1
|
Davidopoulou C, Kouvelas D, Ouranidis A. COMPARING vaccine manufacturing technologies recombinant DNA vs in vitro transcribed (IVT) mRNA. Sci Rep 2024; 14:21742. [PMID: 39289418 PMCID: PMC11408659 DOI: 10.1038/s41598-024-67797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
Vaccine manufacturing fosters the prevention, control, and eradication of infectious diseases. Recombinant DNA and in vitro (IVT) mRNA vaccine manufacturing technologies were enforced to combat the recent pandemic. Despite the impact of these technologies, there exists no scientific announcement that compares them. Digital Shadows are employed in this study to simulate each technology, investigating root cause deviations, technical merits, and liabilities, evaluating cost scenarios. Under this lens we provide an unbiased, advanced comparative technoeconomic study, one that determines which of these manufacturing platforms are suited for the two types of vaccines considered (monoclonal antibodies or antigens). We find recombinant DNA technology to exhibit higher Profitability Index due to lower capital and starting material requirements, pertaining to lower Minimum Selling Price per Dose values, delivering products of established quality. However, the potency of the mRNA, the streamlined and scalable synthetic processes involved and the raw material availability, facilitate faster market penetration and product flexibility, constituting these vaccines preferable whenever short product development cycles become a necessity.
Collapse
Affiliation(s)
- Christina Davidopoulou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Ouranidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
2
|
Ladiwala P, Cai X, Naik HM, Aliyu L, Schilling M, Antoniewicz MR, Betenbaugh MJ. Ala-Cys-Cys-Ala dipeptide dimer alleviates problematic cysteine and cystine levels in media formulations and enhances CHO cell growth and metabolism. Metab Eng 2024; 85:105-115. [PMID: 39047893 DOI: 10.1016/j.ymben.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Cysteine and cystine are essential amino acids present in mammalian cell cultures. While contributing to biomass synthesis, recombinant protein production, and antioxidant defense mechanisms, cysteine poses a major challenge in media formulations owing to its poor stability and oxidation to cystine, a cysteine dimer. Due to its poor solubility, cystine can cause precipitation of feed media, formation of undesired products, and consequently, reduce cysteine bioavailability. In this study, a highly soluble cysteine containing dipeptide dimer, Ala-Cys-Cys-Ala (ACCA), was evaluated as a suitable alternative to cysteine and cystine in CHO cell cultures. Replacing cysteine and cystine in basal medium with ACCA did not sustain cell growth. However, addition of ACCA at 4 mM and 8 mM to basal medium containing cysteine and cystine boosted cell growth up to 15% and 27% in CHO-GS and CHO-K1 batch cell cultures respectively and led to a proportionate increase in IgG titer. 13C-Metabolic flux analysis revealed that supplementation of ACCA reduced glycolytic fluxes by 20% leading to more efficient glucose metabolism in CHO-K1 cells. In fed-batch cultures, ACCA was able to replace cysteine and cystine in feed medium. Furthermore, supplementation of ACCA at high concentrations in basal medium eliminated the need for any cysteine equivalents in feed medium and increased cell densities and viabilities in fed-batch cultures without any significant impact on IgG charge variants. Taken together, this study demonstrates the potential of ACCA to improve CHO cell growth, productivity, and metabolism while also facilitating the formulation of cysteine- and cystine-free feed media. Such alternatives to cysteine and cystine will pave the way for enhanced biomanufacturing by increasing cell densities in culture and extending the storage of highly concentrated feed media as part of achieving intensified bioproduction processes.
Collapse
Affiliation(s)
- Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xiangchen Cai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lateef Aliyu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Maciek R Antoniewicz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
González-Hernández Y, Perré P. Building blocks needed for mechanistic modeling of bioprocesses: A critical review based on protein production by CHO cells. Metab Eng Commun 2024; 18:e00232. [PMID: 38501051 PMCID: PMC10945193 DOI: 10.1016/j.mec.2024.e00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
This paper reviews the key building blocks needed to develop a mechanistic model for use as an operational production tool. The Chinese Hamster Ovary (CHO) cell, one of the most widely used hosts for antibody production in the pharmaceutical industry, is considered as a case study. CHO cell metabolism is characterized by two main phases, exponential growth followed by a stationary phase with strong protein production. This process presents an appropriate degree of complexity to outline the modeling strategy. The paper is organized into four main steps: (1) CHO systems and data collection; (2) metabolic analysis; (3) formulation of the mathematical model; and finally, (4) numerical solution, calibration, and validation. The overall approach can build a predictive model of target variables. According to the literature, one of the main current modeling challenges lies in understanding and predicting the spontaneous metabolic shift. Possible candidates for the trigger of the metabolic shift include the concentration of lactate and carbon dioxide. In our opinion, ammonium, which is also an inhibiting product, should be further investigated. Finally, the expected progress in the emerging field of hybrid modeling, which combines the best of mechanistic modeling and machine learning, is presented as a fascinating breakthrough. Note that the modeling strategy discussed here is a general framework that can be applied to any bioprocess.
