1
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
2
|
Shu P, Jiang L, Li M, Li Y, Yuan Z, Lin L, Wen J, Aisa HA, Du Z. Comparison of five retinoids for anti-photoaging therapy: Evaluation of anti-inflammatory and anti-oxidative activities in vitro and therapeutic efficacy in vivo. Photochem Photobiol 2024; 100:633-645. [PMID: 37990342 DOI: 10.1111/php.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Over the past decades, increasing evidences have demonstrated that five retinoids, including retinol (ROL), retinol acetate (RAc), retinol propionate (RP), retinol palmitate (RPalm), and hydroxypinacolone retinoate (HPR), can be potential therapeutic agents for skin photoaging. However, therapeutic efficacies and biosafety have never been compared to these compounds. This study aimed to determine the optimal retinoid type(s) for anti-photoaging therapy both in vitro and in vivo. Our data demonstrated that four retinoids (RPalm, RP, HPR and ROL) but not RAc were effective for anti-photoaging treatment at 5 μg/mL in vitro, with action mechanisms associated with antioxidative, anti-inflammatory and anti-skin ECM degradation activities. Notably, both RPalm and RP appeared superior to HPR and ROL for those activities. Importantly, both RPalm and RP were shown to be optimal for anti-photoaging therapy when topically applied at 5 mg/kg in a UVB-induced mice model of photoaging, which is consistent with their high anti-photoaging activities in vitro. Additionally, topical application of these five retinoids showed satisfactory biosafety without causing significant apoptosis in animal organs, although RP application led to a slight decline in animal body weights. Collectively, these data have laid a good foundation for the next development of the clinical application of these retinoids for skin healthcare.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Yi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Li Lin
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan, Guangdong, China
| | - Ju Wen
- Department of Dermatology, Guangdong Second People's Hospital, Guangzhou, Guangdong, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ma Y, Li Y, Yao Y, Huang T, Lan C, Li L. Mechanistic studies on protective effects of total flavonoids from Ilex latifolia Thunb. on UVB-radiated human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Photochem Photobiol 2024. [PMID: 38644599 DOI: 10.1111/php.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The aim of the present research is to investigate anti-UVB radiation activity of total flavonoids from Ilex latifolia Thunb. (namely large-leaved Kuding tea) on human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Network pharmacology was used to screen target genes of active ingredients from Ilex latifolia Thunb. associated with UVB irradiation. The possible signaling pathways were analyzed by KEGG enrichment and verified by cellular experiments. Molecular docking was used to assess the affinity between the active ingredients and the core targets. The prediction of network pharmacology and molecular docking was identified by series experiment in UVB-irradiated HaCaT cells. Network pharmacology results showed that the active ingredients of Ilex latifolia Thunb. for anti-UVB irradiation were mainly flavonoids, and the possible signaling pathways were involved in PI3K-AKT, apoptosis, MAPKs, NF-κB, and JAK-STAT3. Molecular docking indicated key binding activity between AKT1-Glycitein, STAT3-Formononetin, CASP3-Formononetin, TNF-Kaempferol, CASP3-Luteolin, and AKT1-Quercetin. The total flavonoid pretreatment (0.25-1.0 mg/mL) down-regulated the expression of IL-6, IL-1β, and TNF-α in the cells determined by ELISA. The expression of phosphor PI3K, phosphor AKT, phosphor JAK, phosphor STAT3, phosphor JNK, and phosphor p38 MAPKs and COX-2 proteins in cytosolic and NF-κB p65 protein in nucleus were down-regulated and determined by western blot. It also protected UVB-irradiated cells from apoptosis by reducing apoptosis rate and down-regulating active-caspase 3. In a word, the total flavonoid treatment protected HaCaT cells from UVB injuries effectively, and the potential mechanism involves PI3K-AKT, JAK-STAT3, MAPK, and NF-κB pathway by anti-inflammatory and apoptosis action in cells. The mechanism in vivo experiment needs to be further confirmed in future.
Collapse
Affiliation(s)
- Yunge Ma
- Pharmacy College, Henan University, Kaifeng, China
| | - Yingyan Li
- Pharmacy College, Henan University, Kaifeng, China
| | - Yike Yao
- Pharmacy College, Henan University, Kaifeng, China
| | - Tao Huang
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
| | - Chong Lan
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation, Huanghe Science & Technology University, Zhengzhou, China
| | - Liyan Li
- Medical School, Huanghe Science & Technology University, Zhengzhou, China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation, Huanghe Science & Technology University, Zhengzhou, China
| |
Collapse
|
4
|
Liu M, Huang S, Park S. Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways. Photochem Photobiol Sci 2024; 23:463-478. [PMID: 38326693 DOI: 10.1007/s43630-023-00531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-β and wingless-related integration site (Wnt)/β-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), β-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/β-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating β-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, 048011, China
| | - Shaokai Huang
- Department of Bioconvergence, Hoseo University, Asan, 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea.
| |
Collapse
|
5
|
Cicek B, Danısman B, Yildirim S, Yuce N, Nikitovic D, Bolat I, Kuzucu M, Ceyran E, Bardas E, Golokhvast KS, Tsatsakis A, Taghizadehghalehjoughi A. Flavonoid-Rich Sambucus nigra Berry Extract Enhances Nrf2/HO-1 Signaling Pathway Activation and Exerts Antiulcerative Effects In Vivo. Int J Mol Sci 2023; 24:15486. [PMID: 37895164 PMCID: PMC10607857 DOI: 10.3390/ijms242015486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey; (B.C.); (E.B.)
| | - Betul Danısman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey; (S.Y.); (I.B.)
| | - Neslihan Yuce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey; (S.Y.); (I.B.)
