1
|
Kumar A, Quraishi MN, Al-Hassi HO, Elasrag M, Segal JP, Jain M, Steed H, Butterworth J, Farmer A, Mclaughlin J, Beggs AD, Brookes MJ. The Effect of Colesevelam on the Microbiome in Postoperative Crohn's Disease. Inflamm Bowel Dis 2024:izae230. [PMID: 39422655 DOI: 10.1093/ibd/izae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND While surgery plays a pivotal role in the management of ileal Crohn's disease, the risk of endoscopic recurrence following an ileocaecal resection can be greater than 65% within 12 months of surgery. More than 90% of patients with Crohn's disease have a concomitant diagnosis of bile acid diarrhea following an ileal resection. This pilot study aimed to assess whether the use of bile acid sequestrants in patients with Crohn's disease who have undergone a primary terminal ileal resection with concomitant bile acid diarrhea can alter the microbiome and prevent disease recurrence. METHODS Patients with Crohn's disease who underwent a primary terminal ileal resection and had symptoms of diarrhea within 1-3 months of surgery underwent 75SeHCAT testing for bile acid diarrhea. If positive (75SeHCAT ≤ 15%), patients were treated with colesevelam and stool samples were collected at 4 weeks, 8 weeks, and 6-12 months posttreatment. If negative (75SeHCAT > 15%), treatment was not given and were reviewed in the clinic as per local guidelines. All patients underwent a 6-12 month postoperative colonoscopy where further stool samples and mucosal biopsies were taken. Disease activity was established using the endoscopic Rutgeert's score, with disease remission defined as Rutgeert's score RESULTS A total of 14 patients who completed the study, 10 of whom had a 75SeHCAT positive diagnosis of bile acid diarrhea and were started on treatment with colesevelam. Four patients did not require treatment as 3 were asymptomatic and 1 had a negative 75SeHCAT scan. Three of the fourteen patients had disease recurrence at their 6-12 month postoperative colonoscopy assessment, of which 1 patient was taking colesevelam and 2 patients were not taking colesevelam. A total of 44 fecal samples and 44 mucosal biopsies underwent 16S ribosomal RNA gene analysis to assess α/β-diversity and microbial composition. In the colesevelam treated patients there was no significant difference in α/β-diversity pre- and posttreatment. Pretreatment, the 3 most abundant bacterial classes in all patients were Bacteroidia, Clostridia, and Gammaproteobacteria. Following 6-12 months of treatment, out of the 9 patients on colesevelam, 5/9 (55.6%) had a reduction in Bacteroidia, 9/9 (100%) had an increase in Clostridia, and 7/9 (77.8%) had a reduction in Gammaproteobacteria. Of the 2 patients not given colesevelam, one showed a reduction in Bacteroidia, increase in Clostridia and a reduction in Gammaproteobacteria. CONCLUSIONS This small pilot study demonstrated that patients who were given colesevelam, were more likely to be in disease remission at their 6-12 months colonoscopy review compared with those not treated. Furthermore, treatment with colesevelam may have a role in altering the microbiome to help maintain remission states in postoperative Crohn's disease. Larger mechanistic studies are now needed to confirm these findings and demonstrate statistical significance as well as investigate whether this benefit may be present even in those patients with 75SeHCAT negative disease.
Collapse
Affiliation(s)
- Aditi Kumar
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Hafid O Al-Hassi
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Mohammed Elasrag
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Manushri Jain
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Helen Steed
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
- School of Medicine and Clinical Practice, Faculty of Sciences and Engineering, University of Wolverhampton, Wolverhampton, UK
| | | | - Adam Farmer
- Division of Gastroenterology & Hepatology, St Louis University Hospital, St Louis, MO, USA
| | - John Mclaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Gastroenterology, Salford Royal Foundation Trust, Stott Lane, UK
| | - Andrew D Beggs
- University of Birmingham Microbiome Treatment Centre, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Matthew J Brookes
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
- School of Medicine and Clinical Practice, Faculty of Sciences and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
2
|
El-Mehalmey WA, Ibrahim AH, Youssef AFA, Abuzalat O, Mousa MS, Mayhoub AS, Alkordi MH. Anion-Exchange Electrospun Mixed-Matrix Polymer Fibers of Colesevelam for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38109475 DOI: 10.1021/acsami.3c13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes. The Cole@PCL membranes demonstrated the dependence of contaminant uptake on the weight percentage of colesevelam in the mixed-matrix membrane. An optimal 10 wt % of colesevelam was identified, demonstrating a staggering ion removal capacity of 155.8 mg/g for nitrate, 177.6 mg/g for phosphate, and 70 mg/g for Methyl Orange.