Collapse
Affiliation(s)
- Yusmel González-Hernández
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| |
Collapse
|
4
|
Naik HM, Cai X, Ladiwala P, Reddy JV, Betenbaugh MJ, Antoniewicz MR. Elucidating uptake and metabolic fate of dipeptides in CHO cell cultures using 13C labeling experiments and kinetic modeling. Metab Eng 2024; 83:12-23. [PMID: 38460784 DOI: 10.1016/j.ymben.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The rapidly growing market of biologics including monoclonal antibodies has stimulated the need to improve biomanufacturing processes including mammalian host systems such as Chinese Hamster Ovary (CHO) cells. Cell culture media formulations continue to be enhanced to enable intensified cell culture processes and optimize cell culture performance. Amino acids, major components of cell culture media, are consumed in large amounts by CHO cells. Due to their low solubility and poor stability, certain amino acids including tyrosine, leucine, and phenylalanine can pose major challenges leading to suboptimal bioprocess performance. Dipeptides have the potential to replace amino acids in culture media. However, very little is known about the cleavage, uptake, and utilization kinetics of dipeptides in CHO cell cultures. In this study, replacing amino acids, including leucine and tyrosine by their respective dipeptides including but not limited to Ala-Leu and Gly-Tyr, supported similar cell growth, antibody production, and lactate profiles. Using 13C labeling techniques and spent media studies, dipeptides were shown to undergo both intracellular and extracellular cleavage in cultures. Extracellular cleavage increased with the culture duration, indicating cleavage by host cell proteins that are likely secreted and accumulate in cell culture over time. A kinetic model was built and for the first time, integrated with 13C labeling experiments to estimate dipeptide utilization rates, in CHO cell cultures. Dipeptides with alanine at the N-terminus had a higher utilization rate than dipeptides with alanine at the C-terminus and dipeptides with glycine instead of alanine at N-terminus. Simultaneous supplementation of more than one dipeptide in culture led to reduction in individual dipeptide utilization rates indicating that dipeptides compete for the same cleavage enzymes, transporters, or both. Dipeptide utilization rates in culture and cleavage rates in cell-free experiments appeared to follow Michaelis-Menten kinetics, reaching a maximum at higher dipeptide concentrations. Dipeptide utilization behavior was found to be similar in cell-free and cell culture environments, paving the way for future testing approaches for dipeptides in cell-free environments prior to use in large-scale bioreactors. Thus, this study provides a deeper understanding of the fate of dipeptides in CHO cell cultures through an integration of cell culture, 13C labeling, and kinetic modeling approaches providing insights in how to best use dipeptides in media formulations for robust and optimal mammalian cell culture performance.
Collapse
Affiliation(s)
- Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xiangchen Cai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Maciek R Antoniewicz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Nöbel M, Barry C, MacDonald MA, Baker K, Shave E, Mahler S, Munro T, Martínez VS, Nielsen LK, Marcellin E. Harnessing metabolic plasticity in CHO cells for enhanced perfusion cultivation. Biotechnol Bioeng 2024; 121:1371-1383. [PMID: 38079117 DOI: 10.1002/bit.28613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 04/01/2024]
Abstract
Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.
Collapse
Affiliation(s)
- Matthias Nöbel
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
| | - Michael A MacDonald
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Verónica S Martínez
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| |
Collapse
|
6
|
Gupta AJ, Boots JW, Gruppen H, Wierenga PA. Influence of heat treatments on the functionality of soy protein hydrolysates in animal cell cultures. Food Chem 2023; 429:136914. [PMID: 37480781 DOI: 10.1016/j.foodchem.2023.136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Soy protein hydrolysates enhance integral viable cell density (IVCD) and recombinant protein production (Immunoglobulin, IgG) in cell cultures, but their functionality varies from batch-to-batch. This is undesirable since it affects both quantity and characteristics of the recombinant proteins. It is hypothesized that the variability of hydrolysates is due to variations in meal and hydrolysate processing treatments. To study this, hydrolysates were produced from meals heated at 121 °C/0-120 min. The heating decreased free amino acid and reducing monosaccharide contents in meals (0.72-0.27% and 3.3-2.6%) and hydrolysates (14.7-7.1% and 16.9-7.9%). Dry heating introduced large variation in the IVCD ((115-316%), but additional heating in suspension reduced it (131-159%). The decrease in IVCD variation corresponded with decreased variation in carboxymethyl-lysine (CML) and lysinoalanine (LAL) contents. Thus, meal and hydrolysate processing induced substantial variation in hydrolysate functionality. It is therefore critical to establish strict process controls for meal and hydrolysate production to ensure consistency.
Collapse
Affiliation(s)
- Abhishek J Gupta
- Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, Wageningen University, The Netherlands; FrieslandCampina Domo, P.O. Box 1551, 3800 BN Amersfoort, The Netherlands
| | - Jan-Willem Boots
- FrieslandCampina Domo, P.O. Box 1551, 3800 BN Amersfoort, The Netherlands.
| | - Harry Gruppen
- Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, Wageningen University, The Netherlands.
| | - Peter A Wierenga
- Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, Wageningen University, The Netherlands.
| |
Collapse
|
7
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Lee JH, Kang HI, Kim S, Ahn YB, Kim H, Hong JK, Baik JY. NAD + supplementation improves mAb productivity in CHO cells via a glucose metabolic shift. Biotechnol J 2023; 18:e2200570. [PMID: 36717516 DOI: 10.1002/biot.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Aerobic glycolysis and its by-product lactate accumulation are usually associated with adverse culture phenotypes such as poor cell viability and productivity. Due to the lack of knowledge on underlying mechanisms and accompanying biological processes, the regulation of aerobic glycolysis has been an ongoing challenge in culture process development for therapeutic protein productivity. Nicotinamide adenine dinucleotide (NAD+ ), a coenzyme and co-substrate in energy metabolism, promotes the conversion of inefficient glycolysis into an efficient oxidative phosphorylation (OXPHOS) pathway. However, the effect of NAD+ on Chinese hamster ovary (CHO) cells for biopharmaceutical production has not been reported yet. In this work, we aimed to elucidate the influence of NAD+ on cell culture performance by examining metabolic shifts and mAb productivity. The supplementation of NAD+ increased the intracellular concentration of NAD+ and promoted SIRT3 expression. Antibody titer and the specific productivity in the growth phase were improved by up to 1.82- and 1.88-fold, respectively, with marginal restrictions on cell growth. NAD+ significantly reduced the accumulation of reactive oxygen species (ROS) and the lactate yield from glucose, determined by lactate accumulation versus glucose consumption (YLAC/GLC ). In contrast, OXPHOS capacity and amino acid consumption rate increased substantially. Collectively, these results suggest that NAD+ contributes to improving therapeutic protein productivity in bioprocessing via inducing an energy metabolic shift.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hye-Im Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Suheon Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Yeong Bin Ahn