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey;
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, 41000 Agri, Turkey;
| | - Ebru Bardas
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey; (B.C.); (E.B.)
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, 2B Centralnaya Street, 630501 Krasnoobsk, Russia;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey;
| |
Collapse
|
6
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
7
|
Bayat AH, Eskandari N, Sani M, Fotouhi F, Shenasandeh Z, Saeidikhoo S, Rohani R, Sabbagh Alvani M, Mafi Balani M, Eskandarian Boroujeni M, Abdollahifar MA, Tajari F, Aliaghaei A, Hassani Moghaddam M. Anti-inflammatory and antioxidative effects of elderberry diet in the rat model of seizure: a behavioral and histological investigation on the hippocampus. Toxicol Res (Camb) 2023; 12:783-795. [PMID: 37915479 PMCID: PMC10615822 DOI: 10.1093/toxres/tfad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
The present study was designed to evaluate whether elderberry (EB) effectively reduces inflammation and oxidative stress in hippocampal cells to modify seizure damage. Seizure was induced in rats by the injection of pentylenetetrazol (PTZ). In the Seizure + EB group, EB powder was added to the rats' routine diet for eight consecutive weeks. The study included several behavioral tests, immunohistopathology, Voronoi tessellation (to estimate the spatial distribution of cells in the hippocampus), and Sholl analysis. The results in the Seizure + EB group showed an improvement in the behavioral aspects of the study, a reduction in astrogliosis, astrocyte process length, number of branches, and intersections distal to the soma in the hippocampus of rats compared to controls. Further analysis showed that EB diet increased nuclear factor-like 2 expression and decreased caspase-3 expression in the hippocampus in the Seizure + EB group. In addition, EB protected hippocampal pyramidal neurons from PTZ toxicity and improved the spatial distribution of hippocampal neurons in the pyramidal layer and dentate gyrus. The results of the present study suggest that EB can be considered a potent modifier of astrocyte reactivation and inflammatory responses.
Collapse
Affiliation(s)
- Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Farid Fotouhi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shenasandeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Saeidikhoo
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Rohani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadamin Sabbagh Alvani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mafi Balani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Tajari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wójciak M, Ziemlewska A, Zagórska-Dziok M, Nizioł-Łukaszewska Z, Szczepanek D, Oniszczuk T, Sowa I. Anti-Inflammatory and Protective Effects of Water Extract and Bioferment from Sambucus nigra Fruit in LPS-Induced Human Skin Fibroblasts. Int J Mol Sci 2023; 24:10286. [PMID: 37373433 DOI: 10.3390/ijms241210286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, an attempt was made to evaluate the antioxidant, anti-inflammatory and protective effects of the Sambucus nigra fruit extract and its ferment obtained by fermentation with kombucha tea fungus. For this purpose, fermented and non-fermented extracts were compared in terms of their chemical composition by the HPLC/ESI-MS chromatographic method. The antioxidant activity of the tested samples was assessed using DPPH and ABTS assays. Cytotoxicity was also determined using Alamar Blue and Neutral Red tests to assess the viability and metabolism of fibroblast and keratinocyte skin cells. Potential anti-aging properties were determined by their ability to inhibit the activity of the metalloproteinases collagenase and elastase. Tests showed that the extract and the ferment have antioxidant properties and stimulate the proliferation of both cell types. The study also assessed the anti-inflammatory activity of the extract and ferment by monitoring levels of the pro-inflammatory interleukins IL-6, IL-1ß, tumor necrosis factor (TNF-α) and anti-inflammatory IL-10 in lipopolysaccharide (LPS)-treated fibroblast cells. The results indicate that both the S. nigra extract and its kombucha ferment can be effective in preventing free-radical-induced cell damage and have positive effects on skin cell health.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| |
Collapse
|
9
|
Moghaddam MH, Farrokhi S, Hasani A, Khosravi A, Pirani M, Vakili K, Fathi M, Eskandari N, Golshan A, Sadeghzadeh S, Namakin K, Aliaghaei A, Abdollahifar MA. Elderberry Diet Restores Spermatogenesis in the Transient Scrotal Hyperthermia-Induced Mice. Reprod Sci 2022; 29:3373-3386. [PMID: 35088364 DOI: 10.1007/s43032-022-00865-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past years, several studies have also reported the adverse effects of hyperthermia on normal testicular tissues in several species including mice, rats, and humans. These deleterious impacts include temporarily drop in relative weight of testis along with a temporary partial or complete infertility. Sambucus nigra, also known as elderberry or sweet elder, is a source of bioactive compounds that has drawn growing attention for its potential beneficial effects in preventing and treating several diseases. This experimental research divided 30 mice into the following three groups: (1) control, (2) hyperthermia, and (3) hyperthermia receiving elderberry diet for 35 days. Scrotal hyperthermia was induced by water bath with 43 °C for 30 min. Then, the mice were euthanized, and their sperm samples were collected for sperm parameters analysis. Then, we took the testis samples for histopathological experimentations, immunohistochemistry against TNF-α and caspase-3 and serum testosterone, FSH and LH levels. Our outputs indicated that elderberry diet could largely improve the sperms parameters and stereological parameters, like spermatogonia, primary spermatocyte, round spermatid, and Leydig cells together with an increasing level of the serum testosterone compared to the scrotal hyperthermia induced mice. In addition, it was found that the expression of TNF-α and caspase-3 significantly decreased in the treatment groups by elderberry diet compared to the scrotal hyperthermia-induced mice. In conclusion, it could be concluded that elderberry diet may be regarded as an alternative treatment for improving the spermatogenesis process in the scrotal hyperthermia induced mice.