Collapse
Affiliation(s)
- Worood A El-Mehalmey
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Ahmed H Ibrahim
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Ahmed Fahmy A Youssef
- Environmental Engineering Program, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
- Chemistry Department, Faculty of Science, Cairo University, 12612 Giza, Egypt
| | - Osama Abuzalat
- Department of Chemical Engineering, Military Technical College, 4393010 Cairo, Egypt
| | - Moustafa S Mousa
- Environmental Engineering Program, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
- Faculty of Engineering Mataria, Helwan University, 11795 Cairo, Egypt
| | - Abdelrahman S Mayhoub
- Center for Certified Standards, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| |
Collapse
|
3
|
Kumar A, Quraishi MN, Al-Hassi HO, El-Asrag ME, Segal JP, Jain M, Steed H, Butterworth J, Farmer A, Mclaughlin J, Beggs A, Brookes MJ. The analysis of gut microbiota in patients with bile acid diarrhoea treated with colesevelam. Front Microbiol 2023; 14:1134105. [PMID: 37007510 PMCID: PMC10063896 DOI: 10.3389/fmicb.2023.1134105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionBile acid diarrhoea (BAD) is a common disorder that results from an increased loss of primary bile acids and can result in a change in microbiome. The aims of this study were to characterise the microbiome in different cohorts of patients with BAD and to determine if treatment with a bile acid sequestrant, colesevelam, can alter the microbiome and improve microbial diversity.Materials and methodsPatients with symptoms of diarrhoea underwent 75-selenium homocholic acid (75SeHCAT) testing and were categorised into four cohorts: idiopathic BAD, post-cholecystectomy BAD, post-operative Crohn’s disease BAD and 75SeHCAT negative control group. Patients with a positive 75SeHCAT (<15%) were given a trial of treatment with colesevelam. Stool samples were collected pre-treatment, 4-weeks, 8-weeks and 6–12 months post-treatment. Faecal 16S ribosomal RNA gene analysis was undertaken.ResultsA total of 257 samples were analysed from 134 patients. α-diversity was significantly reduced in patients with BAD and more specifically, in the idiopathic BAD cohort and in patients with severe disease (SeHCAT <5%); p < 0.05. Colesevelam did not alter bacterial α/β-diversity but patients who clinically responded to treatment had a significantly greater abundance of Fusobacteria and Ruminococcus, both of which aid in the conversion of primary to secondary bile acids.ConclusionThis is the first study to examine treatment effects on the microbiome in BAD, which demonstrated a possible association with colesevelam on the microbiome through bile acid modulation in clinical responders. Larger studies are now needed to establish a causal relationship with colesevelam and the inter-crosstalk between bile acids and the microbiome.
Collapse
Affiliation(s)
- Aditi Kumar
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
- *Correspondence: Aditi Kumar,
| | - Mohammed Nabil Quraishi
- Microbiome Treatment Centre, University of Birmingham Microbiome Treatment Centre, Birmingham, United Kingdom
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Hafid O. Al-Hassi
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Mohammed E. El-Asrag
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Science, Benha University, Benha, Egypt
| | - Jonathan P. Segal
- Department of Gastroenterology, Northern Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Manushri Jain
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Helen Steed
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
- School of Medicine and Clinical Practice, Faculty of Sciences and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Jeffrey Butterworth
- Department of Gastroenterology, Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, United Kingdom
| | - Adam Farmer
- Department of Gastroenterology, University Hospitals of North Midlands, Stoke-on-Trent, United Kingdom
| | - John Mclaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Gastroenterology, Salford Royal Foundation Trust, Salford, United Kingdom
| | - Andrew Beggs
- Microbiome Treatment Centre, University of Birmingham Microbiome Treatment Centre, Birmingham, United Kingdom
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Matthew J. Brookes
- Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
- School of Medicine and Clinical Practice, Faculty of Sciences and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
4
|
Esan O, Viljoen A, Wierzbicki AS. Colesevelam - a bile acid sequestrant for treating hypercholesterolemia and improving hyperglycemia. Expert Opin Pharmacother 2022; 23:1363-1370. [PMID: 35968655 DOI: 10.1080/14656566.2022.2112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Low density Lipoprotein cholesterol)LDL-C) levels show a clear relationship with cardiovascular disease (CVD). Statins are first line agents to reduce LDL-C and CVD risk. However, combination lipid-lowering therapy is often required to achieve large reductions in LDL-C. AREA COVERED Colesevelam HCl is a bile acid sequestrant (BAS), which reduces LDL-C by 16-22% in monotherapy and adds a further 12-14% reduction in LDL-C when combined with other lipid-lowering drugs. Like statins, colesevelam reduces C-reactive protein levels by 16% in monotherapy and additional 6% when added to statins. Colesevelam also reduced HbA1c by 4mmol/mol (0.5%) when used alone and added to other hypoglycaemic drugs in studies of patients with diabetes . EXPERT OPINION Bile acid sequestrants reduce LDL-C and HbA1c and have some CVD outcome evidence. The uses of these agents are limited in patients with gastrointestinal disease or high triglycerides due to adverse effects on gut function and raising triglycerides and they interfere with the absorption of lipid-soluble drugs. Colesevelam has a higher bile acid binding capacity, and fewer adverse effects than other BAS. Colesevelam may be useful as a third line agent for treatment of hypercholesterolemia with some additional specific benefits on glycemic control.
Collapse
Affiliation(s)
- Oluwayemisi Esan
- Metabolic Medicine/Chemical Pathology, Guy's & St Thomas Hospitals, London SE1 7EH, UK
| | - Adie Viljoen
- Metabolic Medicine/Chemical Pathology, East & North Hertfordshire Hospitals, Lister Hospital, Stevenage, Hertfordshire SG1 4AB, UK
| | - Anthony S Wierzbicki
- Metabolic Medicine/Chemical Pathology, Guy's & St Thomas Hospitals, London SE1 7EH, UK
| |
Collapse
|
5
|
Jonsson I, Bojsen-Møller KN, Kristiansen VB, Veedfald S, Wewer Albrechtsen NJ, Clausen TR, Kuhre RE, Rehfeld JF, Holst JJ, Madsbad S, Svane MS. Effects of Manipulating Circulating Bile Acid Concentrations on Postprandial GLP-1 Secretion and Glucose Metabolism After Roux-en-Y Gastric Bypass. Front Endocrinol (Lausanne) 2021; 12:681116. [PMID: 34084153 PMCID: PMC8166580 DOI: 10.3389/fendo.2021.681116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Altered bile acid (BA) turnover has been suggested to be involved in the improved glucose regulation after Roux-en-Y gastric bypass (RYGB), possibly via stimulation of GLP-1 secretion. We investigated the role of exogenous as well as endogenous BAs for GLP-1 secretion after RYGB by administering chenodeoxycholic acid (CDCA) and the BA sequestrant colesevelam (COL) both in the presence and the absence of a meal stimulus. METHODS Two single-blinded randomized cross-over studies were performed. In study 1, eight RYGB operated participants ingested 200 ml water with 1) CDCA 1.25 g or 2) CDCA 1.25 g + colesevelam 3.75 g on separate days. In study 2, twelve RYGB participants ingested on separate days a mixed meal with addition of 1) CDCA 1.25 g, 2) COL 3.75 g or 3) COL 3.75 g × 2, or 4) no additions. RESULTS In study 1, oral intake of CDCA increased circulating BAs, GLP-1, C-peptide, glucagon, and neurotensin. Addition of colesevelam reduced all responses. In study 2, addition of CDCA enhanced meal-induced increases in plasma GLP-1, glucagon and FGF-19 and lowered plasma glucose and C-peptide concentrations, while adding colesevelam lowered circulating BAs but did not affect meal-induced changes in plasma glucose or measured gastrointestinal hormones. CONCLUSION In RYGB-operated persons, exogenous CDCA enhanced meal-stimulated GLP-1 and glucagon secretion but not insulin secretion, while the BA sequestrant colesevelam decreased CDCA-stimulated GLP-1 secretion but did not affect meal-stimulated GLP-1, C-peptide or glucagon secretion, or glucose tolerance. These findings suggest a limited role for endogenous bile acids in the acute regulation of postprandial gut hormone secretion or glucose metabolism after RYGB.