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Hagyeong Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jong Youn Baik
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| |
Collapse
|
9
|
Benevelli F, Vella S, Crosta C, Demetrio E, Fischer C, Pupo M, Baila S. NMR as powerful technology for non-invasively monitoring cell health and expansion during bioprocessing. Biotechnol Bioeng 2022; 119:3497-3508. [PMID: 36000349 DOI: 10.1002/bit.28207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/11/2022]
Abstract
Over the last decades, the success of advanced cell therapies and the increasing production volumes of vaccines, proteins or viral vectors have raised the need of robust cell-based manufacturing processes for ensuring product quality and satisfying GMP requirements. The cultivation process of cells needs to be highly controlled for improved productivity, reduced variability and optimized bioprocesses. Cell cultures can be easily monitored using different technologies, which could deliver direct or indirect assessment of the cells' viability. Among these techniques, Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technology which permits the evaluation and the identification of key endogenous metabolites. NMR can provide information on the cell metabolic pathways, on the bioprocesses and is also capable to quickly test for impurities. In this study, NMR was successfully used as a technology for monitoring cell viability and expansion in different supports for cell growth (including bioreactors), in order to predict the bioprocess output and for the early identification of key metabolites linked to cell starvation. This investigation will allow the timely control of culture conditions and favour the optimization of the bioprocesses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Serena Vella
- Development Lead, Innovation and Development Department, Anemocyte S.r.l., Gerenzano, Italy
| | | | - Elena Demetrio
- Magnetic Resonance Spectroscopy Division, BioSpin Business Unit, Bruker Italia S.r.l., Milan, Italy
| | - Christian Fischer
- Pharmaceutical Business Unit, Bruker BioSpin GmbH, Ettlingen, Germany
| | - Marco Pupo
- Development Lead, Innovation and Development Department, Anemocyte S.r.l., Gerenzano, Italy
| | | |
Collapse
|
10
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
11
|
Gyorgypal A, Chundawat SPS. Integrated Process Analytical Platform for Automated Monitoring of Monoclonal Antibody N-Linked Glycosylation. Anal Chem 2022; 94:6986-6995. [PMID: 35385654 DOI: 10.1021/acs.analchem.1c05396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The biopharmaceutical industry is transitioning toward the adoption of continuous biomanufacturing practices that are often more flexible and efficient than traditional batch processes. Federal regulatory agencies are further urging the use of advanced process analytical technology (PAT) to analyze the design space to increase the process knowledge and enable high-quality biologic production. Post-translational modifications of proteins, such as N-linked glycosylation, are often critical quality attributes that affect biologics' safety and efficacy, requiring close monitoring during manufacturing. Here, we developed an online sequential-injection-based PAT system, called N-GLYcanyzer, which can rapidly monitor mAb glycosylation during upstream biomanufacturing. The key innovation includes the design of an integrated mAb sampling and fully automated sample derivation system for antibody titer and glycoform analysis within 3 h. The N-GLYcanyzer process includes mAb capture, deglycosylation, released glycan labeling with fluorescent dyes, and labeled glycan enrichment for direct injection/analysis on an integrated high-performance liquid chromatography system. Different fluorescent tags and reductants were tested to maximize glycan labeling efficiency under aqueous conditions, while porous graphitized carbon (PGC) was used for optimizing glycan recovery and enrichment. We found that 2-aminobenzamide labeling of glycans with 2-picoline borane as a reducing agent, using the N-GLYcanyzer workflow, shows higher glycan labeling efficiency under aqueous conditions, leading upward to a 5-fold increase in fluorescent product intensity. Finally, we showcase how the N-GLYcanyzer platform can be implemented at-/online in an upstream bioreactor for automated and near-real-time glycosylation monitoring of a Trastuzumab biosimilar produced by Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Aron Gyorgypal
- Department of Chemical and Biochemical Engineering, School of Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, School of Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
12
|
Bayer B, Duerkop M, Striedner G, Sissolak B. Model Transferability and Reduced Experimental Burden in Cell Culture Process Development Facilitated by Hybrid Modeling and Intensified Design of Experiments. Front Bioeng Biotechnol 2022; 9:740215. [PMID: 35004635 PMCID: PMC8733703 DOI: 10.3389/fbioe.2021.740215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Reliable process development is accompanied by intense experimental effort. The utilization of an intensified design of experiments (iDoE) (intra-experimental critical process parameter (CPP) shifts combined) with hybrid modeling potentially reduces process development burden. The iDoE can provide more process response information in less overall process time, whereas hybrid modeling serves as a commodity to describe this behavior the best way. Therefore, a combination of both approaches appears beneficial for faster design screening and is especially of interest at larger scales where the costs per experiment rise significantly. Ideally, profound process knowledge is gathered at a small scale and only complemented with few validation experiments on a larger scale, saving valuable resources. In this work, the transferability of hybrid modeling for Chinese hamster ovary cell bioprocess development along process scales was investigated. A two-dimensional DoE was fully characterized in shake flask duplicates (300 ml), containing three different levels for the cultivation temperature and the glucose concentration in the feed. Based on these data, a hybrid model was developed, and its performance was assessed by estimating the viable cell concentration and product titer in 15 L bioprocesses with the same DoE settings. To challenge the modeling approach, 15 L bioprocesses also comprised iDoE runs with intra-experimental CPP shifts, impacting specific cell rates such as growth, consumption, and formation. Subsequently, the applicability of the iDoE cultivations to estimate static cultivations was also investigated. The shaker-scale hybrid model proved suitable for application to a 15 L scale (1:50), estimating the viable cell concentration and the product titer with an NRMSE of 10.92% and 17.79%, respectively. Additionally, the iDoE hybrid model performed comparably, displaying NRMSE values of 13.75% and 21.13%. The low errors when transferring the models from shaker to reactor and between the DoE and the iDoE approach highlight the suitability of hybrid modeling for mammalian cell culture bioprocess development and the potential of iDoE to accelerate process characterization and to improve process understanding.
