastases are incurable; therefore, understanding melanoma brain metastasis is of great clinical importance. We used a mouse model of spontaneous melanoma brain metastasis to study the interactions of melanomas with the brain microenvironment. We find that CXCL10 is upregulated in metastasis-associated astrocytes in mice and humans and is functionally important for the chemoattraction of melanoma cells. Moreover, CXCR3, the receptor for CXCL10, is upregulated in brain-tropic melanoma cells. Targeting melanoma expression of CXCR3 by nanoparticle-mediated siRNA delivery or by shRNA transduction inhibits melanoma cell migration and attenuates brain metastasis in vivo. These findings suggest that the instigation of pro-inflammatory signaling in astrocytes is hijacked by brain-metastasizing tumor cells to promote their metastatic capacity and that the CXCL10-CXCR3 axis may be a potential therapeutic target for the prevention of melanoma brain metastasis.
Collapse
|
32
|
Lu WC, Xie H, Yuan C, Li JJ, Li ZY, Wu AH. Genomic landscape of the immune microenvironments of brain metastases in breast cancer. J Transl Med 2020; 18:327. [PMID: 32867782 PMCID: PMC7461335 DOI: 10.1186/s12967-020-02503-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023] Open
Abstract
Background This study was intended to investigate the genomic landscape of the immune microenvironments of brain metastases in breast cancer. Methods Three gene expression profile datasets (GSE76714, GSE125989 and GSE43837) of breast cancer with brain metastases were downloaded from Gene Expression Omnibus (GEO) database. After differential expression analysis, the tumor immune microenvironment and immune cell infiltration were analyzed. Then immune-related genes were identified, followed by function analysis, transcription factor (TF)-miRNA–mRNA co-regulatory network analysis, and survival analysis of metastatic recurrence. Results The present results showed that the tumor immune microenvironment in brain metastases was immunosuppressed compared with primary caner. Compared with primary cancer samples, the infiltration ratio of plasma cells in brain metastases samples was significantly higher, while the infiltration ratio of macrophages M2 cells in brain metastases samples was significantly lower. Total 42 immune-related genes were identified, such as THY1 and NEU2. CD1B, THY1 and DOCK2 were found to be implicated in the metastatic recurrence of breast cancer. Conclusions Targeting macrophages or plasma cells may be new strategies for immunotherapy of breast cancer with brain metastases. THY1 and NEU2 may be potential therapeutic targets for breast cancer with brain metastases, and THY1, CD1B and DOCK2 may serve as potential prognostic markers for improvement of brain metastases survival.
Collapse
Affiliation(s)
- Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Xie
- Department of Histology and Embryology, College of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Ce Yuan
- Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, USA
| | - Jin-Jiang Li
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zhao-Yang Li
- Department of Laboratory Animal Center, China Medical University, Shenyang, Liaoning, China
| | - An-Hua Wu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
33
|
Vilariño N, Bruna J, Bosch-Barrera J, Valiente M, Nadal E. Immunotherapy in NSCLC patients with brain metastases. Understanding brain tumor microenvironment and dissecting outcomes from immune checkpoint blockade in the clinic. Cancer Treat Rev 2020; 89:102067. [PMID: 32682248 DOI: 10.1016/j.ctrv.2020.102067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Brain metastases are frequent complications in patients with non-small-cell lung cancer (NSCLC) associated with significant morbidity and poor prognosis. Our goal is to give a global overlook on clinical efficacy from immune checkpoint inhibitors in this setting and to review the role of biomarkers and molecular interactions in brain metastases from patients with NSCLC. METHODS We reviewed clinical trials reporting clinical outcomes of patients with NSCLC with brain metastases as well as publications assessing the tumor microenvironment and the complex molecular interactions of tumor cells with immune and resident cells in brain metastases from NSCLC biopsies or preclinical models. RESULTS Although limited data are available on immunotherapy in patients with brain metastases, immune checkpoint inhibitors alone or in combination with chemotherapy have shown promising intracranial efficacy and safety results. The underlying mechanism of action of immune checkpoint inhibitors in the brain niche and their influence on tumor microenvironment are still not known. Lower PD-L1 expression and less T CD8+ infiltration were found in brain metastases compared with matched NSCLC primary tumors, suggesting an immunosuppressive microenvironment in the brain. Reactive astrocytes and tumor associated macrophages are paramount in NSCLC brain metastases and play a role in promoting tumor progression and immune evasion. CONCLUSIONS Discordances in the immune profile between primary tumours and brain metastases underscore differences in the tumour microenvironment and immune system interactions within the lung and brain niche. The characterization of immune phenotype of brain metastases and dissecting the interplay among immune cells and resident stromal cells along with cancer cells is crucial to unravel effective immunotherapeutic approaches in patients with NSCLC and brain metastases.