Collapse
Affiliation(s)
- Isabella Jonsson
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Kirstine N. Bojsen-Møller
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Veedfald
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Rune E. Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research and Development, Novo Nordisk A/S, Måløv, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen, Denmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Sten Madsbad, ; Maria S. Svane,
| | - Maria S. Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
- *Correspondence: Sten Madsbad, ; Maria S. Svane,
| |
Collapse
|
6
|
Gether IM, Nexøe-Larsen C, Knop FK. New Avenues in the Regulation of Gallbladder Motility-Implications for the Use of Glucagon-Like Peptide-Derived Drugs. J Clin Endocrinol Metab 2019; 104:2463-2472. [PMID: 30137354 DOI: 10.1210/jc.2018-01008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
CONTEXT Several cases of cholelithiasis and cholecystitis have been reported in patients treated with glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) and GLP-2 receptor agonists (GLP-2RAs), respectively. Thus, the effects of GLP-1 and GLP-2 on gallbladder motility have been investigated. We have provided an overview of the mechanisms regulating gallbladder motility and highlight novel findings on the effects of bile acids and glucagon-like peptides on gallbladder motility. EVIDENCE ACQUISITION The articles included in the present review were identified using electronic literature searches. The search results were narrowed to data reporting the effects of bile acids and GLPs on gallbladder motility. EVIDENCE SYNTHESIS Bile acids negate the effect of postprandial cholecystokinin-mediated gallbladder contraction. Two bile acid receptors seem to be involved in this feedback mechanism, the transmembrane Takeda G protein-coupled receptor 5 (TGR5) and the nuclear farnesoid X receptor. Furthermore, activation of TGR5 in enteroendocrine L cells leads to release of GLP-1 and, possibly, GLP-2. Recent findings have pointed to the existence of a bile acid-TGR5-L cell-GLP-2 axis that serves to terminate meal-induced gallbladder contraction and thereby initiate gallbladder refilling. GLP-2 might play a dominant role in this axis by directly relaxing the gallbladder. Moreover, recent findings have suggested GLP-1RA treatment prolongs the refilling phase of the gallbladder. CONCLUSIONS GLP-2 receptor activation in rodents acutely increases the volume of the gallbladder, which might explain the risk of gallbladder diseases associated with GLP-2RA treatment observed in humans. GLP-1RA-induced prolongation of human gallbladder refilling may explain the gallbladder events observed in GLP-1RA clinical trials.
Collapse
Affiliation(s)
- Ida M Gether
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Christina Nexøe-Larsen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Nerild HH, Christensen MB, Knop FK, Brønden A. Preclinical discovery and development of colesevelam for the treatment of type 2 diabetes. Expert Opin Drug Discov 2018; 13:1161-1167. [DOI: 10.1080/17460441.2018.1538206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Henriette Holst Nerild
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel Bring Christensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Brønden
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
8
|
The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: A systematic review and meta-analysis of randomized controlled trials. Int J Cardiol 2017; 227:850-857. [DOI: 10.1016/j.ijcard.2016.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/10/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
|
9
|
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol 2014; 171:R47-65. [PMID: 24760535 DOI: 10.1530/eje-14-0154] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.
Collapse
Affiliation(s)
- David P Sonne
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Morten Hansen
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| |
Collapse
|
10
|
Abstract
Dyslipidemia is a highly heterogeneous group of disorders strongly influenced by both genetic and environmental factors. Dyslipidemia significantly increases risk for atherosclerotic disease and all of its various clinical manifestations. Identifying patients with dyslipidemia and initiating therapies aimed at normalizing the lipid profile has been demonstrated to significantly reduce the risk for myocardial infarction, stroke and cardiovascular mortality in both the primary and secondary prevention settings. Guidelines in Europe, Canada and the USA emphasize the need to reduce the burden of atherogenic lipoproteins in serum and to raise levels of high-density lipoproteins in patients at risk for cardiovascular events. Statins have emerged as front-line therapy for managing dyslipidemia, especially in patients with elevated serum levels of low-density lipoprotein cholesterol. As guidelines emphasize the need to reduce serum low-density lipoprotein cholesterol to lower levels, goal attainment can be challenging. The use of combination therapy increases the likelihood of therapeutic success for many patients. Furthermore, a significant percentage of patients with dyslipidemia either cannot achieve goals on statin monotherapy, choose not to take a statin or do not tolerate these drugs due to adverse side effects, such as myalgias, weakness or hepatotoxicity. This article summarizes the pharmacology, clinical efficacy and safety of colesevelam hydrochloride, a bile acid-binding resin. Bile acid-binding resins are orally administered anion-exchange resins that are not absorbed systemically. These agents bind bile acids and reduce their reabsorption at the level of the terminal ileum and prevent their enterohepatic recirculation. Colesevelam has a favorable side effect and toxicity profile and significantly impacts serum levels of lipoproteins when used as monotherapy or when used in combination with either statins or ezetimibe.