Collapse
Affiliation(s)
- Benjamin Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Mark Duerkop
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Novasign GmbH, Vienna, Austria
| | | |
Collapse
|
13
|
Salim T, Chauhan G, Templeton N, Ling WLW. Using MVDA with stoichiometric balances to optimize amino acid concentrations in chemically defined CHO cell culture medium for improved culture performance. Biotechnol Bioeng 2021; 119:452-469. [PMID: 34811720 DOI: 10.1002/bit.27998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/07/2022]
Abstract
Chemically defined (CD) media are routinely used in the production of biologics in Chinese hamster ovary (CHO) cell culture and provide enhanced raw material control. Nutrient optimized CD media is an important path to increase cell growth and monoclonal antibody (mAb) productivity in recombinant CHO cell lines. However, nutrient optimization efforts for CD media typically rely on multifactorial and experimental design of experiment approaches or complex mathematical models of cellular metabolism or gene expression systems. Moreover, the majority of these efforts are aimed at amino acids since they constitute essential nutrients in CD media as they directly contribute to biomass and protein production. In this study, we demonstrate the utilization of multivariate data analytics (MVDA) coupled with amino acid stoichiometric balances (SBs) to increased cell growth and mAb productivity in efforts to support CD media development efforts. SBs measure the difference between theoretical demand of amino acids and the empirically measured fluxes to identify various catabolic or anabolic states of the cell. When coupled with MVDA, the statistical models were not only able to highlight key amino acids toward cell growth or productivity, but also provided direction on metabolic favorability of the amino acid. Experimental validation of our approach resulted in a 55% increase in total cell growth and about an 80% increase in total mAb productivity. Increased specific consumption of stoichiometrically balanced amino acids and decreased specific consumption of glucose was also observed in optimized CD media suggesting favorable consumption of desired nutrients and a potential for energy redistribution toward increased cellular growth and mAb productivity.
Collapse
Affiliation(s)
- Taha Salim
- Merck & Co. Inc., Kenilworth, New Jersey, USA
- Taha Salim, Regeneron, Tarrytown, New York, USA
| | | | | | - Wai Lam W Ling
- Merck & Co. Inc., Kenilworth, New Jersey, USA
- Wai L. W. Ling, Rocket Pharma, Cranbury, New Jersey, USA
| |
Collapse
|
14
|
Komuczki D, Dutra G, Gstöttner C, Dominguez‐Vega E, Jungbauer A, Satzer P. Media on-demand: Continuous reconstitution of a chemically defined media directly from solids. Biotechnol Bioeng 2021; 118:3382-3394. [PMID: 33656168 PMCID: PMC8451748 DOI: 10.1002/bit.27738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Chemically defined media are reconstituted batchwise and stored in hold tanks until use. To avoid large hold tanks and batchwise production of media, we developed continuous on-demand reconstitutions directly from solids consisting of a hopper and a screw conveyor capable of feeding dry powdered media with the required precision ±5% at low dosing rates of 0.171 g min-1 . A commercially available dry powdered cell culture medium was continuously fed over a duration of 12 h into a mixer which was connected to a UV-cell for monitoring and the media were compared to a batchwise production. A comparable amino acid, carbohydrate, and osmolality profile to a batchwise reconstitution could be obtained. Cell cultivation showed comparable performance of batch and continuous reconstitution for two CHO cell lines producing the antibodies adalimumab and trastuzumab on a small and benchtop scale. In-depth analysis of the produced antibodies showed the same glycosylation pattern, other posttranslational profiles such as methionine oxidation and deamidation compared to batchwise reconstitution. Therefore, we conclude a continuous reconstitution of the medium results in the same quality of the product. A continuous on-demand media reconstitution will impact the supply chain and significantly reduce the floor space necessary for preparation and storage.
Collapse
Affiliation(s)
- Daniel Komuczki
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gregory Dutra
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Christoph Gstöttner
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Elena Dominguez‐Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Peter Satzer
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| |
Collapse
|
15
|
Ribeiro da Silva M, Zaborowska I, Carillo S, Bones J. A rapid, simple and sensitive microfluidic chip electrophoresis mass spectrometry method for monitoring amino acids in cell culture media. J Chromatogr A 2021; 1651:462336. [PMID: 34153732 DOI: 10.1016/j.chroma.2021.462336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
The development and optimization of cell culture media for biotech applications is a fundamental step of process development. The composition of cell culture media requires an ideal blend of amino acids, vitamins, nucleosides, lipids, carbohydrates, trace elements and other components. The ability to monitor these constituents is required to ensure that cells receive sufficient nutrients to facilitate growth, viability and productivity. Analysis of cell culture media is challenging due to the range and diversity of compounds contained in this matrix and normally requires time consuming methods. A rapid, simple and sensitive microfluidic chip CE-MS method is described to monitor amino acids in chemically defined cell culture media from a Chinese hamster ovary cell line cultured over a period of 10 days. The described platform enabled the separation of 16 amino acids in less than 2 minutes and without the requirement for extensive sample preparation. The analytical parameters evaluated were precision, linearity, limit of detection and limit of quantification. The majority of essential amino acids were present in cell culture growth in high concentrations compared to non-essential amino acids. Over the course of the 10 days cell culture the concentration of certain amino acids declined by up to 100%. Microfluidic chip based CE-MS methods can be used effectively to obtain the consumption rates of amino acids in cell culture media during cell growth and to perform at-line monitoring and screening of cell culture status.
