1
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
2
|
Wadhwa R, Yang S, Meidinna HN, Sari AN, Bhargava P, Kaul SC. Mixtures of Three Mortaparibs with Enhanced Anticancer, Anti-Migration, and Antistress Activities: Molecular Characterization in p53-Null Cancer Cells. Cancers (Basel) 2024; 16:2239. [PMID: 38927944 PMCID: PMC11202144 DOI: 10.3390/cancers16122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Mortalin, a member of the Hsp70 family of proteins, is commonly enriched in many types of cancers. It promotes carcinogenesis and metastasis in multiple ways of which the inactivation of the tumor suppressor activity of p53 has been firmly established. The downregulation of mortalin and/or disruption of mortalin-p53 interactions by small molecules has earlier been shown to activate p53 function yielding growth arrest/apoptosis in cancer cells. Mortaparibs (Mortaparib, MortaparibPlus, and MortaparibMild) are chemical inhibitors of mortalin isolated by cell-based two-way screening involving (i) a shift in the mortalin staining pattern from perinuclear (characteristics of cancer cells) to pancytoplasmic (characteristics of normal cells) and (ii) the nuclear enrichment of p53. They have similar structures and also cause the inhibition of PARP1 and hence were named Mortaparibs. In the present study, we report the anticancer and anti-metastasis activity of MortaparibMild (4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine) in p53-null cells. By extensive molecular analyses of cell proliferation, growth arrest, and apoptosis pathways, we demonstrate that although it causes relatively weaker cytotoxicity compared to Mortaparib and MortaparibPlus, its lower concentrations were equally potent to inhibit cell migration. We developed combinations (called MortaparibMix-AP, MortaparibMix-AM, and MortaparibMix-AS) consisting of different ratios of three Mortaparibs for specifically enhancing their anti-proliferation, anti-migration, and antistress activities, respectively. Based on the molecular analyses of control and treated cells, we suggest that the three Mortaparibs and their mixtures may be considered for further laboratory and clinical studies validating their use for the treatment of cancer as well as prevention of its relapse and metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan
| |
Collapse
|
3
|
Wang Q, Li L, Gao X, Zhang C, Xu C, Song L, Li J, Sun X, Mao F, Wang Y. Targeting GRP75 with a Chlorpromazine Derivative Inhibits Endometrial Cancer Progression Through GRP75-IP3R-Ca 2+-AMPK Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304203. [PMID: 38342610 PMCID: PMC11022737 DOI: 10.1002/advs.202304203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/18/2024] [Indexed: 02/13/2024]
Abstract
Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Lijuan Li
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Xiaoyan Gao
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chunxue Zhang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chen Xu
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Lingyi Song
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Jian Li
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Xiao Sun
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Fei Mao
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yudong Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
4
|
Sharma A, Liu X, Chandra V, Rai R, Benbrook DM, Woo S. Pharmacodynamics of Cyclin D1 Degradation in Ovarian Cancer Xenografts with Repeated Oral SHetA2 Dosing. AAPS J 2023; 26:5. [PMID: 38087107 DOI: 10.1208/s12248-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
SHetA2 is a promising, orally active small molecule with anticancer properties that target heat shock proteins. In this study, we aimed to investigate the pharmacodynamic (PD) effects of SHetA2 using preclinical in vitro and in vivo models of ovarian cancer and establish a physiologically based pharmacokinetic (PBPK)/PD model to describe their relationships with SHetA2 concentrations in mice. We found that daily oral administration of 60 mg/kg SHetA2 for 7 days resulted in consistent plasma PK and tissue distribution, achieving tumor drug concentrations required for growth inhibition in ovarian cancer cell lines. SHetA2 effectively induced cyclin D1 degradation in cancer cells in a dose-dependent manner, with up to 70% reduction observed and an IC50 of 4~5 µM. We identified cyclin D1 as a potential PD marker for SHetA2, based on a well-correlated time profile with SHetA2 PK. Additionally, we examined circulating levels of ccK18 as a non-invasive PD marker for SHetA2-induced apoptotic activity and found it unsuitable due to high variability. Using a PBPK/PD model, we depicted SHetA2 levels and their promoting effects on cyclin D1 degradation in tumors following multiple oral doses. The model suggested that twice-daily dosing regimens would be effective for sustained reduction in cyclin D1 protein. Our study provides valuable insights into the PK/PD of SHetA2, facilitating future clinical trial designs and dosing schedules.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., Oklahoma City, Oklahoma, 73117-1200, USA
| | - Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Vishal Chandra
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Rajani Rai
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
5
|
Shankaranarayana AH, Meduri B, Pujar GV, Hariharapura RC, Sethu AK, Singh M, Bidye D. Restoration of p53 functions by suppression of mortalin-p53 sequestration: an emerging target in cancer therapy. Future Med Chem 2023; 15:2087-2112. [PMID: 37877348 DOI: 10.4155/fmc-2023-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 10/26/2023] Open
Abstract
Functional inactivation of wild-type p53 is a major trait of cancerous cells. In many cases, such inactivation occurs by either TP53 gene mutations or due to overexpression of p53 binding partners. This review focuses on an overexpressed p53 binding partner called mortalin, a mitochondrial heat shock protein that sequesters both wild-type and mutant p53 in malignant cells due to changes in subcellular localization. Clinical evidence suggests a drastic depletion of the overall survival time of cancer patients with high mortalin expression. Therefore, mortalin-p53 sequestration inhibitors could be game changers in improving overall survival rates. This review explores the consequences of mortalin overexpression and challenges, status and strategies for accelerating drug discovery to suppress mortalin-p53 sequestration.