Collapse
Affiliation(s)
- N Vilariño
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) Group, Molecular Mechanisms and Experimental Therapeutics in Cancer (Oncobell). IDIBELL, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - J Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - J Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Avinguda França-Sant Ponç, 0, 17007 Girona, Spain.
| | - M Valiente
- Brain Metastases Group, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | - E Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) Group, Molecular Mechanisms and Experimental Therapeutics in Cancer (Oncobell). IDIBELL, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
34
|
Wingrove E, Liu ZZ, Patel KD, Arnal-Estapé A, Cai WL, Melnick MA, Politi K, Monteiro C, Zhu L, Valiente M, Kluger HM, Chiang VL, Nguyen DX. Transcriptomic Hallmarks of Tumor Plasticity and Stromal Interactions in Brain Metastasis. Cell Rep 2020; 27:1277-1292.e7. [PMID: 31018140 DOI: 10.1016/j.celrep.2019.03.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/06/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023] Open
Abstract
The brain is a major site of relapse for several cancers, yet deciphering the mechanisms of brain metastasis remains a challenge because of the complexity of the brain tumor microenvironment (TME). To define the molecular landscape of brain metastasis from intact tissue in vivo, we employ an RNA-sequencing-based approach, which leverages the transcriptome of xenografts and distinguishes tumor cell and stromal gene expression with improved sensitivity and accuracy. Our data reveal shifts in epithelial and neuronal-like lineage programs in malignant cells as they adapt to the brain TME and the reciprocal neuroinflammatory response of the stroma. We identify several transcriptional hallmarks of metastasis that are specific to particular regions of the brain, induced across multiple tumor types, and confirmed in syngeneic models and patient biopsies. These data may serve as a resource for exploring mechanisms of TME co-adaptation within, as well as across, different subtypes of brain metastasis.
Collapse
Affiliation(s)
- Emily Wingrove
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zongzhi Z Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kiran D Patel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna Arnal-Estapé
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wesley L Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary-Ann Melnick
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Katerina Politi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cátia Monteiro
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Abstract
Tumours reprogram host physiology, metabolism and immune responses during cancer progression. The release of soluble factors, exosomes and metabolites from tumours leads to systemic changes in distant organs, where cancer cells metastasize and grow. These tumour-derived circulating factors also profoundly impact tissues that are rarely inhabited by metastatic cancer cells such as skeletal muscle and adipose tissue. In fact, the majority of patients with metastatic cancer develop a debilitating muscle-wasting syndrome, known as cachexia, that is associated with decreased tolerance to antineoplastic therapy, poor prognosis and accelerated death, with no approved treatments. In this Perspective, we discuss the development of cachexia in the context of metastatic progression. We briefly discuss how circulating factors either directly or indirectly promote cachexia development and examine how signals from the metastatic process can trigger and amplify this process. Finally, we highlight promising therapeutic opportunities for targeting cachexia in the context of metastatic cancers.