Collapse
Affiliation(s)
| | - Izabela Zaborowska
- NIBRT - National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Sara Carillo
- NIBRT - National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Jonathan Bones
- NIBRT - National Institute for Bioprocessing Research and Training, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
16
|
Pérez-Rodriguez S, Ramírez-Lira MDJ, Trujillo-Roldán MA, Valdez-Cruz NA. Nutrient supplementation strategy improves cell concentration and longevity, monoclonal antibody production and lactate metabolism of Chinese hamster ovary cells. Bioengineered 2021; 11:463-471. [PMID: 32223359 PMCID: PMC7161567 DOI: 10.1080/21655979.2020.1744266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A careful selection of culture mediums and feeds has become necessary to maximize yields of recombinant proteins during bioprocesses of mammalian cells. Supplements contain a variety of concentrate nutrients, and their beneficial effects vary according to recombinant cell lines. In this study, the effects of PowerFeed A on growth kinetics, productivity and cellular metabolism were evaluated for two Chinese hamster ovary cell lines producing a monoclonal antibody in a batch culture. Supplemented cultures increased integral viable cell density of CRL-12444 and CRL-12445 cells by 2.4 and 1.6 times through extension of culture time at which viability was above 90% in 72 and 36 h, respectively, and increment of maximal cell concentration in 3.25 × 106 cells/ml (69%) for CRL-12445 cells. Product titer augmented 1.9 and 2.5 times for CRL-12444 and CRL-12445 cells, respectively, without changes in growth rate and specific productivity. Feed supplementation also stimulated full consumption of glucose and free glutamine and reduced 10 times lactate accumulation, while ammonium, sodium and potassium remained at similar concentrations at the end of the culture. About 44% of calcium, mainly provided by feed, was consumed by both cell lines. Maximization of cellular growth, viability and protein titer through feeding encourages extending its use to other cell lines and exploring novel combinations with other basal mediums or feeds. A thorough investigation of its impact on protein quality and the molecular mechanisms behind these effects will allow designing effective feeds and strategies to rationally optimize protein production in the biomanufacturing industry.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad De México, México
| | - María de Jesús Ramírez-Lira
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad De México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad De México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad De México, México
| |
Collapse
|
17
|
Wu S, Rish AJ, Skomo A, Zhao Y, Drennen JK, Anderson CA. Rapid serum-free/suspension adaptation: Medium development using a definitive screening design for Chinese hamster ovary cells. Biotechnol Prog 2021; 37:e3154. [PMID: 33864359 DOI: 10.1002/btpr.3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
The biopharmaceutical industry prefers to culture the mammalian cells in suspension with a serum-free media (SFM) due to improved productivity and process consistency. However, mammalian cells preferentially grow as adherent cells in a complete medium (CM) containing serum. Therefore, cells require adaptation from adherence in CM to suspension culture in SFM. This work proposes an adaptation method that includes media supplementation during the adaption of Chinese hamster ovary cells. As a result, the adaptation was accelerated compared to the traditional repetitive subculturing. Ca2+ /Mg2+ supplementation significantly reduced the doubling time compared to the adaptation without supplementation during the adaptation of adherent cells from 100% CM to 75% CM (p < 0.05). Furthermore, a definitive screening design (DSD) was applied to select essential nutrients during the adaptation from 10% CM to 0% CM. The main effects of Ca2+ and Dulbecco's modified essential medium (DMEM) were found significant to both viable cell density and viability at harvest. Additionally, the interaction term between Ca2+ and DMEM was found significant, which highlights the ability of DSD to capture interaction terms. Eventually, the media supplementation method resulted in adaptation SFM in 27 days, compared to the previously reported 66 days. Additionally, the membrane surface integrin expression was found significantly decreased when adherent cells were adapted to suspension. Moreover, the Ca2+ /Mg2+ supplementation correlated with faster integrin recovery after trypsinization. However, faster integrin recovery did not contribute to the accelerated cell growth when subculturing from 100% CM to 75% CM.
Collapse
Affiliation(s)
- Suyang Wu
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Adam J Rish
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Alec Skomo
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Yuxiang Zhao
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - James K Drennen
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Schmidt C, Wehsling M, Le Mignon M, Wille G, Rey Y, Schnellbaecher A, Zabezhinsky D, Fischer M, Zimmer A. Lactoyl leucine and isoleucine are bioavailable alternatives for canonical amino acids in cell culture media. Biotechnol Bioeng 2021; 118:3395-3408. [PMID: 33738790 PMCID: PMC8453549 DOI: 10.1002/bit.27755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 11/08/2022]
Abstract
Increasing demands for protein-based therapeutics such as monoclonal antibodies, fusion proteins, bispecific molecules, and antibody fragments require researchers to constantly find innovative solutions. To increase yields and decrease costs of next generation bioprocesses, highly concentrated cell culture media formulations are developed but often limited by the low solubility of amino acids such as tyrosine, cystine, leucine, and isoleucine, in particular at physiological pH. This study sought to investigate highly soluble and bioavailable derivatives of leucine and isoleucine that are applicable for fed-batch processes. N-lactoyl-leucine and N-lactoyl-isoleucine sodium salts were tested in cell culture media and proved to be beneficial to increase the overall solubility of cell culture media formulations. These modified amino acids proved to be bioavailable for various Chinese hamster ovary (CHO) cells and were suitable for replacement of canonical amino acids in cell culture feeds. The quality of the final recombinant protein was studied in bioprocesses using the derivatives, and the mechanism of cleavage was investigated in CHO cells. Altogether, both N-lactoyl amino acids represent an advantageous alternative to canonical amino acids to develop highly concentrated cell culture media formulations to support next generation bioprocesses.
Collapse
Affiliation(s)
| | | | | | - Gregor Wille
- Merck Life Science, Process Development, Buchs, Switzerland
| | - Yannick Rey
- Merck Life Science, Process Development, Buchs, Switzerland
| | | | | | - Markus Fischer
- Merck Life Science, Process Development, Buchs, Switzerland
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Darmstadt, Germany
| |
Collapse
|
19
|
Möller J, Bhat K, Guhl L, Pörtner R, Jandt U, Zeng A. Regulation of pyruvate dehydrogenase complex related to lactate switch in CHO cells. Eng Life Sci 2021; 21:100-114. [PMID: 33716610 PMCID: PMC7923601 DOI: 10.1002/elsc.202000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/04/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolism of Chinese hamster ovary (CHO) cell lines is typically characterized by high rates of aerobic glycolysis with increased lactate formation, known as the "Warburg" effect. Although this metabolic state can switch to lactate consumption, the involved regulations of the central metabolism have only been partially studied so far. An important reaction transferring the lactate precursor, pyruvate, into the tricarboxylic acid cycle is the decarboxylation reaction catalyzed by the pyruvate dehydrogenase enzyme complex (PDC). Among other mechanisms, PDC is mainly regulated by phosphorylation-dephosphorylation at the three sites Ser232, Ser293, and Ser300. In this work, the PDC phosphorylation in antibody-producing CHO DP-12 cell culture is investigated during the lactate switch. Batch cultivations were carried out with frequent sampling (every 6 h) during the transition from lactate formation to lactate uptake, and the PDC phosphorylation levels were quantified using a novel indirect flow cytometry protocol. Contrary to the expected activation of PDC (i.e., reduced PDC phosphorylation) during lactate consumption, Ser293 and Ser300 phosphorylation levels were 33% higher compared to the phase of glucose excess. At the same time, the relative phosphorylation level of Ser232 increased steadily throughout the cultivation (66% increase overall). The intracellular pyruvate was found to accumulate only during the period of high lactate production, while acetyl-CoA showed nearly no accumulation. These results indicate a deactivation of PDC and reduced oxidative metabolism during lactate switch even though the cells undergo a metabolic transition to lactate-based cell growth and metabolism. Overall, this study provides a unique view on the regulation of PDC during the lactate switch, which contributes to an improved understanding of PDC and its interaction with the bioprocess.