Collapse
Affiliation(s)
- Akshatha Handattu Shankaranarayana
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Durgesh Bidye
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
6
|
Nitzsche B, Höpfner M, Biersack B. Synthetic Small Molecule Modulators of Hsp70 and Hsp40 Chaperones as Promising Anticancer Agents. Int J Mol Sci 2023; 24:4083. [PMID: 36835501 PMCID: PMC9964478 DOI: 10.3390/ijms24044083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.
Collapse
Affiliation(s)
- Bianca Nitzsche
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernhard Biersack
- Organische Chemie 1, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Wallis B, Bowman KR, Lu P, Lim CS. The Challenges and Prospects of p53-Based Therapies in Ovarian Cancer. Biomolecules 2023; 13:159. [PMID: 36671544 PMCID: PMC9855757 DOI: 10.3390/biom13010159] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
It has been well established that mutations in the tumor suppressor gene, p53, occur readily in a vast majority of cancer tumors, including ovarian cancer. Typically diagnosed in stages three or four, ovarian cancer is the fifth leading cause of death in women, despite accounting for only 2.5% of all female malignancies. The overall 5-year survival rate for ovarian cancer is around 47%; however, this drops to an abysmal 29% for the most common type of ovarian cancer, high-grade serous ovarian carcinoma (HGSOC). HGSOC has upwards of 96% of cases expressing mutations in p53. Therefore, wild-type (WT) p53 and p53-based therapies have been explored as treatment options via a plethora of drug delivery vehicles including nanoparticles, viruses, polymers, and liposomes. However, previous p53 therapeutics have faced many challenges, which have resulted in their limited translational success to date. This review highlights a selection of these historical p53-targeted therapeutics for ovarian cancer, why they failed, and what the future could hold for a new generation of this class of therapies.
Collapse
Affiliation(s)
| | | | | | - Carol S. Lim
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Rai R, Chandra V, Kennedy AL, Zuna RE, Benbrook DM. Distinct mechanism of cervical cancer cell death caused by the investigational new drug SHetA2. Front Oncol 2022; 12:958536. [PMID: 36203464 PMCID: PMC9531157 DOI: 10.3389/fonc.2022.958536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-targetable vulnerabilities of cancer cells include their dependence on heat shock proteins (HSPs) to support elevated mitochondrial metabolism and counteract cell death factors. The investigational new drug SHetA2 targets these vulnerabilities in ovarian and endometrial cancer cells by disrupting complexes of the mortalin HSP with its client proteins (mitochondrial support proteins, metabolic enzymes, p53) leading to mitochondrial leakage of cytochrome c and apoptosis-inducing factor (AIF), and caspase-dependent apoptosis. Our objective was to evaluate the roles of mitochondrial damage and another SHetA2-target HSP protein, cytoplasmic heat shock cognate 70 (hsc70), in the mechanism of SHetA2 killing of cervical cancer cells. Cervical cancer cells responded to SHetA2 with excessive mitophagy that did not deter AIF leakage into the cytoplasm. Then, hsc70 was unable to prevent cytoplasmic AIF nuclear translocation and promotion of DNA damage and cell death, because SHetA2 disrupted hsc70/AIF complexes. The Cancer Genome Atlas analysis found that overexpression of hsc70, but not mortalin, was associated with worse cervical cancer patient survival. Use of specific inhibitors documented that AIF and mitophagy, but not caspases, contributed to the mechanism of SHetA2-induced cell death in cervical cancer cells. As validation, excessive mitophagy and lack of caspase activation were observed in SHetA2-inhibited xenograft tumors.
