1
|
Khalifa HO, Al Ramahi YM. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int J Mol Sci 2024; 25:739. [PMID: 38255813 PMCID: PMC10815681 DOI: 10.3390/ijms25020739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new coronavirus in the Coronaviridae family. The COVID-19 pandemic, caused by SARS-CoV-2, has undoubtedly been the largest crisis of the twenty-first century, resulting in over 6.8 million deaths and 686 million confirmed cases, creating a global public health issue. Hundreds of notable articles have been published since the onset of this pandemic to justify the cause of viral spread, viable preventive measures, and future therapeutic approaches. As a result, this review was developed to provide a summary of the current anti-COVID-19 drugs, as well as their timeline, molecular mode of action, and efficacy. It also sheds light on potential future treatment options. Several medications, notably hydroxychloroquine and lopinavir/ritonavir, were initially claimed to be effective in the treatment of SARS-CoV-2 but eventually demonstrated inadequate activity, and the Food and Drug Administration (FDA) withdrew hydroxychloroquine. Clinical trials and investigations, on the other hand, have demonstrated the efficacy of remdesivir, convalescent plasma, and monoclonal antibodies, 6-Thioguanine, hepatitis C protease inhibitors, and molnupiravir. Other therapeutics, including inhaled medicines, flavonoids, and aptamers, could pave the way for the creation of novel anti-COVID-19 therapies. As future pandemics are unavoidable, this article urges immediate action and extensive research efforts to develop potent specialized anti-COVID-19 medications.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yousef M. Al Ramahi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
| |
Collapse
|
2
|
Zaman U, Khan SU, Alem SFM, Rehman KU, Almehizia AA, Naglah AM, Al-Wasidi AS, Refat MS, Saeed S, Zaki MEA. Purification and thermodynamic characterization of acid protease with novel properties from Melilotus indicus leaves. Int J Biol Macromol 2023; 230:123217. [PMID: 36634806 DOI: 10.1016/j.ijbiomac.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.
Collapse
Affiliation(s)
- Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
3
|
Abd El-Hafeez AA, Marzouk HMM, Abdelhamid MAA, Khalifa HO, Hasanin THA, Habib AGK, Abdelwahed FM, Barakat FM, Bastawy EM, Abdelghani EMB, Hosoi T, Ozawa K, Aref AM, Fujimura T, Ibrahim ARN, Abdelmoniem ASO, Elghazawy H, Ghosh P, Kawamoto S, Pack SP. Anti-cancer Effect of Hyoscyamus muticus Extract via Its Activation of Fas/FasL-ASK1-p38 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Navarro-Santos P, Herrera-Bucio R, Aviña-Verduzco J, García-Gutiérrez HA. Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021. Molecules 2022; 27:molecules27123937. [PMID: 35745061 PMCID: PMC9230106 DOI: 10.3390/molecules27123937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
Different ethnomedicinal studies have investigated the relationship between various phytochemicals as well as organic extracts and their bioactive aspects. Studies on biological effects are attributed to secondary metabolites such as alkaloids, phenolic compounds, and terpenes. Since there have been no reviews in the literature on the traditional, phytochemical, and ethnomedicinal uses of the genus Aristolochia so far, this article systematically reviews 141 published studies that analyze the associations between secondary metabolites present in organic extracts and their beneficial effects. Most studies found associations between individual secondary metabolites and beneficial effects such as anticancer activity, antibacterial, antioxidant activity, snake anti-venom and anti-inflammatory activity. The aim of this review was to analyze studies carried out in the period 2005-2021 to update the existing knowledge on different species of the genus Aristolochia for ethnomedicinal uses, as well as pharmacological aspects and therapeutic uses.
Collapse
Affiliation(s)
- Martín A. Lerma-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
- Correspondence: (M.A.L.-H.); (H.A.G.-G.)
| | - Lidia Beiza-Granados
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Pedro Navarro-Santos
- CONACYT—Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico;
| | - Rafael Herrera-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
| | - Judit Aviña-Verduzco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
| | - Hugo A. García-Gutiérrez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (L.B.-G.); (R.H.-B.); (J.A.-V.)
- Correspondence: (M.A.L.-H.); (H.A.G.-G.)
| |
Collapse
|
5
|
Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022; 27:molecules27123863. [PMID: 35744986 PMCID: PMC9230627 DOI: 10.3390/molecules27123863] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Waseem Razzaq Khan
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Nousheen Yousaf
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Seemab Akram
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Kamziah Abdul Kudus
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir 18000, Pakistan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Correspondence: or (A.D.); (M.N.)
| | - Zamri Rosli
- Department of Forestry Science, Faculty of Agriculture and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Muhammad Nawaz Rajpar
- Department of Forestry, Faculty of Life Sciences, SBBU Sheringal, Dir Upper 18000, Pakistan;
| | - Mohd Nazre
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or (A.D.); (M.N.)