Collapse
Affiliation(s)
- Anup K Biswas
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Dankner M, Issa-Chergui B, Bouganim N. Post-mortem tissue donation programs as platforms to accelerate cancer research. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 6:163-170. [PMID: 32198850 PMCID: PMC7339213 DOI: 10.1002/cjp2.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
Given recent advances in the treatment of cancer, patients are surviving longer but frequently develop treatment-resistant and inoperable metastases. Biomedical research has advanced to the stage where in-depth study of these lesions is feasible, with the goal of further refining our understanding of metastatic dissemination, therapeutic resistance and inoperable tumors. However, there is a lack of tissue specimens derived from multiple metastatic sites within the same patient that would permit the study of these processes. Furthermore, patients with rapidly progressing or metastatic disease are rarely candidates for surgery, making those most in need of innovation and discovery extremely difficult to study. For this reason, post-mortem tissue donation programs are an approach that is quickly gaining traction in the cancer research community. Herein, we discuss what post-mortem tissue donation entails, attitudes towards these procedures, and highlight important studies already utilizing these resources. In addition, we propose future directions for use of this tissue that can directly improve clinical management of advanced cancer patients.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Quebec, Canada
| | - Badia Issa-Chergui
- Department of Pathology, McGill University, Quebec, Canada.,McGill University Health Centre, McGill University, Quebec, Canada
| | - Nathaniel Bouganim
- Division of Oncology, McGill University, Quebec, Canada.,McGill University Health Centre, McGill University, Quebec, Canada
| |
Collapse
|
37
|
Brahm CG, van Linde ME, Enting RH, Schuur M, Otten RH, Heymans MW, Verheul HM, Walenkamp AM. The Current Status of Immune Checkpoint Inhibitors in Neuro-Oncology: A Systematic Review. Cancers (Basel) 2020; 12:cancers12030586. [PMID: 32143288 PMCID: PMC7139638 DOI: 10.3390/cancers12030586] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
The introduction of immune checkpoint inhibitors (ICI), as a novel treatment modality, has transformed the field of oncology with unprecedented successes. However, the efficacy of ICI for patients with glioblastoma or brain metastases (BMs) from any tumor type is under debate. Therefore, we systematically reviewed current literature on the use of ICI in patients with glioblastoma and BMs. Prospective and retrospective studies evaluating the efficacy and survival outcomes of ICI in patients with glioblastoma or BMs, and published between 2006 and November 2019, were considered. A total of 88 studies were identified (n = 8 in glioblastoma and n = 80 in BMs). In glioblastoma, median progression-free (PFS) and overall survival (OS) of all studies were 2.1 and 7.3 months, respectively. In patients with BMs, intracranial responses have been reported in studies with melanoma and non-small-cell lung cancer (NSCLC). The median intracranial and total PFS in these studies were 2.7 and 3.0 months, respectively. The median OS in all studies for patients with brain BMs was 8.0 months. To date, ICI demonstrate limited efficacy in patients with glioblastoma or BMs. Future research should focus on increasing the local and systemic immunological responses in these patients.
Collapse
Affiliation(s)
- Cyrillo G. Brahm
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, location VUmc, 1007 MB Amsterdam, The Netherlands; (M.E.v.L.); (H.M.W.V.)
| | - Myra E. van Linde
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, location VUmc, 1007 MB Amsterdam, The Netherlands; (M.E.v.L.); (H.M.W.V.)
| | - Roelien H. Enting
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
| | - Maaike Schuur
- Department of Neurology, Cancer Center Amsterdam, Amsterdam University Medical Centers, location VUmc, 1007 MB Amsterdam, The Netherlands;
| | - René H.J. Otten
- University Library, Vrije Universiteit Amsterdam, 1007 MB Amsterdam, The Netherlands;
| | - Martijn W. Heymans
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, location VUmc, 1007 MB Amsterdam, The Netherlands;
| | - Henk M.W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, location VUmc, 1007 MB Amsterdam, The Netherlands; (M.E.v.L.); (H.M.W.V.)
- Department of Medical Oncology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Annemiek M.E. Walenkamp
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-50-3612821; Fax: +31-50-3614862
| |
Collapse
|
38
|
Pin Y, Paix A, Todeschi J, Antoni D, Proust F, Noël G. Brain metastasis formation and irradiation by stereotactic radiation therapy combined with immunotherapy: A systematic review. Crit Rev Oncol Hematol 2020; 149:102923. [PMID: 32199131 DOI: 10.1016/j.critrevonc.2020.102923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Brain metastasis (BM) is a complex process that implies immune cells and microglia. Stereotactic radiation therapy (SRT) and immunotherapy (IT) are established to increase the immune response; but their association has never been prospectively studied. MATERIALS AND METHODS Two reviewers performed a systematic review in original papers published up to September 2019. We analysed OS, local (mLRF) and regional (mBRF) median disease-free survival in patients with BMs after SRT with and without IT. RESULTS Upon 14 studies, eleven concerned melanoma, three concerned lung cancers. SRT-IT showed better OS, mLRF and mBRF than SRT. mBRF was better if SRT was performed with short delay from IT. No higher rates of radionecrosis and haemorrhage were found among groups. CONCLUSION This review suggests SRT combined to IT in melanoma is safe and could provide better BRF, suggesting a lymphocytic immune reaction in brain. No improvement trend was found in lung cancer BM.