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sheida Farrokhi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Amirhosein Hasani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Amirreza Khosravi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Golshan
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Sara Sadeghzadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Kosar Namakin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Abbas Aliaghaei
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Daneshjoo Boulevard, Velenjak, Postal code (1985717443), Tehran, Iran
| |
Collapse
|
10
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
11
|
Streptomyces spp. Isolated from Rosa davurica Rhizome for Potential Cosmetic Application. COSMETICS 2022. [DOI: 10.3390/cosmetics9060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptomyces species are widely studied and used in different fields, including antibiotics and pesticides, and are spread in several places as soil-derived microorganisms. However, research on anti-aging, including antioxidants obtained from Streptomyces, has not been performed as much. Skin aging due to bacterial infection, especially methicillin-resistant Staphylococcus aureus (MRSA), is challenging to recover, so it is essential to prevent aging by preventing or inhibiting infection. Therefore, this study was conducted to isolate Streptomyces species from Rosa davurica rhizome soil and to determine the effect of the ethyl acetate extract of the isolated strain Streptomyces chattanoogensis THA-663 (THA-663S) on the inhibition of MRSA and UVB-irradiated human skin keratinocytes, to determine whether it could be a treatment for skin aging. The MRSA inhibition and antioxidant activities were evaluated using disc diffusion, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and a reactive oxygen species (ROS) assay. The expression of aging-related markers, including mitogen-activated protein kinases/activator protein 1 (MAPK)/AP-1) and transforming growth factor-β/suppressor of mothers against decapentaplegic (TGF-β/Smad) was assessed using Western blotting. The antibacterial effect on four MRSA strains, CCARM 0204, CCARM 0205, CCARM 3855, and CCARM 3089, showed that THA-663S could greatly inhibit MRSA growth. Moreover, the findings showed that THA-663S is efficient in scavenging free radicals and dose-dependently reducing ROS generation. Furthermore, THA-663S notably reduced UVB-induced matrix metalloproteinase-1 (MMP-1) expression by inhibiting the MAPK/AP-1 signaling pathways and blocking extracellular matrix (ECM) degradation in UVB-irradiated HaCaT cells. Additionally, THA-663S improved and enhanced transforming growth factor-beta (TGF-β) signaling activation to promote procollagen type I synthesis, relieving UVB-induced skin cell damage. In conclusion, THA-663S has a high potential to protect skin cells from aging, and, simultaneously, it can prevent or treat aging caused by infection due to pathogen inhibition.
Collapse
|
12
|
RhFGF21 Protects Epidermal Cells against UVB-Induced Apoptosis through Activating AMPK-Mediated Autophagy. Int J Mol Sci 2022; 23:ijms232012466. [PMID: 36293323 PMCID: PMC9603848 DOI: 10.3390/ijms232012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet irradiation, especially ultraviolet B (UVB) irradiation, increases the risks of various skin diseases, such as sunburn, photo-aging and cancer. However, few drugs are available to treat skin lesions. Therefore, the discovery of drugs to improve the health of irradiated skin is urgently needed. Fibroblast growth factor 21 (FGF21) is a metabolic factor that plays an important role in the protection and repair of various types of pathological damage. The effects of FGF21 on skin injury caused by UVB-irradiation were the focus of this study. We found that UVB irradiation promoted the expression of FGF21 protein in mouse epidermal cells, and exogenous recombinant human FGF21 (rhFGF21) protected mouse skin tissue against UVB-induced injury. RhFGF21 inhibited the inflammatory responses and epidermal cell apoptosis as well as promotion of autophagy in UVB-irradiated mice. Moreover, we found that rhFGF21 protected HaCaT cells against UVB-induced apoptosis, and the protective effect was enhanced by treatment with an autophagy activator (rapamycin) but was inhibited by treatment with an autophagy inhibitor (3-methyladenine, 3MA). AMP-activated protein kinase (AMPK), as a cellular energy sensor, regulates autophagy. RhFGF21 increased the expression of p-AMPK protein in epidermal cells irradiated with UVB in vivo and in vitro. Moreover, rhFGF21 increased autophagy levels and the viability were diminished by treatment with an AMPK inhibitor (compound C). RhFGF21 protects epidermal cells against UVB-induced apoptosis by inducing AMPK-mediated autophagy.