| |
Collapse
|
6
|
Apoptotic-inducing factor 1 (AIF1) plays a critical role in cembranoid mediated apoptosis to control cancer: Molecular docking and dynamics study. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Abd El-Hafeez AA, Khalifa HO, Mahdy EAM, Sharma V, Hosoi T, Ghosh P, Ozawa K, Montano MM, Fujimura T, Ibrahim ARN, Abdelhamid MAA, Pack SP, Shouman SA, Kawamoto S. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol Rep 2019; 71:289-298. [PMID: 30826569 DOI: 10.1016/j.pharep.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Nor-wogonin, a polyhydroxy flavone, has been shown to possess antitumor activity. However, the mechanisms responsible for its antitumor activity are poorly studied. Herein, we investigated the mechanisms of nor-wogonin actions in triple-negative breast cancer (TNBC) cells. METHODS Effects of nor-wogonin on cell proliferation and viability of four TNBC cell lines (MDA-MB-231, BT-549, HCC70, and HCC1806) and two non-tumorigenic breast cell lines (MCF-10A and AG11132) were assessed by BrdU incorporation assays and trypan blue dye exclusion tests. Cell cycle and apoptosis analyses were carried out by flow cytometry. Protein expression was analyzed by immunoblotting. RESULTS Nor-wogonin significantly inhibited the growth and decreased the viability of TNBC cells; however, it exhibited no or minimal effects in non-tumorigenic breast cells. Nor-wogonin (40 μM) was a more potent anti-proliferative and cytotoxic agent than wogonin (100 μM) and wogonoside (100 μM), which are structurally related to nor-wogonin. The antitumor effects of nor-wogonin can be attributed to cell cycle arrest via reduction of the expression of cyclin D1, cyclin B1, and CDK1. Furthermore, nor-wogonin induced mitochondrial apoptosis, (as evidenced by the increase in % of cells that are apoptotic), decreases in the mitochondrial membrane potential (ΔΨm), increases in Bax/Bcl-2 ratio, and caspase-3 cleavage. Moreover, nor-wogonin attenuated the expression of the nuclear factor kappa-B and activation of signal transducer and activator of transcription 3 pathways, which can be correlated with suppression of transforming growth factor-β-activated kinase 1 in TNBC cells. CONCLUSION These results showed that nor-wogonin might be a potential multi-target agent for TNBC treatment.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Global Career Design Center, Hiroshima University, Hiroshima, Japan; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hazim O Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | | | - Vikas Sharma
- Pharmacology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toru Hosoi
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA,USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Koichiro Ozawa
- Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Ahmed R N Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed A A Abdelhamid
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia Egypt; Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Samia A Shouman
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Fathi MAA, Abd El-Hafeez AA, Abdelhamid D, Abbas SH, Montano MM, Abdel-Aziz M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg Chem 2018; 84:150-163. [PMID: 30502626 DOI: 10.1016/j.bioorg.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/03/2023]
Abstract
A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.
Collapse
Affiliation(s)
- Marwa Ali A Fathi
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
9
|
Ge N, Liang H, Zhao YY, Liu Y, Gong AJ, Zhang WL. Aplysin Protects Against Alcohol-Induced Liver Injury Via Alleviating Oxidative Damage and Modulating Endogenous Apoptosis-Related Genes Expression in Rats. J Food Sci 2018; 83:2612-2621. [PMID: 30192013 DOI: 10.1111/1750-3841.14320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
We investigated the protective effects and possible mechanisms of Aplysin against alcohol-induced liver injury. Rats were given daily either alcohol only (alcohol model group; 8 to 12 mL/kg body weight), one of three doses of Aplysin (50, 100, or 150 mg/kg Aplysin) plus alcohol, or volume-matched saline. After 6 weeks, the effects of Aplysin were assessed in terms of changes in histology, biochemical indices, and DNA oxidative damage. Potential mechanisms were analyzed through measurements of lipid peroxidation, antioxidant defense systems, expression of cytochrome P450 2E1, and expression of apoptosis-related genes. We found that Aplysin significantly protected the liver against alcohol-induced oxidative injury, evidenced by improved hepatic histological structure, inhibited alcohol-induced elevation of serum biochemical indices, attenuated extents of hepatocellular DNA damage. At a mechanistic level, Aplysin alleviated alcohol-induced oxidative stress as illustrated by the revivification of erythrocyte membrane fluidity, the attenuation of glutathione depletion, the restoration of antioxidase activities, and reduced malondialdehyde overproduction. Furthermore, the mRNA levels of Bax, cytochrome c, and cytochrome P450 2E1 were significantly down-regulated, whereas those of Bcl-2 and caspase-9 and caspase-3 were markedly up-regulated. These findings suggest that Aplysin provides significant protection against alcohol-induced liver injury, possibly through alleviating oxidative damage and modulating endogenous apoptosis-related genes expression. PRACTICAL APPLICATION Many natural components derived from alga have been used in the food, cosmetics, and biomedicine industries. Aplysin, a marine bromosesquiterpene, was extracted from the red alga Laurencia tristicha, which could effectively protect against alcohol-induced liver injury, might be a potential natural sources for preventing alcoholic liver damage.
Collapse
Affiliation(s)
- Na Ge
- Inst. of Human Nutrition, Medical College of Qingdao Univ., 38 Dengzhou Road, Qingdao, 266021, PR China.,Inst. of Nutrition and Food Health, Baotou Medical College, Baotou, 014040, PR China
| | - Hui Liang
- Inst. of Human Nutrition, Medical College of Qingdao Univ., 38 Dengzhou Road, Qingdao, 266021, PR China
| | - Yuan-Yuan Zhao
- Dept. of Oncology, the Affiliated Hospital of Medical College, Qingdao Univ., Qingdao, 266003, PR China
| | - Ying Liu
- Laboratory of Cellular and Molecular Biology, Medical College of Qingdao Univ., Qingdao, 266071, PR China
| | - An-Jing Gong
- Dept. of Neurosurgery, Hospital of Medical College, Qingdao Univ., Qingdao, 266003, PR China
| | - Wen-Long Zhang
- Dept. of Orthopedics, Hospital of Baotou Medical College, Baotou, 014040, PR China
| |
Collapse
|