Collapse
Affiliation(s)
- Rajani Rai
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Vishal Chandra
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Amy L. Kennedy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Rosemary E. Zuna
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States,*Correspondence: Doris Mangiaracina Benbrook,
| |
Collapse
|
9
|
Meidinna HN, Shefrin S, Sari AN, Zhang H, Dhanjal JK, Kaul SC, Sundar D, Wadhwa R. Identification of a new member of Mortaparib class of inhibitors that target mortalin and PARP1. Front Cell Dev Biol 2022; 10:918970. [PMID: 36172283 PMCID: PMC9510692 DOI: 10.3389/fcell.2022.918970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin, a heat shock family protein enriched in cancer cells, is known to inactivate tumor suppressor protein p53. Abrogation of mortalin-p53 interaction and reactivation of p53 has been shown to trigger growth arrest/apoptosis in cancer cells and hence, suggested to be useful in cancer therapy. In this premise, we earlier screened a chemical library to identify potential disruptors of mortalin-p53 interaction, and reported two novel synthetic small molecules (5-[1-(4-methoxyphenyl) (1,2,3,4-tetraazol-5-yl)]-4-phenylpyrimidine-2-ylamine) and (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) called Mortaparib and MortaparibPlus, respectively. These compounds were shown to possess anticancer activity that was mediated through targeting mortalin and PARP1 proteins, essential for cancer cell survival and proliferation. Here, we report characterization of the third compound, {4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine}, isolated in the same screening. Extensive computational and molecular analyses suggested that the new compound has the capability to interact with mortalin, p53, and PARP1. We provide evidence that this new compound, although required in high concentration as compared to the earlier two compounds (Mortaparib and MortaparibPlus) and hence called MortaparibMild, also downregulates mortalin and PARP1 expression and functions in multiple ways impeding cancer cell proliferation and migration characteristics. MortaparibMild is a novel candidate anticancer compound that warrants further experimental and clinical attention.
Collapse
Affiliation(s)
- Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
- *Correspondence: Durai Sundar, ; Renu Wadhwa,
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- *Correspondence: Durai Sundar, ; Renu Wadhwa,
| |
Collapse
|
10
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
11
|
Elwakeel A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front Cell Dev Biol 2022; 10:879632. [PMID: 35493098 PMCID: PMC9047732 DOI: 10.3389/fcell.2022.879632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
p53 is a transcription factor that activates the expression of a set of genes that serve as a critical barrier to oncogenesis. Inactivation of p53 is the most common characteristic in sporadic human cancers. Mortalin is a differentially sub-cellularly localized member of the heat shock protein 70 family of chaperones that has essential mitochondrial and extra-mitochondrial functions. Elevated mortalin levels in multiple cancerous tissues and tumor-derived cell lines emphasized its key role in oncogenesis. One of mortalin’s major oncogenic roles is the inactivation of p53. Mortalin binds to p53 sequestering it in the cytoplasm. Hence, p53 cannot freely shuttle to the nucleus to perform its tumor suppressor functions as a transcription factor. This protein-protein interaction was reported to be cancer-specific, hence, a selective druggable target for a rationalistic cancer therapeutic strategy. In this review article, the chronological identification of mortalin-p53 interactions is summarized, the challenges and general strategies for targeting protein-protein interactions are briefly discussed, and information about compounds that have been reported to abrogate mortalin-p53 interaction is provided. Finally, the reasons why the disruption of this druggable interaction has not yet been applied clinically are discussed.