Collapse
Affiliation(s)
- Johannes Möller
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Krathika Bhat
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Lotta Guhl
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Ralf Pörtner
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Uwe Jandt
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
20
|
Bezjak L, Erklavec Zajec V, Baebler Š, Stare T, Gruden K, Pohar A, Novak U, Likozar B. Incorporating RNA-Seq transcriptomics into glycosylation-integrating metabolic network modelling kinetics: Multiomic Chinese hamster ovary (CHO) cell bioreactors. Biotechnol Bioeng 2021; 118:1476-1490. [PMID: 33399226 DOI: 10.1002/bit.27660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
In this work, the kinetic model based on the previously developed metabolic and glycan reaction networks of the ovarian cells of the Chinese hamster ovary (CHO) cell line was improved by the inclusion of transcriptomic data that took into account the values of the RPKM gene (Reads per Kilobase of Exon per Million Reads Mapped). The transcriptomic (RNASeq) data were obtained together with metabolic and glycan data from the literature, and the concentrations with RPKM values were collected at several points in time from two fed-batch processes. First, the fluxes were determined by regression analysis of the metabolic data, then these fluxes were corrected by using the fold change in gene expression as a measure of enzyme concentrations. Next, the corrected fluxes in the kinetic model were used to calculate the concentration profiles of the metabolites, and literature data were used to evaluate the predicted results of the model. Compared to other studies where the concentration profiles of CHO cell metabolites were described using a kinetic model without consideration of RNA-Seq data to correct the fluxes, this model is unique. The additional integration of transcriptomic data led to better predictions of metabolic concentrations in the fed-batch process, which is a significant improvement of the modelling technique used.
Collapse
Affiliation(s)
- Lara Bezjak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vivian Erklavec Zajec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tjaša Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Andrej Pohar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
21
|
LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Biotechnol Lett 2020; 42:2523-2536. [DOI: 10.1007/s10529-020-02953-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
|
22
|
Kim YJ, Han SK, Yoon S, Kim CW. Rich production media as a platform for CHO cell line development. AMB Express 2020; 10:93. [PMID: 32415509 PMCID: PMC7229095 DOI: 10.1186/s13568-020-01025-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Recent cell culture media for mammalian cells can be abundantly formulated with nutrients supporting production, but such media can be limited to use in host cell culture, transfection, cell cloning, and cell growth under the low cell density conditions. In many cases, appropriate platform media are used for cell line development, and then replaced with rich media for production. In this study, we demonstrate rich chemically defined media for Chinese hamster ovary (CHO) cells that are suitable as basal media both for cell line development and for final production of culture process. Set up for transfection, semi-solid media optimization, mini-pool screening, and single cell cloning media development were performed, and final clones were obtained with higher productivity in fed-batch culture mode using rich formulated media comparing with lean formulated media. Developed methods may remove the requirements for cell adaptation to production media after cell line development, and relieve the clonality issues associated with changing the culture media. Furthermore, established methods have advantages over traditional approaches, including saving resources and decreasing the time and the effort required to optimize the production process.
Collapse
|
23
|
Chandrawanshi V, Kulkarni R, Prabhu A, Mehra S. Enhancing titers and productivity of rCHO clones with a combination of an optimized fed-batch process and ER-stress adaptation. J Biotechnol 2020; 311:49-58. [PMID: 32070675 DOI: 10.1016/j.jbiotec.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/01/2023]
Abstract
To increase the productivity of rCHO cells, many cell engineering approaches have been demonstrated that over-express or knockout a specific gene to achieve increased titers. In this work, we present an alternate approach, based on the concept of evolutionary adaptation, to achieve cells with higher titers. rCHO cells, producing a monoclonal antibody, are adapted to ER-stress, by continuous culturing under increasing concentration of tunicamycin. A sustained higher productivity of at-least 2-fold was achieved in all the clones, in a concentration-dependent manner. Similarly, a 1.5-2 fold increase in final titers was also achieved in the batch culture. Based on metabolic analysis of the adapted cells, a fed-batch process was designed where significantly higher titersare achieved as compared to control. Metabolic flux analysis is employed in addition with gene expression analysis of key genes to understand the basis of increased performance of the adapted cells. Overall, this work illustrates how process modifications and cellular adaptation can be used in synergy to drive up product titers.