Collapse
|
11
|
Nwose OM, Jones MR. Atypical mechanism of glucose modulation by colesevelam in patients with type 2 diabetes. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2013; 6:75-9. [PMID: 24348081 PMCID: PMC3864737 DOI: 10.4137/cmed.s12590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colesevelam's glucose-lowering mechanism of action is not completely understood. Clinical trials of colesevelam suggest that its mechanism, and often adverse effects, differ from those of other oral antidiabetes drugs. Colesevelam does not affect insulin sensitivity (unlike thiazolidinediones), insulin secretion (unlike sulfonylureas and meglitinides), or early insulin response or glucagon (unlike dipeptidyl peptidase-4 inhibitors). Colesevelam may have some effect on glucose absorption, but likely via a different mechanism than α-glucosidase inhibitors. Colesevelam and metformin have similarities regarding hepatic glucose production, but divergent effects on gluconeogenesis versus glycogenolysis, suggesting differing mechanisms of drug action for improving glycemic control. Colesevelam is thought to be a portal glucagon-like peptide-1 (GLP-1) secretagogue with primarily hepatic effects. Bile acid binding by colesevelam leads to TGR5 activation, increased secretion of GLP-1 or other incretins, and inhibition of hepatic glycogenolysis. Colesevelam's mechanism of action appears to be atypical of other antidiabetes medications, making it a potentially suitable component of many combination regimens in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Oliseyenum M Nwose
- Executive Medical Director, Therapeutic Area Head, Hypertension, Metabolism and Pain, Daiichi Sankyo, Inc., Parsippany, New Jersey, USA
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Several lines of evidence indicate that the enterocyte plays a pivotal role in cholesterol homeostasis. The development of the selective inhibitor of cholesterol absorption ezetimibe and bile acid sequestrants (BAS) interrupting the enterohepatic circulation of bile salts has expanded the options for preventing and treating cardiovascular disease. We discuss here a selection of recently published studies that evaluated the effects of ezetimibe and BAS on lipoprotein metabolism. RECENT FINDINGS Although significant progress has been made in recent years in elucidating the impacts of ezetimibe and BAS on lipoprotein metabolism, underlying mechanisms are not completely understood. Important new insights have been provided by using in-vivo kinetic studies of apolipoproteins labelled with a stable isotope. Other reports indicated that ezetimibe and BAS modulate the expression of several key genes involved in intestinal lipoprotein metabolism. Many of these effects have been related to the local effects of ezetimibe and BAS on intestinal cholesterol homeostasis. SUMMARY A substantial effort is being made by researchers to fully understand the mechanisms by which ezetimibe and BAS improve lipid profile. The efficacy of combination therapy of statins with ezetimibe or BAS for the prevention of cardiovascular disease remains to be confirmed in clinical endpoint studies.
Collapse
Affiliation(s)
- Patrick Couture
- Lipid Research Center, Laval University Medical Center, Laval University, Quebec City, Canada.
| | | |
Collapse
|
13
|
Potthoff MJ, Potts A, He T, Duarte JAG, Taussig R, Mangelsdorf DJ, Kliewer SA, Burgess SC. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G371-80. [PMID: 23257920 PMCID: PMC3566618 DOI: 10.1152/ajpgi.00400.2012] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/17/2012] [Indexed: 02/07/2023]
Abstract
Bile acid sequestrants are nonabsorbable resins designed to treat hypercholesterolemia by preventing ileal uptake of bile acids, thus increasing catabolism of cholesterol into bile acids. However, sequestrants also improve hyperglycemia and hyperinsulinemia through less characterized metabolic and molecular mechanisms. Here, we demonstrate that the bile acid sequestrant, colesevelam, significantly reduced hepatic glucose production by suppressing hepatic glycogenolysis in diet-induced obese mice and that this was partially mediated by activation of the G protein-coupled bile acid receptor TGR5 and glucagon-like peptide-1 (GLP-1) release. A GLP-1 receptor antagonist blocked suppression of hepatic glycogenolysis and blunted but did not eliminate the effect of colesevelam on glycemia. The ability of colesevelam to induce GLP-1, lower glycemia, and spare hepatic glycogen content was compromised in mice lacking TGR5. In vitro assays revealed that bile acid activation of TGR5 initiates a prolonged cAMP signaling cascade and that this signaling was maintained even when the bile acid was complexed to colesevelam. Intestinal TGR5 was most abundantly expressed in the colon, and rectal administration of a colesevelam/bile acid complex was sufficient to induce portal GLP-1 concentration but did not activate the nuclear bile acid receptor farnesoid X receptor (FXR). The beneficial effects of colesevelam on cholesterol metabolism were mediated by FXR and were independent of TGR5/GLP-1. We conclude that colesevelam administration functions through a dual mechanism, which includes TGR5/GLP-1-dependent suppression of hepatic glycogenolysis and FXR-dependent cholesterol reduction.