Collapse
|
13
|
Chen B, Yu L, Wu J, Qiao K, Cui L, Qu H, Su Y, Cai S, Liu Z, Wang Q. Effects of Collagen Hydrolysate From Large Hybrid Sturgeon on Mitigating Ultraviolet B-Induced Photodamage. Front Bioeng Biotechnol 2022; 10:908033. [PMID: 35832410 PMCID: PMC9271680 DOI: 10.3389/fbioe.2022.908033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet B (UVB) radiation leads to the excessive accumulation of reactive oxygen species (ROS), which subsequently promote inflammation, degradation of the extracellular matrix, and photoaging in skin. Thus antioxidant activity is particularly important when screening for active substances to prevent or repair photodamage. Marine fish-derived bioactive peptides have become a trend in cosmetics and functional food industries owing to their potential dermatological benefits. In this study, 1-diphenyl- 2-pycryl-hydrazyl (DPPH) scavenging activity was selected to optimize the hydrolysis conditions of sturgeon skin collagen peptides with antioxidant activity. The optimal hydrolysis conditions for sturgeon skin collagen hydrolysate (SSCH) were determined by response surface methodology, which comprised an enzyme dosage of flavorzyme at 6,068.4 U/g, temperature of 35.5°C, pH of 7, and hydrolysis time of 6 h. SSCH showed good radical-scavenging capacities with a DPPH scavenging efficiency of 95%. Then, the effect of low-molecular-weight SSCH fraction (SSCH-L) on UVB irradiation-induced photodamage was evaluated in mouse fibroblast L929 cells and zebrafish. SSCH-L reduced intracellular ROS levels and the malondialdehyde content, thereby alleviating the oxidative damage caused by UVB radiation. Moreover SSCH-L inhibited the mRNA expression of genes encoding the pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2. SSCH-L treatment further increased the collagen Ⅰα1 content and had a significant inhibitory effect on matrix metalloproteinase expression. The phosphorylation level of JNK and the expression of c-Jun protein were significantly reduced by SSCH-L. Additionally, SSCH-L increased the tail fin area at 0.125 and 0.25 mg/ml in a zebrafish UVB radiation model, which highlighted the potential of SSCH-L to repair UVB-irradiated zebrafish skin damage. Peptide sequences of SSCH-L were identified by liquid chromatography-tandem mass spectrometry. Based on the 3D-QSAR modeling prediction, six total peptides were selected to test the UVB-protective activity. Among these peptides, DPFRHY showed good UVB-repair activity, ROS-scavenging activity, DNA damage-protective activity and apoptosis inhibition activity. These results suggested that DPFRHY has potential applications as a natural anti-photodamage material in cosmetic and functional food industries.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lei Yu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lulu Cui
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| |
Collapse
|
14
|
Kim M, Ha LK, Oh S, Fang M, Zheng S, Bellere AD, Jeong J, Yi TH. Antiphotoaging Effects of Damiana ( Turnera diffusa) Leaves Extract via Regulation AP-1 and Nrf2/ARE Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111486. [PMID: 35684259 PMCID: PMC9182839 DOI: 10.3390/plants11111486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 05/13/2023]
Abstract
Damiana (Turnera diffusa), of the family Passifloraceae, has been widely studied for its pharmacological effects, especially for antioxidant and antibacterial actions. However, there are limited scientific findings describing its antiphotoaging effects on the skin. In the present study, the underlying molecular mechanisms of the protective effect of Damiana were investigated in keratinocytes (HaCaTs) and normal human dermal fibroblasts (HDFs) subject to UVB irradiation. The mRNA expression of matrix metalloproteinases (MMPs) and procollagen type I was determined by reverse transcription-polymerase chain reaction. The protein expression of antiphotoaging-related signaling molecules in the activator protein-1 (AP-1) and nuclear factor erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathways was assessed by Western blotting. We observed that Damiana blocked the upregulated production of reactive oxygen species induced in UVB-irradiated HaCaTs and HDFs in a dose-dependent manner. Treatment with Damiana also significantly ameliorated the mRNA expression of MMPs and procollagen type I. In addition, the phosphorylation level of c-Jun and c-Fos was also decreased through the attenuated expression of p-38, p-ERK, and p-JNK after treatment with Damiana. Furthermore, the treatment of cells with Damiana resulted in the inhibition of Smad-7 expression in the TGF-β/Smad pathway and upregulated the expression of the Nrf2/ARE signaling pathway. Hence, the synthesis of procollagen type I, a precursor of collagen I, was promoted. Collectively, these results provide us with the novel insight that Damiana is a potential source of antiphotoaging compounds.
Collapse
Affiliation(s)
- Minseon Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Lee-Keun Ha
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Sarang Oh
- Snow White Factory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Korea; (S.O.); (J.J.)
| | - Minzhe Fang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Arce D. Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
| | - Jeehaeng Jeong
- Snow White Factory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Korea; (S.O.); (J.J.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Korea; (M.K.); (L.-K.H.); (M.F.); (S.Z.); (A.D.B.)