Collapse
|
12
|
Benbrook DM. SHetA2 Attack on Mortalin and Colleagues in Cancer Therapy and Prevention. Front Cell Dev Biol 2022; 10:848682. [PMID: 35281109 PMCID: PMC8906462 DOI: 10.3389/fcell.2022.848682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Heat Shock Proteins of the 70-kDa family (HSP70s) do not cause cancer by themselves, but instead protect cells as they transform into cancer. These molecular chaperones bind numerous client proteins and utilize ATP hydrolysis to facilitate proper protein folding, formation of functional complexes and cellular localizations, or degradation of irreparably damaged proteins. Their transient upregulation by stressful situations avoids induction of programmed cell death. Continued upregulation of the mortalin, heat shock cognate (hsc70) and glucose regulated protein 78 (Grp78) support cancer development and progression by supporting pro-proliferative and metabolic functions and repressing pro-death functions of oncoproteins and tumor suppressor proteins. This review describes the discovery and development of a lead anti-cancer compound, sulfur heteroarotinoid A2 (SHetA2, NSC726189), which was originally developed to bind retinoic acid receptors, but was subsequently found to work independently of these receptors. The discovery and validation of mortalin, hsc70 and Grp78 as SHetA2 target proteins is summarized. The documented and hypothesized roles of these HSP70 proteins and their clients in the mechanism of SHetA2 inhibition of cancer without toxicity are discussed. Use of this mechanistic data to evaluate drug action in a cancer clinical trial and develop synergistic drug combinations is explained. Knowledge needed to optimize SHetA2 analogs for use in cancer therapy and prevention is proposed as future directions.
Collapse
|
13
|
Rai R, Kennedy AL, Isingizwe ZR, Javadian P, Benbrook DM. Similarities and Differences of Hsp70, hsc70, Grp78 and Mortalin as Cancer Biomarkers and Drug Targets. Cells 2021; 10:cells10112996. [PMID: 34831218 PMCID: PMC8616428 DOI: 10.3390/cells10112996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Upregulation of Heath Shock Protein 70 (HSP70) chaperones supports cancer cell survival. Their high homology causes a challenge to differentiate them in experimental or prevention and treatment strategies. The objective of this investigation was to determine similarities and differences of Hsp70, hsc70, Grp78 and Mortalin members of the HSP70 family encoded by HSPA1, HSPA8, HSPA5 and HSPA9 genes, respectively. Methods: Literature reviews were conducted using HSPA1, HSPA5, HSPA8 and HSPA9 gene or protein names or synonyms combined with biological or cancer-relevant terms. Ingenuity Pathway Analysis was used to identify and compare profiles of proteins that directly bind individual chaperones and their associated pathways. TCGA data was probed to identify associations of hsc70 with cancer patient survival. ClinicalTrials.gov was used to identify HSP70 family studies. Results: The chaperones have similar protein folding functions. Their different cellular effects are determined by co-chaperones and client proteins combined with their intra- and extra-cellular localizations. Their upregulation is associated with worse patient prognosis in multiple cancers and can stimulate tumor immune responses or drug resistance. Their inhibition selectively kills cancer over healthy cells. Conclusions: Differences in Hsp70, hsc70, Grp78 and mortalin provide opportunities to calibrate HSP70 inhibitors for individual cancers and combination therapies.
Collapse
Affiliation(s)
- Rajani Rai
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (P.J.)
| | - Amy L. Kennedy
- Pathology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Zitha Redempta Isingizwe
- Pharmaceutical Sciences Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Pouya Javadian
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (P.J.)
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology Section, Obstetrics and Gynecology Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (P.J.)