Collapse
Affiliation(s)
- Yvan Pin
- Institut Privé de Radiothérapie de Metz (IPRM), Hôpital-Clinique Claude Bernard, 97 Rue Claude Bernard, 57070 Metz, France.
| | - Adrien Paix
- Institut de Radiothérapie des Hautes Energies, Rue Lautréamont, 93000 Bobigny, France
| | - Julien Todeschi
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Delphine Antoni
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France; Strasbourg University, Radiobiology Laboratory, CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, 67000 Strasbourg, France
| | - François Proust
- Department of Neurosurgery, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Georges Noël
- Department of Radiation Oncology, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France; Strasbourg University, Radiobiology Laboratory, CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, 67000 Strasbourg, France
| |
Collapse
|
39
|
You H, Baluszek S, Kaminska B. Supportive roles of brain macrophages in CNS metastases and assessment of new approaches targeting their functions. Am J Cancer Res 2020; 10:2949-2964. [PMID: 32194848 PMCID: PMC7053204 DOI: 10.7150/thno.40783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Metastases to the central nervous system (CNS) occur frequently in adults and their frequency increases with the prolonged survival of cancer patients. Patients with CNS metastases have short survival, and modern therapeutics, while effective for extra-cranial cancers, do not reduce metastatic burden. Tumor cells attract and reprogram stromal cells, including tumor-associated macrophages that support cancer growth by promoting tissue remodeling, invasion, immunosuppression and metastasis. Specific roles of brain resident and infiltrating macrophages in creating a pre-metastatic niche for CNS invading cancer cells are less known. There are populations of CNS resident innate immune cells such as: parenchymal microglia and non-parenchymal, CNS border-associated macrophages that colonize CNS in early development and sustain its homeostasis. In this study we summarize available data on potential roles of different brain macrophages in most common brain metastases. We hypothesize that metastatic cancer cells exploit CNS macrophages and their cytoprotective mechanisms to create a pre-metastatic niche and facilitate metastatic growth. We assess current pharmacological strategies to manipulate functions of brain macrophages and hypothesize on their potential use in a therapy of CNS metastases. We conclude that the current data strongly support a notion that microglia, as well as non-parenchymal macrophages and peripheral infiltrating macrophages, are involved in multiple stages of CNS metastases. Understanding their contribution will lead to development of new therapeutic strategies.
Collapse
|
40
|
Herrera-Rios D, Mughal SS, Teuber-Hanselmann S, Pierscianek D, Sucker A, Jansen P, Schimming T, Klode J, Reifenberger J, Felsberg J, Keyvani K, Brors B, Sure U, Reifenberger G, Schadendorf D, Helfrich I. Macrophages/Microglia Represent the Major Source of Indolamine 2,3-Dioxygenase Expression in Melanoma Metastases of the Brain. Front Immunol 2020; 11:120. [PMID: 32117271 PMCID: PMC7013086 DOI: 10.3389/fimmu.2020.00120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/16/2020] [Indexed: 01/12/2023] Open
Abstract
The manifestation of brain metastases in patients with advanced melanoma is a common event that limits patient's survival and quality of life. The immunosuppressive properties of the brain parenchyma are very different compared to the rest of the body, making it plausible that the current success of cancer immunotherapies is specifically limited here. In melanoma brain metastases, the reciprocal interplay between immunosuppressive mediators such as indoleamine 2, 3-dioxygenase (IDO) or programmed cell death-ligand 1 (PD-L1) in the context of neoplastic transformation are far from being understood. Therefore, we analyzed the immunoreactive infiltrate (CD45, CD3, CD8, Forkhead box P3 [FoxP3], CD11c, CD23, CD123, CD68, Allograft Inflammatory factor 1[AIF-1]) and PD-L1 with respect to IDO expression and localization in melanoma brain metastases but also in matched metastases at extracranial sites to correlate intra- and interpatient data with therapy response and survival. Comparative tissue analysis identified macrophages/microglia as the major source of IDO expression in melanoma brain metastases. In contrast to the tumor infiltrating lymphocytes, melanoma cells per se exhibited low IDO expression levels paralleled by cell surface presentation of PD-L1 in intracranial metastases. Absolute numbers and pattern of IDO-expressing cells in metastases of the brain correlated with recruitment and localization of CD8+ T cells, implicating dynamic impact on the regulation of T cell function in the brain parenchyma. However, paired analysis of matched intra- and extracranial metastases identified significantly lower fractions of cytotoxic CD8+ T cells in intracranial metastases while all other immune cell populations remain unchanged. In line with the already established clinical benefit for PD-L1 expression in extracranial melanoma metastases, Kaplan-Meier analyses correlated PD-L1 expression in brain metastases with favorable outcome in advanced melanoma patients undergoing immune checkpoint therapy. In summary, our data provide new insights into the landscape of immunosuppressive factors in melanoma brain metastases that may be useful in the implication of novel therapeutic strategies for patients undergoing cancer immunotherapy.