- Correspondence: ; Tel.: +82-31-201-3693
| |
Collapse
|
15
|
Liu D, He XQ, Wu DT, Li HB, Feng YB, Zou L, Gan RY. Elderberry ( Sambucus nigra L.): Bioactive Compounds, Health Functions, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4202-4220. [PMID: 35348337 DOI: 10.1021/acs.jafc.2c00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elderberry (Sambucus nigra L.) is rich in many bioactive compounds and exhibits diverse health functions, of which an understanding can be helpful for its better utilization in the food industry. This review mainly summarizes recent studies about the bioactive compounds and health functions of elderberry, highlighting the potential mechanism of action. In addition, the applications of elderberry in foods are also discussed. Elderberry contains diversely bioactive ingredients, such as (poly)phenolic compounds and terpenoid compounds. Recent studies report that some food processing methods can affect the content of bioactive compounds in elderberry. Additionally, elderberry exhibits various health functions in vitro and in vivo, including antioxidant, anti-inflammatory, anticancer, anti-influenza, antimicrobial, antidiabetic, cardiovascular protective, and neuroprotective activities, and their potential molecular mechanisms are associated with regulating some key signaling pathways and molecular targets. Up to now, there have been limited clinical trials supporting the health benefits of elderberry. Overall, elderberry is a promising dietary source of bioactive ingredients and has the potential to be developed into functional foods or nutraceuticals for preventing and treating certain chronic diseases.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Xiao-Qin He
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| |
Collapse
|
16
|
Resveratrol Treats UVB-Induced Photoaging by Anti-MMP Expression, through Anti-Inflammatory, Antioxidant, and Antiapoptotic Properties, and Treats Photoaging by Upregulating VEGF-B Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6037303. [PMID: 35028009 PMCID: PMC8752231 DOI: 10.1155/2022/6037303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
UVB exposure is one of the primary factors responsible for the development of photoaging, and the aim of this study was to investigate the mechanism involved in the photoprotective properties of resveratrol (RES) in UVB-induced photoaging. Photoaging models of Hacat cells and ICR mice were established by UVB irradiation. The effect of RES on cell viability was then assessed using the MTT assay. The effect of RES on reactive oxygen species (ROS) production was detected through a fluorescent probe assay. The effect of RES on oxidized glutathione (GSSH) content, and superoxide dismutase (SOD) activity in photoaging Hacat cells, were measured separately, using kits. An enzyme-linked immunosorbent assay (ELISA) was used to measure the effect of RES on IL-6 secretion. The effect of VEGF-B on RES photoprotection was examined through the RT-qPCR method, after silencing VEGF-B through siRNA transfection. For animal experiments, the relative water content of the skin of ICR mice was determined using the Corneometer CM825 skin moisture tester. Starting from the third week of the study, the back skin of photoaging ICR mice was photographed weekly using the TIVI700 camera, and the depth of skin wrinkles in photoaging ICR mice was also analyzed. The thickness of the epidermis in photoaging ICR mice was assessed by the hematoxylin-eosin (HE) staining method. The content of collagen fibers in the skin dermis of photoaging ICR mice was measured by the Masson trichrome staining method. The content of collagen III in the dermis of the skin in photoaging ICR mice was measured through immunohistochemistry (IHC) techniques. The effect of RES on the mRNA expression levels of MMP-1, MMP-9, HO-1, GPX-4, IL-6, TNF-α, VEGF-B, caspase9, and caspase3 in photoaging Hacat cells, and that of MMP-3, Nrf2, HO-1, NQO1, SOD1, GPX-4, caspase9, caspase3, and IL-6 in the skin of photoaging ICR mice, was measured by RT-qPCR. The effects of RES on caspase3, Nrf2 (intranuclear), COX-2, P-ERK1/2, ERK1/2, P-P38MAPK, and P38MAPK in photoaging Hacat cells, and on MMP-9, caspase3, COX-2, P-JNK, P-ERK1/2, and P-P38MAPK protein expression in the skin of photoaging ICR mice, were assayed by the WB method. The results of this study, therefore, show that RES has a protective effect against UVB-induced photoaging in both Hacat cells and ICR mice. Its mechanism of action may include reducing the expression of MMPs and the secretion of collagen and inflammatory factors by inhibiting the ROS-mediated MAPK and COX-2 signaling pathways, balancing oxidative stress in the skin of Hacat cells and ICR mice by promoting the Nrf2 signaling pathway, inducing antiapoptotic effects by inhibiting caspase activation, and exerting antioxidant and antiapoptotic effects by targeting the VEGF-B, demonstrating its photoprotective effects against UVB irradiation-induced photoaging.
Collapse
|
17
|
Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction. Pharmaceuticals (Basel) 2022; 15:ph15020239. [PMID: 35215351 PMCID: PMC8877800 DOI: 10.3390/ph15020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The present review summarizes the current knowledge concerning provenance, properties, physiological and therapeutic actions of elderberry and the bioactive molecules present in the plant, with emphasis on their action on female reproduction. Elderberry or black elder (Sambucus nigra L.) attracts attention due to its easy cultivation and high availability of bioactive compounds. Most of the available data concerning black elder’s therapeutic action are focused on its effects such as activation of immune processes and anti-inflammatory processes (cytokine production, etc.) and regulation of hormones and their receptors in cancer cells. The effects of elderberry on reproduction have been poorly investigated so far. Nevertheless, conducted studies so far demonstrate the stimulatory influence of black elder extract and its constituents, such as rutin, anthocyanins and agglutinins, on the viability and steroidogenesis of healthy ovarian cells as well as their ability to promote apoptosis and reduce the viability and proliferation of ovarian cancer cells. Furthermore, the action of black elder extract and its constituent biomolecules, such as anthocyanins and lectins, on embryogenesis and the embryonal estradiol-estradiol receptor system have also been reported. The available information, despite limitations, suggest the applicability of black elder constituents for improvement of reproductive processes in animal biotechnology, animal production and assisted reproduction, as well as for prevention and treatment of reproductive disorders (including cancer) in veterinary and human medicine.