- Pathology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Pharmaceutical Sciences Department, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: ; Tel.: +1-405-271-5523
| |
Collapse
|
14
|
Chandra V, Rai R, Benbrook DM. Utility and Mechanism of SHetA2 and Paclitaxel for Treatment of Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102322. [PMID: 34066052 PMCID: PMC8150795 DOI: 10.3390/cancers13102322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Incidence and death rates for endometrial cancer are steadily rising world-wide. Endometrial cancer patients at high risk for recurrence are treated with chemotherapy, which causes significant toxicity. Molecularly targeted drugs have been found to cause less toxicity than chemotherapy. We studied a low-toxicity drug, called SHetA2, which targets three heat shock A proteins that are highly mutated in endometrial cancers. Our results demonstrated that SHetA2 inhibits endometrial cancer cells and tumors, and enhances therapeutic effects of paclitaxel without increasing toxicity. This information supports development of clinical trials to test if combining SHetA2 with paclitaxel can increase the paclitaxel therapeutic effect without increasing toxicity, or allows a lowered paclitaxel dose to achieve the same level of therapeutic effect, but with reduced toxicity. Our new knowledge about how SHetA2 works can be translated into development of biomarkers to predict with patients would most likely benefit from SHetA2-based therapy. Abstract Endometrial cancer patients with advanced disease or high recurrence risk are treated with chemotherapy. Our objective was to evaluate the utility and mechanism of a novel drug, SHetA2, alone and in combination with paclitaxel, in endometrial cancer. SHetA2 targets the HSPA chaperone proteins, Grp78, hsc70, and mortalin, which have high mutation rates in endometrial cancer. SHetA2 effects on cancerous phenotypes, mitochondria, metabolism, protein expression, mortalin/client protein complexes, and cell death were evaluated in AN3CA, Hec13b, and Ishikawa endometrial cancer cell lines, and on growth of Ishikawa xenografts. In all three cell lines, SHetA2 inhibited anchorage-independent growth, migration, invasion, and ATP production, and induced G1 cell cycle arrest, mitochondrial damage, and caspase- and apoptosis inducing factor (AIF)-mediated apoptosis. These effects were associated with altered levels of proteins involved in cell cycle regulation, mitochondrial function, protein synthesis, endoplasmic reticulum stress, and metabolism; disruption of mortalin complexes with mitochondrial and metabolism proteins; and inhibition of oxidative phosphorylation and glycolysis. SHetA2 and paclitaxel exhibited synergistic combination indices in all cell lines and exerted greater xenograft tumor growth inhibition than either drug alone. SHetA2 is active against endometrial cancer cell lines in culture and in vivo and acts synergistically with paclitaxel.
Collapse
|
15
|
Sari AN, Elwakeel A, Dhanjal JK, Kumar V, Sundar D, Kaul SC, Wadhwa R. Identification and Characterization of Mortaparib Plus-A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Cancers (Basel) 2021; 13:cancers13040835. [PMID: 33671256 PMCID: PMC7921971 DOI: 10.3390/cancers13040835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
p53 has an essential role in suppressing the carcinogenesis process by inducing cell cycle arrest/apoptosis/senescence. Mortalin/GRP75 is a member of the Hsp70 protein family that binds to p53 causing its sequestration in the cell cytoplasm. Hence, p53 cannot translocate to the nucleus to execute its canonical tumour suppression function as a transcription factor. Abrogation of mortalin-p53 interaction and subsequent reactivation of p53's tumour suppression function has been anticipated as a possible approach in developing a novel cancer therapeutic drug candidate. A chemical library was screened in a high-content screening system to identify potential mortalin-p53 interaction disruptors. By four rounds of visual assays for mortalin and p53, we identified a novel synthetic small-molecule triazole derivative (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole, henceforth named MortaparibPlus). Its activities were validated using multiple bioinformatics and experimental approaches in colorectal cancer cells possessing either wild-type (HCT116) or mutant (DLD-1) p53. Bioinformatics and computational analyses predicted the ability of MortaparibPlus to competitively prevent the interaction of mortalin with p53 as it interacted with the p53 binding site of mortalin. Immunoprecipitation analyses demonstrated the abrogation of mortalin-p53 complex formation in MortaparibPlus-treated cells that showed growth arrest and apoptosis mediated by activation of p21WAF1, or BAX and PUMA signalling, respectively. Furthermore, we demonstrate that MortaparibPlus-induced cytotoxicity to cancer cells is mediated by multiple mechanisms that included the inhibition of PARP1, up-regulation of p73, and also the down-regulation of mortalin and CARF proteins that play critical roles in carcinogenesis. MortaparibPlus is a novel multimodal candidate anticancer drug that warrants further experimental and clinical attention.
Collapse
Affiliation(s)
- Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Ahmed Elwakeel
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India; (V.K.); (D.S.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India; (V.K.); (D.S.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- Correspondence: (S.C.K.); (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence: (S.C.K.); (R.W.)