Collapse
Affiliation(s)
- Matthew J Potthoff
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Colesevelam is a second-generation bile acid sequestrant that has effects on both blood glucose and lipid levels. It provides a promising approach to glycaemic and lipid control simultaneously. OBJECTIVES To assess the effects of colesevelam for type 2 diabetes mellitus. SEARCH METHODS Several electronic databases were searched, among these The Cochrane Library (Issue 1, 2012), MEDLINE, EMBASE, CINAHL, LILACS, OpenGrey and Proquest Dissertations and Theses database (all up to January 2012), combined with handsearches. No language restriction was used. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared colesevelam with or without other oral hypoglycaemic agents with a placebo or a control intervention with or without oral hypoglycaemic agents. DATA COLLECTION AND ANALYSIS Two review authors independently selected the trials and extracted the data. We evaluated risk of bias of trials using the parameters of randomisation, allocation concealment, blinding, completeness of outcome data, selective reporting and other potential sources of bias. MAIN RESULTS Six RCTs ranging from 8 to 26 weeks investigating 1450 participants met the inclusion criteria. Overall, the risk of bias of these trials was unclear or high. All RCTs compared the effects of colesevelam with or without other antidiabetic drug treatments with placebo only (one study) or combined with antidiabetic drug treatments. Colesevelam with add-on antidiabetic agents demonstrated a statistically significant reduction in fasting blood glucose with a mean difference (MD) of -15 mg/dL (95% confidence interval (CI) -22 to - 8), P < 0.0001; 1075 participants, 4 trials, no trial with low risk of bias in all domains. There was also a reduction in glycosylated haemoglobin A1c (HbA1c) in favour of colesevelam (MD -0.5% (95% CI -0.6 to -0.4), P < 0.00001; 1315 participants, 5 trials, no trial with low risk of bias in all domains. However, the single trial comparing colesevelam to placebo only (33 participants) did not reveal a statistically significant difference between the two arms - in fact, in both arms HbA1c increased. Colesevelam with add-on antidiabetic agents demonstrated a statistical significant reduction in low-density lipoprotein (LDL)-cholesterol with a MD of -13 mg/dL (95% CI -17 to - 9), P < 0.00001; 886 participants, 4 trials, no trial with low risk of bias in all domains. Non-severe hypoglycaemic episodes were infrequently observed. No other serious adverse effects were reported. There was no documentation of complications of the disease, morbidity, mortality, health-related quality of life and costs. AUTHORS' CONCLUSIONS Colesevelam added on to antidiabetic agents showed significant effects on glycaemic control. However, there is a limited number of studies with the different colesevelam/antidiabetic agent combinations. More information on the benefit-risk ratio of colesevelam treatment is necessary to assess the long-term effects, particularly in the management of cardiovascular risks as well as the reduction in micro- and macrovascular complications of type 2 diabetes mellitus. Furthermore, long-term data on health-related quality of life and all-cause mortality also need to be investigated.
Collapse
Affiliation(s)
- Cheow Peng Ooi
- Endocrine Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.
| | | |
Collapse
|
15
|
Inhibition of cholesterol absorption: targeting the intestine. Pharm Res 2012; 29:3235-50. [PMID: 22923351 DOI: 10.1007/s11095-012-0858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Atherosclerosis, the gradual formation of a lipid-rich plaque in the arterial wall is the primary cause of Coronary Artery Disease (CAD), the leading cause of mortality worldwide. Hypercholesterolemia, elevated circulating cholesterol, was identified as a key risk factor for CAD in epidemiological studies. Since the approval of Mevacor in 1987, the primary therapeutic intervention for hypercholesterolemia has been statins, drugs that inhibit the biosynthesis of cholesterol. With improved understanding of the risks associated with elevated cholesterol levels, health agencies are recommending reductions in cholesterol that are not achievable in every patient with statins alone, underlying the need for improved combination therapies. The whole body cholesterol pool is derived from two sources, biosynthesis and diet. Although statins are effective at reducing the biosynthesis of cholesterol, they do not inhibit the absorption of cholesterol, making this an attractive target for adjunct therapies. This report summarizes the efforts to target the gastrointestinal absorption of cholesterol, with emphasis on specifically targeting the gastrointestinal tract to avoid the off-target effects sometimes associated with systemic exposure.
Collapse
|
16
|
Robinson DM, Keating GM. Colesevelam. Am J Cardiovasc Drugs 2012. [DOI: 10.1007/bf03256569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zema MJ. Colesevelam hydrochloride: evidence for its use in the treatment of hypercholesterolemia and type 2 diabetes mellitus with insights into mechanism of action. CORE EVIDENCE 2012; 7:61-75. [PMID: 22936894 PMCID: PMC3426253 DOI: 10.2147/ce.s26725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Colesevelam hydrochloride is a molecularly engineered, second-generation bile acid sequestrant demonstrating enhanced specificity for bile acids which has been approved for use as adjunctive therapy to diet and exercise as monotherapy or in combination with a β-hydroxymethylglutaryl-coenzyme A reductase inhibitor for the reduction of elevated low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. It is also the only lipid-lowering agent currently available in the United States which has been approved for use as adjunctive therapy in patients with type 2 diabetes mellitus whose glycemia remains inadequately controlled on therapy with metformin, sulfonylurea, or insulin. With the recent emphasis upon drug safety by the Food and Drug Administration and various consumer agencies, it is fitting that the role of nonsystemic lipid-lowering therapies such as bile acid sequestrants – with nearly 90 years of in-class, clinically safe experience – should be reexamined. This paper presents information on the major pharmacologic effects of colesevelam, including a discussion of recent data derived from both in vitro and in vivo rodent and human studies, which shed light on the putative mechanisms involved.
Collapse
|
18
|
Meissner M, Herrema H, van Dijk TH, Gerding A, Havinga R, Boer T, Müller M, Reijngoud DJ, Groen AK, Kuipers F. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate. PLoS One 2011; 6:e24564. [PMID: 22087215 PMCID: PMC3210115 DOI: 10.1371/journal.pone.0024564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 08/15/2011] [Indexed: 01/10/2023] Open
Abstract
AIMS/HYPOTHESIS Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS Lean and diabetic db/db mice were treated with 2% (wt/wt in diet) Colesevelam HCl (BAS) for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13)C]-glucose, [2-(13)C]-glycerol, [1-(2)H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001), a ∼300% increased glucokinase flux (p = 0.001) and a ∼200% increased total hepatic glucose production rate (p = 0.0002). BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317) but not in liver (p = 0.189). Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030) and 3-fold in db/db mice (p = 0.002). CONCLUSIONS/INTERPRETATION BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.