Collapse
|
18
|
Lotus root extract inhibits skin damage through suppression of collagenase production in vitro. Cytotechnology 2022; 74:309-317. [PMID: 35464168 PMCID: PMC8975922 DOI: 10.1007/s10616-022-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/18/2022] [Indexed: 11/03/2022] Open
Abstract
Lotus root is a traditional food ingredient used primarily in Asia and is rich in polyphenols. To determine its potential use in antiphotoaging, polyphenols were extracted from lotus root with 50% ethanol, and the activity of matrix metalloproteinase (MMP) was measured in dermal cells treated with ultraviolet A (UVA). UVA exposure increased the gene expression of IL-1α, the mRNA levels of MMP-1, and hence, the levels of MMP-1 protein in HaCaT cells, whereas cells treated with lotus polyphenol (LP) normalized these values to the control. In the presence of LP at concentrations of 1 and 10 μg/mL, both the secretion of IL-1α and protein levels of MMP-1 in human keratinocyte cells significantly reduced. Similarly, in the LabCyte EPI-MODEL24, irradiation with UVA caused an increase in mRNA expression of IL-1α and MMP-1, which was prevented by adding LP to the cells. Our results with three different skin cells accordingly showed that LP may help maintain skin health through decreased levels of MMP-1 activity via its anti-inflammatory properties.
Collapse
|
19
|
Xiao Z, Yang S, Liu Y, Zhou C, Hong P, Sun S, Qian ZJ. A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells. Chem Biol Interact 2022; 351:109737. [PMID: 34740599 DOI: 10.1016/j.cbi.2021.109737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive exposure to Ultraviolet (UV) rays can cause premature skin aging. Ishigoside (IGS) is a new glyceroglycolipid compound isolated from brown algal Ishige okamurae, However, whether it can protect the skin from (Ultraviolet-B) UVB damage has not been illuminated. METHODS The in vitro anti-photoaging effect of IGS was conducted in UVB-induced HaCaT. The HaCaT cells were divided into the following five groups: (1) cells didn't suffer from UVB irradiation or IGS treatment. (2-5) Cells were treated with various concentrations of IGS (0, 10, 50, and 100 μM) and irradiated by 40 mJ/cm2 UVB. The Matrix metalloproteinase (MMP) of photoaging process was determined by ELISA kits and the latent interaction between IGS and MMP was further performed by molecular docking. The crucial signaling pathway proteins involved in the collagen synthesis and degradation were subsequently evaluated by Western blotting, immunofluorescence and EMSA. RESULTS IGS effectively suppresses the high expressions and secretions of matrix metalloproteinases (MMPs) and photo-inflammation by blocking MAPKs, AP-1 and NF-κB. Meanwhile, increasing antioxidant enzyme expression. Molecular docking results suggest that inhibition of IGS on MMPs may be attributed to its hydrogen supply and hydrophobic capacity. In addition, IGS enhanced procollagen production by upregulating the TGF-β/Smad pathways. CONCLUSIONS IGS exhibited anti-photoaging activity in UVB-damage HaCaT. These effects might be a contribution by its suppression of MMPs expression via MAPKs, AP-1 and NF-κB pathway and have anti-oxidative and anti-inflammatory effects. Therefore, IGS has the great potential to become skin-care products or functional foods for preventing skin photoaging.