| |
Collapse
|
16
|
Kennedy AL, Rai R, Isingizwe ZR, Zhao YD, Lightfoot SA, Benbrook DM. Complementary Targeting of Rb Phosphorylation and Growth in Cervical Cancer Cell Cultures and a Xenograft Mouse Model by SHetA2 and Palbociclib. Cancers (Basel) 2020; 12:cancers12051269. [PMID: 32429557 PMCID: PMC7281234 DOI: 10.3390/cancers12051269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is caused by high-risk human papillomavirus (HPV) types and treated with conventional chemotherapy with surgery and/or radiation. HPV E6 and E7 proteins increase phosphorylation of retinoblastoma (Rb) by cyclin D1/cyclin dependent kinase (CDK)4/6 complexes. We hypothesized that cyclin D1 degradation by the SHetA2 drug in combination with palbociclib inhibition of CDK4/6 activity synergistically reduces phosphorylated Rb (phospho-Rb) and inhibits cervical cancer growth. The effects of these drugs, alone, and in combination, were evaluated in SiHa and CaSki HPV-positive and C33A HPV-negative cervical cancer cell lines using cell culture, western blots and ELISA, and in a SiHa xenograft model. Endpoints were compared by isobolograms, ANOVA, and Chi-Square. In all cell lines, combination indexes documented synergistic interaction of SHetA2 and palbociclib in association SHetA2 reduction of cyclin D1 and phospho-Rb, palbociclib reduction of phospho-Rb, and enhanced phospho-Rb reduction upon drug combination. Both drugs significantly reduced phospho-Rb and growth of SiHa xenograft tumors as single agents and acted additively when combined, with no evidence of toxicity. Dilated CD31-negative blood vessels adjacent to, or within, areas of necrosis and apoptosis were observed in all drug-treated tumors. These results justify development of the SHetA2 and palbociclib combination for targeting phospho-Rb in cervical cancer treatment.
Collapse
Affiliation(s)
- Amy L. Kennedy
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rajani Rai
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Zitha Redempta Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Yan Daniel Zhao
- Department of Biostatistics and Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Stanley A. Lightfoot
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris M. Benbrook
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Biostatistics and Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence:
| |
Collapse
|
17
|
Sharma A, Li M, Thavathiru E, Ibrahim M, Garcia-Contreras L, Benbrook DM, Woo S. Physiologically Based Pharmacokinetic Modeling and Tissue Distribution Characteristics of SHetA2 in Tumor-Bearing Mice. AAPS JOURNAL 2020; 22:51. [PMID: 32086622 DOI: 10.1208/s12248-020-0421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
The orally available novel small molecule SHetA2 is the lead sulfur-containing heteroarotinoid that selectively inhibits cancer cells over normal cells, and is currently under clinical development for anticancer treatment and cancer prevention. The objective of this study was to assess and characterize the tissue distribution of SHetA2 in tumor-bearing mice by developing a physiologically based pharmacokinetic (PBPK) model. An orthotopic SKOV3 ovarian cancer xenograft mouse model was used to most accurately mimic the ovarian cancer tumor microenvironment in the peritoneal cavity. SHetA2 concentrations in plasma and 14 different tissues were measured at various time points after a single intravenous dose of 10 mg/kg and oral dose of 60 mg/kg, and these data were used to develop a whole-body PBPK model. SHetA2 exhibited a multi-exponential plasma concentration decline with an elimination half-life of 4.5 h. Rapid and extensive tissue distribution, which was best described by a perfusion rate-limited model, was observed with the tissue-to-plasma partition coefficients (kp = 1.4-21.2). The PBPK modeling estimated the systemic clearance (76.4 mL/h) from circulation as a main elimination pathway of SHetA2. It also indicated that the amount absorbed into intestine was the major determining factor for the oral bioavailability (22.3%), while the first-pass loss from liver and intestine contributed minimally (< 1%). Our results provide an insight into SHetA2 tissue distribution characteristics. The developed PBPK model can be used to predict the drug exposure at tumors or local sites of action for different dosing regimens and scaled up to humans to correlate with efficacy.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Elangovan Thavathiru
- Department of Obstetrics and Gynecology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mariam Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
18
|