Collapse
Affiliation(s)
- Maxi Meissner
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Viljoen A, Wierzbicki AS. Colesevelam: an improved bile acid sequestrant for treating hypercholesterolemia and improving diabetes. Expert Rev Endocrinol Metab 2010; 5:825-834. [PMID: 30780836 DOI: 10.1586/eem.10.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a well-established association between serum cholesterol and coronary heart disease. Statins are the first-line agents for the treatment of hypercholesterolemia, yet combination therapy is required to achieve the desired reduction in low-density lipoprotein cholesterol (LDL-C). Niacin and bile acid sequestrants were among the first lipid-lowering drugs developed to lower LDL-C and have been established to be effective both in monotherapy and in combination therapy. However, tolerability and compliance issues have limited their use. Colesevelam HCl is the newest bile acid sequestrant and reduces LDL-C by 16-22% in monotherapy and adds 12-14% in combination dual therapy with statins, fibrates and ezetimibe or in triple therapy with statin and ezetimibe. It reduces C-reactive protein levels by 16-19% in monotherapy or by 23% in combination with statins and other lipid-lowering therapies. In addition, it consistently reduces hemoglobin A1c by 0.5% in addition to other hypoglycemic drugs in studies of patients with diabetes. Compared with other bile acid sequestrants it has a higher bile acid-binding capacity, reduced adverse effects and, therefore, has better compliance. Colesevelam HCl is thus a useful addition to the lipid-lowering formulary as a second-line agent, particularly for patients with metabolic syndrome requiring extra reduction in LDL-C.
Collapse
Affiliation(s)
- Adie Viljoen
- a Lister Hospital, Stevenage, Hertfordshire, SG1 4AB, UK
| | | |
Collapse
|
20
|
Hageman J, Herrema H, Groen AK, Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1519-28. [PMID: 20631352 DOI: 10.1161/atvbaha.109.197897] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti- and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jurre Hageman
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 EZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Wedlake L, Thomas K, Lalji A, Anagnostopoulos C, Andreyev HJN. Effectiveness and tolerability of colesevelam hydrochloride for bile-acid malabsorption in patients with cancer: a retrospective chart review and patient questionnaire. Clin Ther 2010; 31:2549-58. [PMID: 20109999 DOI: 10.1016/j.clinthera.2009.11.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2009] [Indexed: 01/06/2023]
Abstract
BACKGROUND Commercially available bile-acid sequestrants are not well tolerated by >80% of patients. OBJECTIVE The aim of the present study was to assess the effectiveness and tolerability of colesevelam hydrochloride in patients who developed bile-acid malabsorption after cancer therapy. METHODS The present study comprised 2 parts: a retrospective chart review of the electronic patient records and a patient questionnaire assessing outcome measures. All patients included in this study had a diagnosis of cancer and were being followed up in a cancer clinic at The Royal Marsden Hospital. In addition, all had symptoms of bile-acid malabsorption for >3 months and had been prescribed colesevelam in the gastroenterology clinic at the hospital. The electronic records of patients who were prescribed colesevelam between 2004 and 2007 were obtained from the hospital pharmacy. Those patients who were prescribed colesevelam and did not take any of the prescribed medication or did not return for a follow-up clinical review were excluded. To help further assess outcomes, a questionnaire was mailed to patients who were still residing in the United Kingdom, were not terminally ill, and were not lost to follow-up. The questionnaire comprised questions that assessed medication history (ie, whether patients were still taking colesevelam or not [and the reason for not taking colesevelam]), dosage, effectiveness for symptom relief, and adverse events. RESULTS In total, 45 patients (37 women and 8 men; median age, 58 years [range, 32-89 years]) who received treatment with colesevelam between 2004 and 2007 were included. Of these, 36 were sent a questionnaire and 30 responded. Identifiable causes of bile acid malabsorption in this sample population were pelvic radiotherapy (n = 29), small-bowel resection (12), upper gastrointestinal surgery (2), high-dose chemotherapy (1), and new-onset Crohn's disease (1). Of these patients, 67% (30/45) had not previously responded to cholestyramine treatment, but following treatment with colesevelam, this group had a recorded improvement in: diarrhea, 83% (25/30); urgency of defecation, 74% (20/27); frequency of defecation, 72% (21/29); steatorrhea, 71% (12/17); abdominal pain, 68% (15/22); and fecal incontinence, 62% (13/21). Based on the medical chart review and the patient questionnaire, after colesevelam treatment, the following proportions of all 45 patients studied experienced improvement in symptoms: loose stool (diarrhea), 88% (medical chart) and 80% (questionnaire); frequency of defecation, 77% and 83%, respectively; steatorrhea, 76% and 80%; urgency of defecation, 76% and 80%; abdominal pain, 74% and 58%; and fecal incontinence, 69% and 74%. During the study period, 15 patients discontinued colesevelam: ineffectiveness, 5; adverse events, 5 (because >or=1 of the following: bloating, constipation, heartburn, abdominal pain, flatulence, or perianal soreness); and other reasons, 7 (too many tablets or tablets difficult to swallow [3]; symptoms resolved [2]; colesevelam replaced with another medication [1]; and lost to follow-up [1]). Sixty-seven percent (30/45) of patients continued using colesevelam for up to 4 years. CONCLUSION In view of the data found in this retrospective chart review and patient questionnaire, prospective, double-blind, placebo-controlled trials of colesevelam for bile acid malabsorption are warranted.