Collapse
Affiliation(s)
- Dayana Herrera-Rios
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Sadaf S Mughal
- Division of Applied Bioinfomatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Teuber-Hanselmann
- Medical Faculty, West German Cancer Center, Institute of Neuropathology, University Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Neurosurgery, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Antje Sucker
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Philipp Jansen
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Tobias Schimming
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Joachim Klode
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Julia Reifenberger
- Department of Dermatology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Felsberg
- Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Kathy Keyvani
- Medical Faculty, West German Cancer Center, Institute of Neuropathology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Brors
- Division of Applied Bioinfomatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Department of Neurosurgery, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Guido Reifenberger
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
41
|
5-Aminolevulinic Acid Fluorescence Indicates Perilesional Brain Infiltration in Brain Metastases. World Neurosurg X 2019; 5:100069. [PMID: 32095783 PMCID: PMC7026613 DOI: 10.1016/j.wnsx.2019.100069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 11/24/2022] Open
Abstract
Background In glioma surgery, 5-aminolevulinic acid (5-ALA) fluorescence reflects tumor infiltration, and fluorescence-assisted resection correlates with higher removal rates and improved progression-free survival. Recent studies report that a sizable proportion of brain metastases exhibit peritumoral infiltration on the cellular level. There is little information regarding whether 5-ALA is useful to guide surgery in the peritumoral zone in metastases. The aim of this study was to assess histologically whether 5-ALA fluorescence accurately reflects metastatic brain infiltration. Methods and Materials Fluorescence-assisted tumor resection was performed in 27 patients with brain metastases. Patients received 20 mg/kg 5-ALA 3 hours before anesthesia. After resection, biopsy specimens of the surrounding parenchyma were analyzed for 5-ALA fluorescence and histologic evidence of infiltrating tumor cells. The correlation between 5-ALA positivity and immunohistochemical evidence of tumor in the peritumoral zone was also assessed. Results Of 27 metastases, 23 (85%) were 5-ALA positive. For qualitative tissue analysis, 110 of 125 samples were collected. Metastatic infiltration was present in 49 samples with faint or red fluorescence; 33 samples without fluorescence were tumor-free. The presence of metastatic infiltration correlated with fluorescence (P < 0.001). Tumor infiltration correlated with fluorescence (blue fluorescence 0.09% ± 0.04% and red or faint fluorescence 3.26%; P = 0.003). Conclusions Infiltration of surrounding brain tissue is a common finding in brain metastases in selected primary tumors. 5-ALA fluorescence correlates with tumor cell infiltration and might guide more radical resection.
Collapse
|
42
|
Peptides, Antibodies, Peptide Antibodies and More. Int J Mol Sci 2019; 20:ijms20246289. [PMID: 31847088 PMCID: PMC6941022 DOI: 10.3390/ijms20246289] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The applications of peptides and antibodies to multiple targets have emerged as powerful tools in research, diagnostics, vaccine development, and therapeutics. Antibodies are unique since they, in theory, can be directed to any desired target, which illustrates their versatile nature and broad spectrum of use as illustrated by numerous applications of peptide antibodies. In recent years, due to the inherent limitations such as size and physical properties of antibodies, it has been attempted to generate new molecular compounds with equally high specificity and affinity, albeit with relatively low success. Based on this, peptides, antibodies, and peptide antibodies have established their importance and remain crucial reagents in molecular biology.