Ramraj SK, Elayapillai SP, Pelikan RC, Zhao YD, Isingizwe ZR, Kennedy AL, Lightfoot SA, Benbrook DM. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53. Int J Cancer 2020; 147:1086-1097. [PMID: 31845320 DOI: 10.1002/ijc.32830] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Current ovarian cancer maintenance therapy is limited by toxicity and no proven impact on overall survival. To study a maintenance strategy targeted at missense mutant p53, we hypothesized that the release of mutant p53 from mortalin inhibition by the SHetA2 drug combined with reactivation of mutant p53 with the PRIMA-1MET drug inhibits growth and tumor establishment synergistically in a mutant-p53 dependent manner. The Cancer Genome Atlas (TCGA) data and serous ovarian tumors were evaluated for TP53 and HSPA9/mortalin status. SHetA2 and PRIMA-1MET were tested in ovarian cancer cell lines and fallopian tube secretory epithelial cells using isobolograms, fluorescent cytometry, Western blots and ELISAs. Drugs were administered to mice after peritoneal injection of MESOV mutant p53 ovarian cancer cells and prior to tumor establishment, which was evaluated by logistic regression. Fifty-eight percent of TP53 mutations were missense and there were no mortalin mutations in TCGA high-grade serous ovarian cancers. Mortalin levels were sequentially increased in serous benign, borderline and carcinoma tumors. SHetA2 caused p53 nuclear and mitochondrial accumulation in cancer, but not in healthy, cells. Endogenous or exogenous mutant p53 increased SHetA2 resistance. PRIMA-1MET decreased this resistance and interacted synergistically with SHetA2 in mutant and wild type p53-expressing cell lines in association with elevated reactive oxygen species/ATP ratios. Tumor-free rates in animals were 0% (controls), 25% (PRIMA1MET ), 42% (SHetA2) and 67% (combination). SHetA2 (p = 0.004) and PRIMA1MET (p = 0.048) functioned additively in preventing tumor development with no observed toxicity. These results justify the development of SHetA2 and PRIMA-1MET alone and in combination for ovarian cancer maintenance therapy.
Collapse
Affiliation(s)
- Satish K Ramraj
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sugantha P Elayapillai
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Yan D Zhao
- Biostatistics & Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zitha R Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Amy L Kennedy
- Department of Pathology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Stanley A Lightfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Doris M Benbrook
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Obstetrics and Gynecologic, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
19
|
Tetrahydroquinoline units in flexible heteroarotinoids (Flex-Hets) convey anti-cancer properties in A2780 ovarian cancer cells. Bioorg Med Chem 2019; 28:115244. [PMID: 31831296 DOI: 10.1016/j.bmc.2019.115244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023]
Abstract
SHetA2 (NSC 721689), our lead Flex-Het anti-cancer agent, consists of a thiochroman (Ring A) and a 4-nitrophenyl (Ring B) linked by a thiourea bridge. In this work, several series of new analogs having a tetrahydroquinoline (THQ, Ring A) unit connected by a urea or thiourea linker to a 4-substituted phenyl (Ring B) have been prepared and evaluated relative to SHetA2 in terms of binding affinity with mortalin and inhibition of A2780 ovarian cancer cells. Six of the derivatives equaled or exceeded the efficacy shown by SHetA2. Compounds 1a-d (series 1), lacking a methyl on the Ring A nitrogen and the gem-dimethyls on the adjacent carbon, showed only weak activity. Salt 2, the quaternized N,N-dimethyl iodide salt analog of 1a, also possessed very modest growth inhibition in the cell line studied. Series 3 compounds, which had a C3 ketone and an N-methyl replacing the sulfur in Ring A, were most successful. Compound 3a [Ring A = 1,2,2,4,4-pentamethyl-3-oxo-1,2,3,4-tetrahydroquinolin-6-yl; urea linker; Ring B = 4-nitrophenyl] had slightly lower potency (IC50 3.8 μM), but better efficacy (94.8%) than SHetA2 (IC50 3.17 μM, efficacy 84.3%). In addition, 3c and 3d [urea and thiourea linkers, respectively; Ring B = 4-(trifluoromethyl)phenyl] and 3e and 3f [urea and thiourea linkers, respectively; Ring B = 4-(trifluoromethoxy)phenyl] were also evaluated since these agents possessed electron-withdrawing groups with H-bonding capability. All displayed good activity. Compounds 3c and 3e showed improvement in both potency and efficacy compared to SHetA2. In general, when the linker group between Rings A and B was a urea, efficacy values slightly exceeded those with a thiourea linker in the carbonyl-containing THQ systems 3a-g. In contrast, when Ring A possessed the 1,2,2,4,4-pentamethyl-3-hydroxytetrahydroquinolin-6-yl unit (4a-f, series 4), very modest potency and efficacy was observed. Model compound 5, an exact N-methyl THQ analog of SHetA2, demonstrated less potency (IC50 4.5 μM), but improved efficacy (91.7%). Modeling studies were performed to rationalize the observed results.