Collapse
Affiliation(s)
- Linda Wedlake
- Department of Nutrition and Dietetics, The Royal Marsden Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Herrema H, Meissner M, van Dijk TH, Brufau G, Boverhof R, Oosterveer MH, Reijngoud DJ, Müller M, Stellaard F, Groen AK, Kuipers F. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology 2010; 51:806-16. [PMID: 19998408 DOI: 10.1002/hep.23408] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Diabetes is characterized by high blood glucose levels and dyslipidemia. Bile salt sequestration has been found to improve both plasma glycemic control and cholesterol profiles in diabetic patients. Yet bile salt sequestration is also known to affect triglyceride (TG) metabolism, possibly through signaling pathways involving farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha). We quantitatively assessed kinetic parameters of bile salt metabolism in lean C57Bl/6J and in obese, diabetic db/db mice upon bile salt sequestration using colesevelam HCl (2% wt/wt in diet) and related these to quantitative changes in hepatic lipid metabolism. As expected, bile salt sequestration reduced intestinal bile salt reabsorption. Importantly, bile salt pool size and biliary bile salt secretion remained unchanged upon sequestrant treatment due to compensation by de novo bile salt synthesis in both models. Nevertheless, lean and db/db mice showed increased, mainly periportally confined, hepatic TG contents, increased expression of lipogenic genes, and increased fractional contributions of newly synthesized fatty acids. Lipogenic gene expression was not induced in sequestrant-treated Fxr(-/-) and Lxralpha(-/-) mice compared with wild-type littermates, in line with reports indicating a regulatory role of FXR and LXRalpha in bile salt-mediated regulation of hepatic lipid metabolism. CONCLUSION Bile salt sequestration by colesevelam induces the lipogenic pathway in an FXR- and LXRalpha-dependent manner without affecting the total pool size of bile salts in mice. We speculate that a shift from intestinal reabsorption to de novo synthesis as source of bile salts upon bile salt sequestration affects zonation of metabolic processes within the liver acinus.
Collapse
Affiliation(s)
- Hilde Herrema
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zema MJ. Add-on therapy for hypercholesterolemia: a pilot comparison of two gastrointestinally-acting agents in statin-treated patients. J Clin Lipidol 2009; 3:119-24. [PMID: 21291801 DOI: 10.1016/j.jacl.2009.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/03/2009] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Both colesevelam hydrochloride (colesevelam) and ezetimibe monotherapy have been reported to lower low-density lipoprotein cholesterol (LDL-C) approximately 15-17% in patients with hypercholesterolemia. When statin therapy is inadequate to reach desired LDL-C goals, the choice of add-on therapy, while multifactorial, must consider efficacy of additional LDL-C reduction. OBJECTIVE To provide pilot study data in assessing the relative potential of ezetimibe or colesevelam to further reduce LDL-C in statin-treated patients. METHODS Fourteen patients with hypercholesterolemia, who at baseline were on treatment with a stable regimen of low- to moderate-dose statin therapy, were randomized to receive colesevelam HCl 3.75 g/day or ezetimibe 10 mg/day as add-on therapy (AOT). At the end of 6 weeks, each patient was crossed over to the alternative AOT. RESULTS LDL cholesterol fell an additional 21.0% on colesevelam (P < .001) and 28.3% on ezetimibe (P <.001) with a 7.3% difference between AOTs (P <.02). Non-high-density lipoprotein cholesterol (non-HDL-C) fell an additional 15.1% on colesevelam (P <.001) and 25.6% on ezetimibe (P <.001) with a 10.5% difference between AOTs (P <.001). The non-HDL-C/HDL-C ratio fell an additional 15.3% on colesevelam (P <.01) and 22.8% on ezetimibe (P <.001) with a 7.5% difference between AOTs (P <.02). Zero of 10 and six of 10 secondary prevention patients reached an LDL-C level of <70 mg/dl on colesevelam and ezetimibe respectively (P <.005). CONCLUSION Colesevelam HCl and ezetimibe are both effective AOTs in patients on statin therapy. The superior further improvement in the lipid panel with ezetimibe compared to colesevelam was demonstrated in this placebo uncorrected crossover pilot study.
Collapse
Affiliation(s)
- Michael James Zema
- Department of Medicine, Division of Cardiology, Health Sciences Center #T16 - 080, State University of New York, Stony Brook, NY 11794 USA
| |
Collapse
|
24
|
Florentin M, Liberopoulos EN, Mikhailidis DP, Elisaf MS. Colesevelam hydrochloride in clinical practice: a new approach in the treatment of hypercholesterolaemia. Curr Med Res Opin 2008; 24:995-1009. [PMID: 18291066 DOI: 10.1185/030079908x280446] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Hypercholesterolaemia is a major risk factor for atherosclerosis and coronary heart disease. Treatment with lipid lowering agents reduces the risk of vascular events. Colesevelam is a novel bile acid sequestrant (BAS) indicated for the treatment of hypercholesterolaemia, either as monotherapy or in combination with statins. SCOPE This article reviews the efficacy, tolerability and safety of colesevelam in clinical practice. The literature search was based on a PubMed search up to January 2008. FINDINGS Colesevelam, used alone or in combination with other hypolipidaemic agents (statins, ezetimibe and fenofibrate), has an overall favourable effect on lipid profile. Specifically, colesevelam reduces total and low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B levels and increases high-density lipoprotein cholesterol and apolipoprotein AI. However, colesevelam may slightly raise triglyceride levels. Colesevelam can improve glycaemic control in diabetic patients. Moreover, it may have anti-inflammatory properties, as it can reduce high sensitivity C-reactive protein concentration. Colesevelam almost lacks the intense side effects of previously used BASs, thus resulting in better patient compliance. However, the dose regimen consisting of up to 7 tablets/day and high cost may limit its use. CONCLUSIONS Colesevelam is a safe alternative for those intolerant to other lipid lowering medication. This BAS also provides an option for patients who do not reach their LDL-C goal despite treatment with a statin.