Collapse
|
43
|
Zhang C, Yu D. Suppressing immunotherapy by organ-specific tumor microenvironments: what is in the brain? Cell Biosci 2019; 9:82. [PMID: 31624532 PMCID: PMC6781341 DOI: 10.1186/s13578-019-0349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022] Open
Abstract
Recent breakthroughs in cancer immunotherapy have led to curative efficacy and significantly prolonged survival in a subset of patients of multiple cancer types; and immunotherapy has become the newest pillar of cancer treatment in addition to surgery, chemotherapy, radiotherapy and precision targeted therapies. In the metastatic disease setting, responses to immunotherapy are heterogeneous depending on the metastatic organ sites. The tissue-specific immuno-biology in the tumor microenvironments (TMEs) contributes to the differential therapeutic responses. Herein, we review the impact of tissue-specific tumor microenvironment on the efficacy of immunotherapy, with a focus on historically under-represented central nervous system (CNS) metastasis, which was excluded from most clinical trials. Retrospective examination of patient specimens and prospective clinical studies with immune checkpoint blockade (ICB) have established that brain can harbor an “active” immune microenvironment for effective immunotherapy. Regulation by the innate immune microglial cells and remodeling of the blood–brain barrier (BBB) may contribute to immunotherapeutic responses mediated by T lymphocytes. How to convert an “inactive” (cold) brain microenvironment into an “active” (hot) brain TME should be the focus of future efforts. Thus, procurement and complete examination of clinical specimens from brain metastases as well as development of appropriate preclinical brain metastasis models susceptible to external manipulation of the TME are critical steps towards that goal. A deeper understanding of the immuno-biology in distinct organ microenvironments will help to expand the benefits of immunotherapy to more needed patients.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
44
|
Distinct gene expression profiles between primary breast cancers and brain metastases from pair-matched samples. Sci Rep 2019; 9:13343. [PMID: 31527824 PMCID: PMC6746866 DOI: 10.1038/s41598-019-50099-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Our objectives were to determine whether clinic-pathological markers and immune-related gene signatures in breast cancer exhibit any change upon brain metastasis and whether previously reported genes significantly associated with brain metastases and the epithelial-mesenchymal transition (EMT) were reproducible and consistent in our dataset. Sixteen pair-matched samples from primary breast cancers and brain metastases diagnosed were collected from the Japan Clinical Oncology Group Breast Cancer Study Group. Gene expression profiles for immune-, brain metastases-, and EMT-related genes were compared between primary breast cancers and brain metastases. Potential therapeutic target genes of 41 FDA-approved or under-investigation agents for brain metastases were explored. Immune-related signatures exhibited significantly lower gene expression in brain metastases than in primary breast cancers. No significant differences were detected for the majority of genes associated with brain metastases and EMT in the two groups. Among 41 therapeutic target candidates, VEGFA and DNMT3A demonstrated significantly higher gene expression in brain metastases. We found that distinct patterns of gene expression exist between primary breast cancers and brain metastases. Further studies are needed to explore whether these distinct expression profiles derive from or underlie disease status and compare these features between metastases to the brain and other sites.
Collapse
|
45
|
You H, Baluszek S, Kaminska B. Immune Microenvironment of Brain Metastases-Are Microglia and Other Brain Macrophages Little Helpers? Front Immunol 2019; 10:1941. [PMID: 31481958 PMCID: PMC6710386 DOI: 10.3389/fimmu.2019.01941] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are common intracranial neoplasms and their frequency increases with prolonged survival of cancer patients. New pharmaceuticals targeting oncogenic kinases and immune checkpoint inhibitors augment both overall and progression-free survival in patients with brain metastases, but are not fully successful in reducing metastatic burden and still a majority of oncologic patients die due to dissemination of the disease. Despite therapy advancements, median survival of patients with brain metastases is several months, although it may vary in different types or subtypes of cancer. Contribution of the innate immune system to cancer progression is well established. Tumor-associated macrophages (TAMs), instead of launching antitumor responses, promote extracellular matrix degradation, secrete immunosuppressive cytokines, promote neoangiogenesis and tumor growth. While their roles as pro-tumorigenic cells facilitating tissue remodeling, invasion and metastasis is well documented, much less is known about the immune microenvironment of brain metastases and roles of specific immune cells in those processes. The central nervous system (CNS) is armed in resident myeloid cells: microglia and perivascular macrophages which colonize CNS in early development and maintain homeostasis in brain parenchyma and at brain-blood vessels interfaces. In this study we discuss available data on the immune composition of most common brain metastases, focusing on interactions between metastatic cancer cells and microglia, perivascular and meningeal macrophages. Cancer cells ‘highjack’ several CNS protective mechanisms and may employ microglia and CNS-border associated macrophages into helping cancer cells to colonize a pre-metastatic niche. We describe emerging molecular insights into mechanisms governing communication between microglia and metastatic cancer cells that culminate in activation of CNS resident microglia and trafficking of monocytic cells from the periphery. We present mechanisms controlling those processes in brain metastases and hypothesize on potential therapeutic approaches. In summary, microglia and non-parenchymal brain macrophages are involved in multiple stages of a metastatic disease and, unlike tumor cells, are genetically stable and predictable, which makes them an attractive target for anticancer therapies.