Collapse
Affiliation(s)
- Zhenbang Xiao
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengtao Yang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
20
|
Schön C, Mödinger Y, Krüger F, Doebis C, Pischel I, Bonnländer B. A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1978941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
| | | | - Franziska Krüger
- IMD Institut für Medizinische Diagnostik, Berlin-Steglitz, Germany
| | - Cornelia Doebis
- IMD Institut für Medizinische Diagnostik, Berlin-Steglitz, Germany
| | - Ivo Pischel
- Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, London, UK
| | | |
Collapse
|
21
|
You L, Kim MY, Cho JY. Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process. Molecules 2021; 26:5408. [PMID: 34500840 PMCID: PMC8434042 DOI: 10.3390/molecules26175408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Maintaining skin homeostasis is one of the most important factors for skin health. UVB-induced skin photoaging is a difficult problem that has negative impacts on skin homeostasis. So far, a number of compounds have been discovered that improve human skin barrier function and hydration, and are thought to be effective ways to protect skin homeostasis. Potentilla glabra var. mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract (Pg-EE) is a compound that has noteworthy anti-inflammatory properties. However, its skin-protective effects are poorly understood. Therefore, we evaluated the capacity of Pg-EE to strengthen the skin barrier and improve skin hydration. Pg-EE can enhance the expression of filaggrin (FLG), transglutaminase (TGM)-1, hyaluronic acid synthase (HAS)-1, and HAS-2 in human keratinocytes. Moreover, Pg-EE down-regulated the expression of pro-inflammatory cytokines and up-regulated the production of FLG, HAS-1, and HAS-2 suppressed by UVB through inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways. Given the above, since Pg-EE can improve skin barrier, hydration and reduce the UVB-induced inflammation on skin, it could therefore be a valuable natural ingredient for cosmetics or pharmaceuticals to treat skin disorders.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
22
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
23
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
24
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain.,Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
25
|
Moghaddam MH, Bayat AH, Eskandari N, Abdollahifar MA, Fotouhi F, Forouzannia A, Rafiei R, Hatari S, Seraj A, Shahidi AMEJ, Ghorbani Z, Peyvandi AA, Aliaghaei A. Elderberry diet ameliorates motor function and prevents oxidative stress-induced cell death in rat models of Huntington disease. Brain Res 2021; 1762:147444. [PMID: 33745925 DOI: 10.1016/j.brainres.2021.147444] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder which begins in the striatum and then spreads to other neural areas. Known as a progressive movement cognitive disorder, HD has no efficient therapy. Although the exact mechanism of HD is still unknown, several different etiological processes such as oxidative stress have been shown to play critical roles. Also, the current evidence indicates a strong correlation between immune activation and neural damage induced by neuroinflammatory and apoptotic agents in neurodegenerative disorders. Thus, natural products like Elderberry (EB) could be considered as a novel and potential therapeutic candidate for the treatment of this disease. In this study EB was added to the daily ration of ordinary rats for two months in order to ameliorate inflammatory and oxidative responses in rats injected with 3-nitropropionic acid (3-NP) in an experimental model of HD. Using Rotarod and electromyography setups, we showed that EB diet significantly recovered motor failure and muscle incoordination in 3-NP injected rats compared to the control group. Also, the molecular findings implied that EB diet led to a significant drop in 3-NP induced growth in caspase-3 and TNF-α concentration. The treatment also improved striatal antioxidative capacity by a significant reduction in ROS and a remarkable rise in GSH, which might be correlated with motor recovery in the tests. In sum, the findings demonstrate the advantages of EB treatment in the HD rat model with a score of beneficial anti-oxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Amir-Hossein Bayat
- Department of Basic Sciences, Saveh University of Medical Sciences, Saveh, Iran
| | - Neda Eskandari
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Fotouhi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Forouzannia
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Rafiei
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Hatari
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Seraj
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mahdi Emam Jome Shahidi
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Aliaghaei
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Chiu LY, Wu NL, Hung CF, Bai P, Dai YS, Lin WW. PARP-1 involves in UVB-induced inflammatory response in keratinocytes and skin injury via regulation of ROS-dependent EGFR transactivation and p38 signaling. FASEB J 2021; 35:e21393. [PMID: 33570794 DOI: 10.1096/fj.202002285rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/11/2023]
Abstract
UV irradiation can injure the epidermis, resulting in sunburn, inflammation, and cutaneous tissue disorders. Previous studies demonstrate that EGFR in keratinocytes can be activated by UVB and contributes to inflammation. Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme and plays an essential role in DNA repair under moderate stress. In this study, we set out to understand how PARP-1 regulates UVB irradiation-induced skin injury and interplays with EGFR to mediate the inflammation response. We found that PARP-1 deficiency exacerbated the UVB-induced inflammation, water loss, and back skin damage in mice. In human primary keratinocytes, UVB can activate PARP-1 and enhance DNA damage upon PARP-1 gene silencing. Moreover, PARP-1 silencing and PARP inhibitor olaparib can suppress UVB-induced COX-2 and MMP-1 expression, but enhance TNF-α and IL-8 expression. In addition, EGFR silencing or EGFR inhibition by gefitinib can decrease UVB-induced COX-2, TNF-α, and IL-8 expression, suggesting EGFR activation via paracrine action can mediate UVB-induced inflammation responses. Immunoblotting data revealed that PARP-1 inhibition decreases UVB-induced EGFR and p38 activation. Pharmacological inhibition of p38 also dramatically led to the attenuation of UVB-induced inflammatory gene expression. Of note, genetic ablation of PARP-1 or EGFR can attenuate UVB-induced ROS production, and antioxidant NAC can attenuate UVB-induced EGFR-p38 signaling axis and PARP-1 activation. These data suggest the regulatory loops among EGFR, PARP-1, and ROS upon UVB stress. PARP-1 not only serves DNA repair function but also orchestrates interactions to EGFR transactivation and ROS production, leading to p38 signaling for inflammatory gene expression in keratinocytes.