Collapse
Affiliation(s)
- M Florentin
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
25
|
|
26
|
Davidson MH. The use of colesevelam hydrochloride in the treatment of dyslipidemia: a review. Expert Opin Pharmacother 2007; 8:2569-78. [DOI: 10.1517/14656566.8.15.2569] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 2007; 29:74-83. [PMID: 17379048 DOI: 10.1016/j.clinthera.2007.01.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2006] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study evaluated the glycosylated hemoglobin (HbA(1c)-lowering effect of colesevelam hydrochloride, a bile acid sequestrant, in subjects with type 2 diabetes that was inadequately controlled by existing antihyperglycemic therapy. METHODS After a 4-week placebo run-in period, subjects with type 2 diabetes and an HbA(1c) value of 7.0% to 10.0% were randomized to receive colesevelam 3.75 g/d or matching placebo for 12 weeks. Subjects' previous oral anti hyperglycemic medication (sulfonylurea and/or metformin) was continued throughout the study. Fasting blood samples were obtained at weeks -5, -1, 0, 1, 4, 8, and 12. The primary efficacy end point was the change in HbA(1c) from baseline to week 12. Secondary end points included changes in fructosamine levels, fasting plasma glucose levels, postprandial glucose level, and meal glucose response (ie, difference between preprandial and postprandial levels), and percent changes in lipid parameters from baseline to week 12. RESULTS The 65 randomized subjects (31 colesevelam, 34 placebo) had a mean age of 56.2 years and a mean body mass index of 32.4 kg/m(2); 55.4% were male and 53.8% were white. The difference in least squares (LS) mean (SE) change in HbA(1c) between the colesevelam group and the placebo group was -0.5% (0.18) (P = 0.007). In subjects with a baseline HbAIc > or = 8.0%, the difference in LS mean change in HbA(1c) was -1.0% (0.27) (P = 0.002). Relative to placebo, colesevelam treatment was associated with reductions in levels of fructosamine (-29.0 [10.9] pmol/L; P = 0.011) and postprandial glucose (-31.5 [13.6] mg/dL; P = 0.026). The mean percent change in low-density lipoprotein cholesterol was -9.6% in the colesevelam group, compared with 2.1% in the placebo group (treatment difference, -11.7% [4.2]; P = 0.007); the respective mean percent changes in total cholesterol were -4.0% and 3.4% (treatment difference, -7.3% [3.0]; P = 0.019). Colesevelam also was associated with significant decreases in the percent change in apolipoprotein B (P = 0.003) and low-density lipoprotein particle concentration (P = 0.037). The incidence of treatment-emergent adverse events (TEAEs) was similar in both groups, although treatment-related adverse events were more frequent in the colesevelam group than in the placebo group (29.0% vs 8.8%, respectively). The most frequent TEAEs in the colesevelam group were gastrointestinal disorders (22.6%), primarily constipation (19.4%), compared with an 8.8% incidence of gastrointestinal disorders (0% constipation) in the placebo group. There were no significant changes in body weight or the occurrence of hypoglycemia between treatment groups. CONCLUSIONS In these subjects with type 2 diabetes, 12 weeks of colesevelam treatment were associated with significant reductions in HbA(1c) and in fructosamine and postprandial glucose levels compared with placebo. The 2 groups had a similar adverse-event profile, with the exception of an increased incidence of constipation in the colesevelam group. These results suggest that colesevelam may improve both lipid control and glycemic control in patients with type 2 diabetes receiving oral antihyperglycemic medications.
Collapse
Affiliation(s)
- Franklin J Zieve
- The Hunter Holmes McGuire VA Medical Center, Richmond, Virginia 23249, USA.
| | | | | | | | | |
Collapse
|
28
|
Burnett JR, Huff MW. Cholesterol absorption inhibitors as a therapeutic option for hypercholesterolaemia. Expert Opin Investig Drugs 2006; 15:1337-51. [PMID: 17040195 DOI: 10.1517/13543784.15.11.1337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of cholesterol-lowering drugs (including a variety of statins, bile acid-binding resins and recently discovered inhibitors of cholesterol absorption) has expanded the options for cardiovascular prevention. Recent treatment guidelines emphasise that individuals at substantial risk for atherosclerotic coronary heart disease should meet defined targets for LDL cholesterol concentrations. Combination therapy with drugs that have different or complementary mechanisms of action is often needed to achieve lipid goals. Existing approaches to the treatment of hypercholesterolaemia are still ineffective in halting the progression of coronary artery disease in some patients despite combination therapies. Other patients are resistant to conventional drug treatment and remain at high risk for the development and progression of atherosclerotic cardiovascular disease and alternative approaches are needed. The discovery and development of ezetimibe (a novel, selective and potent cholesterol absorption inhibitor) has advanced the treatment of hypercholesterolaemia. New agents including the phytostanol preparation FM-VP4 and inhibitors of acyl coenzyme A:cholesterol acyltransferase, the apical Na(+)-dependent bile acid transporter and microsomal triglyceride transfer protein may also play a future role in combination therapy. This review focuses on the recent progress in the molecular mechanisms of intestinal cholesterol absorption and transport, and novel therapeutic approaches to inhibit the cholesterol absorption process.
Collapse
Affiliation(s)
- John R Burnett
- Royal Perth Hospital, Department of Core Clinical Pathology & Biochemistry, PathWest Laboratory Medicine WA, Wellington Street Campus, GPO Box X2213, Perth, WA 6847, Australia.
| | | |
Collapse
|