Collapse
Affiliation(s)
- Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,School of Laboratory Medicine, YouJiang Medical University for Nationalities, Baise, China.,Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Szymon Baluszek
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
46
|
Schulz M, Salamero-Boix A, Niesel K, Alekseeva T, Sevenich L. Microenvironmental Regulation of Tumor Progression and Therapeutic Response in Brain Metastasis. Front Immunol 2019; 10:1713. [PMID: 31396225 PMCID: PMC6667643 DOI: 10.3389/fimmu.2019.01713] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular and non-cellular components of the tumor microenvironment (TME) are emerging as key regulators of primary tumor progression, organ-specific metastasis, and therapeutic response. In the era of TME-targeted- and immunotherapies, cancer-associated inflammation has gained increasing attention. In this regard, the brain represents a unique and highly specialized organ. It has long been regarded as an immunological sanctuary site where the presence of the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCB) restricts the entry of immune cells from the periphery. Consequently, tumor cells that metastasize to the brain were thought to be shielded from systemic immune surveillance and destruction. However, the detailed characterization of the immune landscape within border-associated areas of the central nervous system (CNS), such as the meninges and the choroid plexus, as well as the discovery of lymphatics and channels that connect the CNS with the periphery, have recently challenged the dogma of the immune privileged status of the brain. Moreover, the presence of brain metastases (BrM) disrupts the integrity of the BBB and BCB. Indeed, BrM induce the recruitment of different immune cells from the myeloid and lymphoid lineage to the CNS. Blood-borne immune cells together with brain-resident cell-types, such as astrocytes, microglia, and neurons, form a highly complex and dynamic TME that affects tumor cell survival and modulates the mode of immune responses that are elicited by brain metastatic tumor cells. In this review, we will summarize recent findings on heterotypic interactions within the brain metastatic TME and highlight specific functions of brain-resident and recruited cells at different rate-limiting steps of the metastatic cascade. Based on the insight from recent studies, we will discuss new opportunities and challenges for TME-targeted and immunotherapies for BrM.
Collapse
Affiliation(s)
- Michael Schulz
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Biological Sciences, Faculty 15, Goethe University, Frankfurt, Germany
| | - Anna Salamero-Boix
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Katja Niesel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Tijna Alekseeva
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK, Partner Site Frankfurt/Mainz) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
van Bussel MTJ, Beijnen JH, Brandsma D. Intracranial antitumor responses of nivolumab and ipilimumab: a pharmacodynamic and pharmacokinetic perspective, a scoping systematic review. BMC Cancer 2019; 19:519. [PMID: 31146733 PMCID: PMC6543612 DOI: 10.1186/s12885-019-5741-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recently, two phase II trials showed intracranial activity of the immune checkpoint inhibitors nivolumab and ipilimumab in patients with melanoma brain metastases. However, it is generally assumed that large molecules like monoclonal antibodies nivolumab and ipilimumab cannot penetrate and pass an intact blood brain barrier (BBB). In this systematic review we provide a pharmacodynamic and pharmacokinetic consideration of the clinical activity of the immune checkpoint inhibitors nivolumab and ipilimumab in melanoma brain metastases. METHODS Pubmed was systematically searched for prospective phase II and III studies on nivolumab and ipilimumab in melanoma brain metastases and cerebrospinal fluid (CSF) levels of nivolumab and ipilimumab. Results were discussed and a perspective on the pharmacodynamics and pharmacokinetics for the intracranial activity of these agents was given. RESULTS Two phase II studies with the combination nivolumab and ipilimumab and one phase II study with ipilimumab monotherapy in melanoma brain metastases were included in this review. One article reported drug levels of nivolumab in CSF. Intracranial responses were achieved in 16 of 35 patients (46%; 95% confidence interval (CI) 29-63) in a phase II study cohort treated with nivolumab and ipilimumab. In a second phase II study in 94 patients, the rate of intracranial clinical benefit was 57% (95% CI 47-68). The CSF/serum ratio of nivolumab was 0.88-1.9% in a cohort of metastatic melanoma patients treated with nivolumab 1-3 mg/kg. Nivolumab concentrations ranged from 35 to 150 ng/ml in CSF of these patients, which is in the range of the half maximal effective concentration (EC50) of 0.64 nM. CONCLUSIONS Ipilimumab and nivolumab are active in melanoma brain metastases. Nivolumab penetrates into the CSF. Based on the described findings the general consensus that monoclonal antibodies do not penetrate into the central nervous system (CNS) and cannot have a direct intracranial effect needs to be reconsidered.