Collapse
Affiliation(s)
- Ling-Ya Chiu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
He L, Sui C, Li J, Yao Y, Li M, Wang R, Zhu W. N-Terminal 5-Mer Peptide Analog P165 of Amyloid Precursor Protein Repairs Skin Photodamage Induced by UVB through the Nrf2 Signaling Pathway. Indian J Dermatol 2021; 66:574. [PMID: 35068532 PMCID: PMC8751696 DOI: 10.4103/ijd.ijd_1146_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Acute photodamage is an acute inflammatory reaction of the skin after ultraviolet (UV) irradiation. Many drugs have been successfully used for the treatment and prevention of photodamage. AIMS To evaluate the molecular mechanism of N-terminal 5-mer peptide analog P165 of amyloid precursor protein in repairing photodamaged rat skin. MATERIALS AND METHODS We establish a rat model of acute UVB photodamage. The ratskin was treated with or without 250, 500, and, 1000 μM P165. Histological analysis was performed by hematoxylin and eosin staining. Apoptotic cells were analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The kits were used to measure the levels of protein carbonyl (PC), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH). Western blotting was used to measure Nrf2. RESULTS P165 repaired UVB-induced cutaneous erythema and edema, and reduced apoptosis of skin cells. The levels of PC, MDA, and 8-OHdG in 250 and 500 μM P165 groups were all lower than those in the solvent group. Activities of SOD, CAT, and GPx, and the level of GSH in P165 groups were higher than those in the solvent group. Nrf2 expression in the solvent group was higher than that in the negative group, whereas in the 500 μM P165 group was higher than in the solvent group. CONCLUSIONS Our findings suggest that P165 repairs the rat skin with acute photodamage by reducing oxidative stress. These activities may be mediated by promoting the Nrf2 signaling pathway. Thus, P165 may be a promising agent for the treatment of acute photodamage, which may be used in cosmetics and postsun repair.
Collapse
Affiliation(s)
- Li He
- From the Department of Dermatology and Venereology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Changlin Sui
- From the Department of Dermatology and Venereology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jiangbin Li
- Department of General Surgery, The Second Affiliated Hospital, The Air Force Military Medical University, Xi'an, China
| | - Yingying Yao
- Department of Pathology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Man Li
- From the Department of Dermatology and Venereology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Department of Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- From the Department of Dermatology and Venereology, Xuan Wu Hospital, Capital Medical University, Beijing, China,Address for correspondence: Dr. Wei Zhu, Department of Dermatology and Venereology, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Road, Xi Cheng District, Beijing - 100053, China. E-mail:
| |
Collapse
|
28
|
Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Aguzzi C, Marinelli O, Zeppa L, Santoni G, Maggi F, Nabissi M. Evaluation of anti-inflammatory and immunoregulatory activities of Stimunex® and Stimunex D3® in human monocytes/macrophages stimulated with LPS or IL-4/IL-13. Biomed Pharmacother 2020; 132:110845. [PMID: 33080469 DOI: 10.1016/j.biopha.2020.110845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022] Open
Abstract
Macrophages exert an important role in maintaining and/or ameliorating the inflammatory response. They are involved in the activation of an immune response to pathogens, with a balance between the immunomodulatory role and tissue integrity maintenance, however, excessive macrophage activity promotes tissue injury and chronic disease pathogenesis. There is a high interest in evaluating the anti-inflammatory properties of new botanical preparations. Stimunex® and Stimunex D3® are two food supplements formulated as syrups, containing the extract of elderflower (Sambucus nigra, Caprifoliaceae), standardized in polyphenol (6%) and anthocyanins (4%), associated with wellmune WGP® β-glucan, with the addiction of vitamin D3 (in Stimunex D3® formulation). The aim of the work was the evaluation of Stimunex® and Stimunex D3® activity in human polarized-macrophages, in order to support their use as supplement for preventing and reducing the inflammatory processes. In primary human stimulated macrophages, both syrups were able to revert LPS- and IL-4/IL-13-mediated response, reducing the release of several pro-inflammatory cytokines. Results support that these standardized botanical preparations fortified with β-glucan, may have a potential use in the prevention and coadjuvant management of inflammatory process as respiratory recurrent infections and other similar conditions. Moreover, the addition of vitamin D3 revealed to be an advantage in Stimunex D3® for its important role in maintaining and enhancing the innate immune response.
Collapse
Affiliation(s)
- Cristina Aguzzi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | | | - Laura Zeppa
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy; Integrative Therapy Discovery Lab, School of Pharmacy, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
30
|
A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants (Basel) 2020; 9:antiox9060542. [PMID: 32575730 PMCID: PMC7346205 DOI: 10.3390/antiox9060542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans.
Collapse
|
31
|
Wang H, Guo B, Hui Q, Lin F, Tao K. CO 2 lattice laser reverses skin aging caused by UVB. Aging (Albany NY) 2020; 12:7056-7065. [PMID: 32312940 PMCID: PMC7202480 DOI: 10.18632/aging.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
The carbon dioxide (CO2) lattice laser has been successfully used to treat facial skin photoaging induced by UV light. In this study, we analyzed the effect of CO2 lattice laser irradiation on skin photoaging, and investigated the underlying mechanisms. Our results demonstrate that the laser promoted collagen synthesis and proliferation of primary human skin fibroblasts, inhibited cell senescence, and induced expression of superoxide dismutase (SOD) and the signaling protein SMAD3. In addition, this laser reversed cell cycle arrest and fibroblast apoptosis induced by UVB irradiation, and restored fibroblast proliferation inhibited by SMAD3 silencing. Using a rat model of photoaging, our results show that the laser increased collagen expression and dermal thickness, demonstrating that the CO2 lattice laser has a profound therapeutic effect on photoaged skin. Together, our in vitro and in vivo data show that the CO2 lattice laser can reverse the skin aging caused by UVB, and indicate that this effect is mediated through SMAD3.
Collapse
Affiliation(s)
- Hongyi Wang
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Bingyu Guo
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Qiang Hui
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Feng Lin
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Kai Tao
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| |
Collapse
|