1
|
Chinen LTD, Torres JA, Calsavara VF, Brito ABC, Silva VSE, Novello RGS, Fernandes TC, Decina A, Dachez R, Paterlini-Brechot P. Circulating Polyploid Giant Cancer Cells, a Potential Prognostic Marker in Patients with Carcinoma. Int J Mol Sci 2024; 25:9841. [PMID: 39337327 PMCID: PMC11432346 DOI: 10.3390/ijms25189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Polyploid Giant Cancer Cells (PGCCs) have been recognized as tumor cells that are resistant to anticancer therapies. However, it remains unclear whether their presence in the bloodstream can be consistently detected and utilized as a clinical marker to guide therapeutic anticancer regimens. To address these questions, we conducted a retrospective study involving 228 patients diagnosed with six different types of carcinomas (colon, gastric, NSCLC, breast, anal canal, kidney), with the majority of them (70%) being non-metastatic. Employing a highly sensitive liquid biopsy approach, ISET®, and cytopathological readout, we isolated and detected circulating PGCCs in the patients' blood samples. PGCCs were identified in 46 (20.18%) out of 228 patients, including in 14.47% of 152 non-metastatic and 29.85% of 67 metastatic cases. Patients were subsequently monitored for a mean follow up period of 44.74 months (95%CI: 33.39-55.79 months). Remarkably, the presence of circulating PGCCs emerged as a statistically significant indicator of poor overall survival. Our findings suggest that circulating PGCCs hold promise as a reliable prognostic indicator. They underscore the importance of further extensive investigations into the role of circulating PGCCs as a prognostic marker and the development of anti-PGCC therapeutic strategies to improve cancer management and patient survival.
Collapse
Affiliation(s)
| | | | - Vinicius Fernando Calsavara
- Department of Computational Biomedicine, Biostatistics Shared Resource, Cedars-Sinai Cancer Center, Los Angeles, CA 90069, USA
| | | | - Virgílio Sousa E Silva
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil
| | | | | | - Alessandra Decina
- Rarecells Faculté de Médecine Necker, 160 Rue de Vaugirard, 75015 Paris, France
| | - Roger Dachez
- Cytopathology Laboratory Innodiag, F-92100 Boulogne-Billancourt, France
| | | |
Collapse
|
2
|
Mallin MM, Rolle LT, Schmidt MJ, Nair SP, Zurita AJ, Kuhn P, Hicks J, Pienta KJ, Amend SR. Cells in the Polyaneuploid Cancer Cell State are Pro-Metastatic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603285. [PMID: 39071340 PMCID: PMC11275908 DOI: 10.1101/2024.07.12.603285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There remains a large need for a greater understanding of the metastatic process within the prostate cancer field. Our research aims to understand the adaptive - ergo potentially metastatic - responses of cancer to changing microenvironments. Emerging evidence has implicated a role of the Polyaneuploid Cancer Cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study of prostate cancer patients revealed that PACC presence in the prostate at the time of radical prostatectomy was predictive of future metastatic progression. To test for a causative relationship between PACC state biology and metastasis, we leveraged a novel method designed for flow-cytometric detection of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in subcutaneous, caudal artery, and intracardiac mouse models of metastasis. This approach provides both quantitative and qualitative information about the number and PACC-status of recovered CTCs and DTCs. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. In vivo colonization assays proved PACC populations can regain proliferative capacity at metastatic sites following dormancy. Additional direct and indirect mechanistic in vitro analyses revealed a PACC-specific partial Epithelial-to-Mesenchymal-Transition phenotype and a pro-metastatic secretory profile, together providing preliminary evidence that PACCs are mechanistically linked to metastasis.
Collapse
Affiliation(s)
- Mikaela M. Mallin
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis T.A. Rolle
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shilpa Priyadarsini Nair
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth J. Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah R. Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Church SJ, Pulianmackal AJ, Dixon JA, Loftus LV, Amend SR, Pienta K, Cackowski FC, Buttitta LA. Oncogenic signaling in the adult Drosophila prostate-like accessory gland leads to activation of a conserved pro-tumorigenic program, in the absence of proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593549. [PMID: 38853988 PMCID: PMC11160766 DOI: 10.1101/2024.05.10.593549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Drosophila models for tumorigenesis and metastasis have revealed conserved mechanisms of signaling that are also involved in mammalian cancer. Many of these models use the proliferating tissues of the larval stages of Drosophila development, when tissues are highly mitotically active, or stem cells are abundant. Fewer Drosophila tumorigenesis models use adult animals to initiate tumor formation when many tissues are largely terminally differentiated and postmitotic. The Drosophila accessory glands are prostate-like tissues and a model for some aspects of prostate tumorigenesis using this tissue has been explored. In this model, oncogenic signaling was induced during the proliferative stage of accessory gland development, raising the question of how oncogenic activity would impact the terminally differentiated and postmitotic adult tissue. Here, we show that oncogenic signaling in the adult Drosophila accessory gland leads to activation of a conserved pro-tumorigenic program, similar to that observed in mitotic larval tissues, but in the absence of proliferation. Oncogenic signaling in the adult postmitotic gland leads to tissue hyperplasia with nuclear anaplasia and aneuploidy through endoreduplication, which increases polyploidy and occasionally results in non-mitotic neoplastic-like extrusions. We compare gene expression changes in our Drosophila model with that of endocycling prostate cancer cells induced by chemotherapy, which potentially mediate tumor recurrence after treatment. Similar signaling pathways are activated in the Drosophila gland and endocycling cancer cells, suggesting the adult accessory glands provide a useful model for aspects of prostate cancer progression that do not involve cellular proliferation.