Collapse
Affiliation(s)
- Mark T J van Bussel
- Division of Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Medical Oncology & Clinical Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Dieta Brandsma
- Department of Neuro-oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Doron H, Pukrop T, Erez N. A Blazing Landscape: Neuroinflammation Shapes Brain Metastasis. Cancer Res 2019; 79:423-436. [PMID: 30679177 DOI: 10.1158/0008-5472.can-18-1805] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/22/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Brain metastases are more common than primary CNS tumors and confer grave prognosis on patients, as existing treatments have very limited efficacy. The tumor microenvironment has a central role in facilitating tumorigenesis and metastasis. In recent years, there has been much progress in our understanding of the functional role of the brain metastatic microenvironment. In this review, we discuss the latest advances in brain metastasis research, with special emphasis on the role of the brain microenvironment and neuroinflammation, integrating insights from comparable findings in neuropathologies and primary CNS tumors. In addition, we overview findings on the formation of a hospitable metastatic niche and point out the major gaps in knowledge toward developing new therapeutics that will cotarget the stromal compartment in an effort to improve the treatment and prevention of brain metastases.
Collapse
Affiliation(s)
- Hila Doron
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, Peters S, Arvold ND, Harsh GR, Steeg PS, Chang SD. Brain metastases. Nat Rev Dis Primers 2019; 5:5. [PMID: 30655533 DOI: 10.1038/s41572-018-0055-y] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 20% of all patients with cancer will develop brain metastases, with the majority of brain metastases occurring in those with lung, breast and colorectal cancers, melanoma or renal cell carcinoma. Brain metastases are thought to occur via seeding of circulating tumour cells into the brain microvasculature; within this unique microenvironment, tumour growth is promoted and the penetration of systemic medical therapies is limited. Development of brain metastases remains a substantial contributor to overall cancer mortality in patients with advanced-stage cancer because prognosis remains poor despite multimodal treatments and advances in systemic therapies, which include a combination of surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies. Thus, interest abounds in understanding the mechanisms that drive brain metastases so that they can be targeted with preventive therapeutic strategies and in understanding the molecular characteristics of brain metastases relative to the primary tumour so that they can inform targeted therapy selection. Increased molecular understanding of the disease will also drive continued development of novel immunotherapies and targeted therapies that have higher bioavailability beyond the blood-tumour barrier and drive advances in radiotherapies and minimally invasive surgical techniques. As these discoveries and innovations move from the realm of basic science to preclinical and clinical applications, future outcomes for patients with brain metastases are almost certain to improve.
Collapse
Affiliation(s)
- Achal Singh Achrol
- Department of Neurosurgery and Neurosciences, John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA.
| | - Robert C Rennert
- Department of Neurosurgery, University of California-San Diego, San Diego, CA, USA.
| | - Carey Anders
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manmeet S Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Solange Peters
- Medical Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nils D Arvold
- Department of Radiation Oncology, St. Luke's Cancer Center, Duluth, MN, USA
| | - Griffith R Harsh
- Department of Neurosurgery, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Center, Bethesda, MD, USA
| | - Steven D Chang
- Department of Neurosurgery, University of California-Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
50
|
Non-small cell lung cancer brain metastases and the immune system: From brain metastases development to treatment. Cancer Treat Rev 2018; 68:69-79. [PMID: 29883857 DOI: 10.1016/j.ctrv.2018.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
Abstract
Brain metastases (BM) are diagnosed frequently in non-small cell lung cancer (NSCLC) patients. Despite the high incidence of BM (up to 40% in unselected patients), patients with untreated and/or unstable BM were excluded from pivotal immune checkpoint inhibitors (ICI) NSCLC trials. Percentage of patients with stable and treated BM in these trials ranged from 9.1 to 14.7% and ICI benefit over chemotherapy was not always demonstrated. Only small trials have been completed that demonstrated ICI efficacy in locally untreated, selected BM patients. With 33%, cranial objective response rate (ORR) was comparable to extracranial ORR and responses were often durable. With the promising survival benefits of ICI, in daily practice also unstable and/or untreated BM patients will often receive treatment with ICI and extrapolating clinical trial data to these patients can be challenging. In this review, we will summarize the preclinical rationale and potential concerns for the use of ICI in BM patients. Furthermore, we will summarize BM subgroup data from the pivotal NSCLC trials, retrospective series, the NSCLC BM specific ICI trials and the use of cranial radiation and ICI. Last, we provide an overview of response measurement criteria and future directions.
Collapse
|