Collapse
Affiliation(s)
- Vikas Chandrawanshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohan Kulkarni
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuja Prabhu
- CSIR-National Chemical Laboratory, Pune, India; Academyof Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
24
|
Zhang X, Jiang R, Lin H, Xu S. Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures. Biotechnol Prog 2020; 36:e2975. [PMID: 32012447 DOI: 10.1002/btpr.2975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/11/2019] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
Media components play an important role in modulating cell metabolism and improving product titer in mammalian cell cultures. To sustain cell productivity, highly active oxidative metabolism is desired. Here we explored the effect of tricarboxylic acid (TCA) cycle intermediates supplementation on lactate metabolism and productivity in Chinese hamster ovary fed-batch cultures. Direct addition of 5 mM alpha-ketoglutarate (α-KG), malic acid, or succinic acid in the basal medium did not have any significant impact on culture performance. On the other hand, feeding α-KG, malic acid, and succinic acid in the stationary phase, either as a single solution or as a mixture, significantly improved lactate consumption, reduced ammonium accumulation, and led to higher cell specific productivity and antibody titer (~35% increase for the best condition). Delivering those intermediates as an acidic solution for pH control eliminated CO2 sparging and accumulation. Feeding TCA cycle intermediates was also demonstrated to be superior to feeding lactic acid or pyruvic acid in titer improvement. Taken together, feeding TCA cycle intermediates was effective in improving lactate consumption and increasing product titer, which is likely due to enhanced oxidative metabolism in an extended duration.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Biologics Process Research & Development, Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey
| | - Rubin Jiang
- Biologics Process Research & Development, Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey
| | - Henry Lin
- Biologics Process Research & Development, Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey
| | - Sen Xu
- Biologics Process Research & Development, Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey.,Biologics Development, Bristol-Myers Squibb Co., Pennington 08534, NJ
| |
Collapse
|
25
|
Towards in situ continuous feeding via controlled release of complete nutrients for fed-batch culture of animal cells. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Traustason B, Cheeks M, Dikicioglu D. Computer-Aided Strategies for Determining the Amino Acid Composition of Medium for Chinese Hamster Ovary Cell-Based Biomanufacturing Platforms. Int J Mol Sci 2019; 20:E5464. [PMID: 31684012 PMCID: PMC6862603 DOI: 10.3390/ijms20215464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are used for the production of the majority of biopharmaceutical drugs, and thus have remained the standard industry host for the past three decades. The amino acid composition of the medium plays a key role in commercial scale biologics manufacturing, as amino acids constitute the building blocks of both endogenous and heterologous proteins, are involved in metabolic and non-metabolic pathways, and can act as main sources of nitrogen and carbon under certain conditions. As biomanufactured proteins become increasingly complex, the adoption of model-based approaches become ever more popular in complementing the challenging task of medium development. The extensively studied amino acid metabolism is exceptionally suitable for such model-driven analyses, and although still limited in practice, the development of these strategies is gaining attention, particularly in this domain. This paper provides a review of recent efforts. We first provide an overview of the widely adopted practice, and move on to describe the model-driven approaches employed for the improvement and optimization of the external amino acid supply in light of cellular amino acid demand. We conclude by proposing the likely prevalent direction the field is heading towards, providing a critical evaluation of the current state and the future challenges and considerations.
Collapse
Affiliation(s)
- Bergthor Traustason
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Matthew Cheeks
- Cell Sciences, Biopharmaceutical Development, AstraZeneca, Cambridge CB21 6GH, UK.
| | - Duygu Dikicioglu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| |
Collapse
|
27
|
Xu J, Tang P, Yongky A, Drew B, Borys MC, Liu S, Li ZJ. Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. MAbs 2019; 11:191-204. [PMID: 30230966 PMCID: PMC6343780 DOI: 10.1080/19420862.2018.1525262] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
Temperature shift (TS) to a hypothermic condition has been widely used during protein production processes that use Chinese hamster ovary (CHO) cells. The effect of temperature on cell growth, metabolites, protein titer and quality depends on cell line, product, and other bioreactor conditions. Due to the large numbers of experiments, which typically last 2-3 weeks each, limited systematic TS studies have been reported with multiple shift temperatures and steps at different times. Here, we systematically studied the effect of temperature on cell culture performance for the production of two monoclonal antibodies by industrial GS and DG44 CHO cell lines. Three 2-8 day short-duration methods were developed and validated for researching the effect of many different temperatures on CHO cell culture and quality attributes. We found that minor temperature differences (1-1.5 °C) affected cell culture performance. The kinetic parameters extracted from the short duration data were subsequently used to compute and predict cell culture performance in extended duration of 10-14 days with multiple TS conditions for both CHO cell lines. These short-duration culture methods with kinetic modeling tools may be used for effective TS optimization to achieve the best profiles for cell growth, metabolites, titer and quality attributes. Although only three short-duration methods were developed with two CHO cell lines, similar short-duration methods with kinetic modeling may be applied for different hosts, including both microbial and other mammalian cells.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Peifeng Tang
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| | - Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Barry Drew
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Michael C. Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| |
Collapse
|
28
|
Wong HE, Huang CJ, Zhang Z. Amino Acid Misincorporation Propensities Revealed through Systematic Amino Acid Starvation. Biochemistry 2018; 57:6767-6779. [DOI: 10.1021/acs.biochem.8b00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- H. Edward Wong
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
29
|
Ritacco FV, Wu Y, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies. Biotechnol Prog 2018; 34:1407-1426. [DOI: 10.1002/btpr.2706] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Frank V. Ritacco
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Yongqi Wu
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| | - Anurag Khetan
- Biologics Process DevelopmentBristol‐Myers Squibb Pennington New Jersey United States
| |
Collapse
|
30
|
Intracellular response of CHO cells to oxidative stress and its influence on metabolism and antibody production. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Park SY, Reimonn TM, Agarabi CD, Brorson KA, Yoon S. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations. Biotechnol Prog 2018; 34:793-805. [DOI: 10.1002/btpr.2623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Seo-Young Park
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| | - Thomas M. Reimonn
- Program in Bioinformatics and Integrative Biology; University of Massachusetts Medical School; Worcester MA, United States
| | - Cyrus D. Agarabi
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Kurt A. Brorson
- Division II; Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA; Silver Spring MD, United States
| | - Seongkyu Yoon
- Dept. of Chemical Engineering; University of Massachusetts; Lowell MA, United States
| |
Collapse
|
32
|
Wells E, Robinson AS. Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600105] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Evan Wells
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans USA
| | - Anne Skaja Robinson
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans USA
| |
Collapse
|
33
|
Investigation of the interactions of critical scale-up parameters (pH, pO 2 and pCO 2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng 2016; 40:251-263. [PMID: 27752770 PMCID: PMC5274649 DOI: 10.1007/s00449-016-1693-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
Abstract
Understanding process parameter interactions and their effects on mammalian cell cultivations is an essential requirement for robust process scale-up. Furthermore, knowledge of the relationship between the process parameters and the product critical quality attributes (CQAs) is necessary to satisfy quality by design guidelines. So far, mainly the effect of single parameters on CQAs was investigated. Here, we present a comprehensive study to investigate the interactions of scale-up relevant parameters as pH, pO2 and pCO2 on CHO cell physiology, process performance and CQAs, which was based on design of experiments and extended product quality analytics. The study used a novel control strategy in which process parameters were decoupled from each other, and thus allowed their individual control at defined set points. Besides having identified the impact of single parameters on process performance and product quality, further significant interaction effects of process parameters on specific cell growth, specific productivity and amino acid metabolism could be derived using this method. Concerning single parameter effects, several monoclonal antibody (mAb) charge variants were affected by process pCO2 and pH. N-glycosylation analysis showed positive correlations between mAb sialylation and high pH values as well as a relationship between high mannose variants and process pH. This study additionally revealed several interaction effects as process pH and pCO2 interactions on mAb charge variants and N-glycosylation pattern. Hence, through our process control strategy and multivariate investigation, novel significant process parameter interactions and single effects were identified which have to be taken into account especially for process scale-up.