Collapse
Affiliation(s)
- S. Jaimian Church
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ajai J. Pulianmackal
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph A. Dixon
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Luke V. Loftus
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Frank C. Cackowski
- Karmanos Cancer Institute and Wayne State University Department of Oncology, Detroit, MI
| | - Laura A. Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Handler C, Testi C, Scarcelli G. Advantages of integrating Brillouin microscopy in multimodal mechanical mapping of cells and tissues. Curr Opin Cell Biol 2024; 88:102341. [PMID: 38471195 DOI: 10.1016/j.ceb.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Recent research has highlighted the growing significance of the mechanical properties of cells and tissues in the proper execution of physiological functions within an organism; alterations to these properties can potentially result in various diseases. These mechanical properties can be assessed using various techniques that vary in spatial and temporal resolutions as well as applications. Due to the wide range of mechanical behaviors exhibited by cells and tissues, a singular mapping technique may be insufficient in capturing their complexity and nuance. Consequently, by utilizing a combination of methods-multimodal mechanical mapping-researchers can achieve a more comprehensive characterization of mechanical properties, encompassing factors such as stiffness, modulus, viscoelasticity, and forces. Furthermore, different mapping techniques can provide complementary information and enable the exploration of spatial and temporal variations to enhance our understanding of cellular dynamics and tissue mechanics. By capitalizing on the unique strengths of each method while mitigating their respective limitations, a more precise and holistic understanding of cellular and tissue mechanics can be obtained. Here, we spotlight Brillouin microscopy (BM) as a noncontact, noninvasive, and label-free mechanical mapping modality to be coutilized alongside established mechanical probing methods. This review summarizes some of the most widely adopted individual mechanical mapping techniques and highlights several recent multimodal approaches demonstrating their utility. We envision that future studies aim to adopt multimodal techniques to drive advancements in the broader realm of mechanobiology.
Collapse
Affiliation(s)
- Chenchen Handler
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Claudia Testi
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA; Center for Life Nano- and Neuro- Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Hayes BH, Wang M, Zhu H, Phan SH, Dooling LJ, Andrechak JC, Chang AH, Tobin MP, Ontko NM, Marchena T, Discher DE. Chromosomal instability induced in cancer can enhance macrophage-initiated immune responses that include anti-tumor IgG. eLife 2024; 12:RP88054. [PMID: 38805560 PMCID: PMC11132682 DOI: 10.7554/elife.88054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal 'M1-like' phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.
Collapse
Affiliation(s)
- Brandon H Hayes
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Mai Wang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Hui Zhu
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Steven H Phan
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Lawrence J Dooling
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Jason C Andrechak
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander H Chang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael P Tobin
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas M Ontko
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Tristan Marchena
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
6
|
Mallin MM, Rolle LTA, Pienta KJ, Amend SR. Multiparameter flow cytometric detection and analysis of rare cells in in vivo models of cancer metastasis. Biol Methods Protoc 2024; 9:bpae026. [PMID: 38737789 PMCID: PMC11088742 DOI: 10.1093/biomethods/bpae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Rapid and reliable circulating tumor cell (CTC) and disseminated tumor cell (DTC) detection are critical for rigorous evaluation of in vivo metastasis models. Clinical data show that each step of the metastatic cascade presents increasing barriers to success, limiting the number of successful metastatic cells to fewer than 1 in 1,500,000,000. As such, it is critical for scientists to employ approaches that allow for the evaluation of metastatic competency at each step of the cascade. Here, we present a flow cytometry-based method that enables swift and simultaneous comparison of both CTCs and DTCs from single animals, enabling evaluation of multiple metastatic steps within a single model system. We present the necessary gating strategy and optimized sample preparation conditions necessary to capture CTCs and DTCs using this approach. We also provide proof-of-concept experiments emphasizing the appropriate limits of detection of these conditions. Most importantly, we successfully recover CTCs and DTCs from murine blood and bone marrow. In Supplemental materials, we expand the applicability of our method to lung tissue and exemplify a potential multi-plexing strategy to further characterize recovered CTCs and DTCs. This approach to multiparameter flow cytometric detection and analysis of rare cells in in vivo models of metastasis is reproducible, high throughput, broadly applicable, and highly adaptable to a wide range of scientific inquiries. Most notably, it simplifies the recovery and analysis of CTCs and DTCs from the same animal, allowing for a rapid first look at the comparative metastatic competency of various model systems throughout multiple steps of the metastatic cascade.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, United States
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Louis T A Rolle
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, United States
| | - Kenneth J Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, United States
| | - Sarah R Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, United States
| |
Collapse
|
7
|
Herriage HC, Calvi BR. Premature endocycling of Drosophila follicle cells causes pleiotropic defects in oogenesis. Genetics 2024; 226:iyae009. [PMID: 38302115 PMCID: PMC10990429 DOI: 10.1093/genetics/iyae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in the lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
9
|
Herriage HC, Calvi BR. Premature endocycling of Drosophila follicle cells causes pleiotropic defects in oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.10.561736. [PMID: 37873193 PMCID: PMC10592765 DOI: 10.1101/2023.10.10.561736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.
Collapse
Affiliation(s)
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
- Melvin and Bren Simon Cancer Center, Indianapolis, IN
- Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|