Collapse
|
34
|
López-Meza J, Araíz-Hernández D, Carrillo-Cocom LM, López-Pacheco F, Rocha-Pizaña MDR, Alvarez MM. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells. Cytotechnology 2016; 68:1287-300. [PMID: 26091615 PMCID: PMC4960177 DOI: 10.1007/s10616-015-9889-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/13/2015] [Indexed: 12/12/2022] Open
Abstract
Despite their practical and commercial relevance, there are few reports on the kinetics of growth and production of Chinese hamster ovary (CHO) cells-the most frequently used host for the industrial production of therapeutic proteins. We characterize the kinetics of cell growth, substrate consumption, and product formation in naive and monoclonal antibody (mAb) producing recombinant CHO cells. Culture experiments were performed in 125 mL shake flasks on commercial culture medium (CD Opti CHO™ Invitrogen, Carlsbad, CA, USA) diluted to different glucose concentrations (1.2-4.8 g/L). The time evolution of cell, glucose, lactic acid concentration and monoclonal antibody concentrations was monitored on a daily basis for mAb-producing cultures and their naive counterparts. The time series were differentiated to calculate the corresponding kinetic rates (rx = d[X]/dt; rs = d[S]/dt; rp = d[mAb]/dt). Results showed that these cell lines could be modeled by Monod-like kinetics if a threshold substrate concentration value of [S]t = 0.58 g/L (for recombinant cells) and [S]t = 0.96 g/L (for naïve cells), below which growth is not observed, was considered. A set of values for μmax, and Ks was determined for naive and recombinant cell cultures cultured at 33 and 37 °C. The yield coefficient (Yx/s) was observed to be a function of substrate concentration, with values in the range of 0.27-1.08 × 10(7) cell/mL and 0.72-2.79 × 10(6) cells/mL for naive and recombinant cultures, respectively. The kinetics of mAb production can be described by a Luedeking-Piret model (d[mAb]/dt = αd[X]/dt + β[X]) with values of α = 7.65 × 10(-7) µg/cell and β = 7.68 × 10(-8) µg/cell/h for cultures conducted in batch-agitated flasks and batch and instrumented bioreactors operated in batch and fed-batch mode.
Collapse
Affiliation(s)
- Julián López-Meza
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Diana Araíz-Hernández
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Leydi Maribel Carrillo-Cocom
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte kilómetro 33.5, C.P. 97203, Mérida, Yucatán, Mexico
| | - Felipe López-Pacheco
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - María Del Refugio Rocha-Pizaña
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico.
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA.
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Popp O, Müller D, Didzus K, Paul W, Lipsmeier F, Kirchner F, Niklas J, Mauch K, Beaucamp N. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization. Biotechnol Bioeng 2016; 113:2005-19. [DOI: 10.1002/bit.25958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 02/14/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Oliver Popp
- Pharma Research and Early Development; Cell Culture Research, Roche Innovation Center Penzberg; Roche Diagnostics GmbH; Nonnenwald 2 D-82377 Penzberg Germany
| | - Dirk Müller
- Insilico Biotechnology AG; Stuttgart Germany
| | - Katharina Didzus
- Pharma Research and Early Development; Cell Culture Research, Roche Innovation Center Penzberg; Roche Diagnostics GmbH; Nonnenwald 2 D-82377 Penzberg Germany
| | - Wolfgang Paul
- Pharma Research and Early Development; Cell Culture Research, Roche Innovation Center Penzberg; Roche Diagnostics GmbH; Nonnenwald 2 D-82377 Penzberg Germany
| | - Florian Lipsmeier
- Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg; Roche Diagnostics GmbH; Penzberg Germany
| | | | - Jens Niklas
- Insilico Biotechnology AG; Stuttgart Germany
| | - Klaus Mauch
- Insilico Biotechnology AG; Stuttgart Germany
| | - Nicola Beaucamp
- Pharma Research and Early Development; Cell Culture Research, Roche Innovation Center Penzberg; Roche Diagnostics GmbH; Nonnenwald 2 D-82377 Penzberg Germany
| |
Collapse
|
36
|
Salazar A, Keusgen M, von Hagen J. Amino acids in the cultivation of mammalian cells. Amino Acids 2016; 48:1161-71. [PMID: 26832172 PMCID: PMC4833841 DOI: 10.1007/s00726-016-2181-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 11/29/2022]
Abstract
Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.
Collapse
Affiliation(s)
- Andrew Salazar
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany.
- Biopharm Materials & Technologies R&D, Merck Lifescience, 64293, Darmstadt, Germany.
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Jörg von Hagen
- Biopharm Materials & Technologies R&D, Merck Lifescience, 64293, Darmstadt, Germany
| |
Collapse
|
37
|
Liu Y, Zhang W, Deng X, Poon HF, Liu X, Tan WS, Zhou Y, Fan L. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development. J Biosci Bioeng 2015; 120:690-6. [DOI: 10.1016/j.jbiosc.2015.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/26/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
38
|
Torkashvand F, Vaziri B, Maleknia S, Heydari A, Vossoughi M, Davami F, Mahboudi F. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody. PLoS One 2015; 10:e0140597. [PMID: 26480023 PMCID: PMC4610691 DOI: 10.1371/journal.pone.0140597] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB) multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44) cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM) to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb) titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.
Collapse
Affiliation(s)
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (BV); (FM)
| | - Shayan Maleknia
- Process Development Department, Aryogen Biopharma Inc., Alborz, Iran
| | - Amir Heydari
- Department of Chemical & Petroleum Engineering, Biochemical & Bioenvironmental Research Center Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical & Petroleum Engineering, Biochemical & Bioenvironmental Research Center Sharif University of Technology, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (BV); (FM)
| |
Collapse
|