Collapse
|
20
|
Ginn E, Baek J, Zou H, Fallatah MMJ, Liu S, Sevigny MB, Louie M. Enantiomer of the novel flexible heteroarotinoid, SL-1-09, blocks cell cycle progression in breast cancer cells. Eur J Pharmacol 2019; 862:172634. [PMID: 31494077 DOI: 10.1016/j.ejphar.2019.172634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
Flexible heteroarotinoids (Flex-Hets) are compounds with promising anti-cancer activities. SHetA2, a first-generation Flex-Het, has been shown to inhibit the growth of cervical, head and neck, kidney, lung, ovarian, prostate, and breast cancers. However, SHetA2's high lipophilicity, limited selectivity, low oral bioavailability, and complicated synthesis has led to the development of second-generation compounds, such as 1-(1-(naphthalen-1-yl)ethyl)-3-(4-nitrophenyl) thiourea or SL-1-09. Results from our lab show that SL-1-09 exhibits anti-cancer activities against ERα+ and ERα- breast cancer cells at micromolar concentrations. SL-1-09 is a mixture of two enantiomers, R and S. The objective of this study was to further analyze these enantiomers to determine their individual anti-cancer activities. Cell cycle analysis demonstrated that the percentage of cells in S-phase is reduced significantly when breast cancer cell lines MCF-7, T47D and MDA-MB-453 cells are treated with 5.0 μM of the S enantiomer. Consistent with this finding, treatment of these cells with the S enantiomer resulted in lower expression levels of cell cycle proteins. Overall, our data indicate that the S enantiomer shows greater growth inhibitory effects than the R form against ERα+ (MCF7 and T47D) and ERα- (MDA-MB-453) breast cancer cells, suggesting that the activity observed in SL-1-09 is most likely due to the ability of the S enantiomer to block cell cycle progression.
Collapse
Affiliation(s)
- Emily Ginn
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Jihyun Baek
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Hongye Zou
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maryam M J Fallatah
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Shengquan Liu
- College of Pharmacy, Touro University-California, Vallejo, CA, 94592, USA
| | - Mary B Sevigny
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maggie Louie
- Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA.
| |
Collapse
|
21
|
Nammalwar B, Bunce RA, Berlin KD, Benbrook DM, Toal C. Synthesis and biological evaluation of SHetA2 (NSC-721689) analogs against the ovarian cancer cell line A2780. Eur J Med Chem 2019; 170:16-27. [DOI: 10.1016/j.ejmech.2019.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/13/2023]
|
22
|
Park SH, Baek KH, Shin I, Shin I. Subcellular Hsp70 Inhibitors Promote Cancer Cell Death via Different Mechanisms. Cell Chem Biol 2018; 25:1242-1254.e8. [DOI: 10.1016/j.chembiol.2018.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
23
|
Activity of oxygen-versus sulfur-containing analogs of the Flex-Het anticancer agent SHetA2. Eur J Med Chem 2018; 158:720-732. [DOI: 10.1016/j.ejmech.2018.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022]
|
24
|
Sharma A, Benbrook DM, Woo S. Pharmacokinetics and interspecies scaling of a novel, orally-bioavailable anti-cancer drug, SHetA2. PLoS One 2018; 13:e0194046. [PMID: 29634717 PMCID: PMC5892888 DOI: 10.1371/journal.pone.0194046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/25/2018] [Indexed: 01/08/2023] Open
Abstract
SHetA2 is a small molecule drug with promising cancer prevention and therapeutic activity and a high preclinical safety profile. The study objectives were to perform interspecies scaling and pharmacokinetic (PK) modeling of SHetA2 for human PK prediction. The PK data obtained from mice, rats, and dogs after intravenous and oral doses were used for simultaneous fitting to PK models. The disposition of SHetA2 was best described by a two-compartment model. The absorption kinetics was well characterized with a first-order absorption model for mice and rats, and a gastrointestinal transit model for dogs. Oral administration of SHetA2 showed a relatively fast absorption in mice, prolonged absorption (i.e., flip-flop kinetics) toward high doses in rats, and an early peak followed by a secondary peak at high doses in dogs. The oral bioavailability was 17.7-19.5% at 20-60 mg/kg doses in mice, <1.6% at 100-2000 mg/kg in rats, and 11.2% at 100 mg/kg decreasing to 3.45% at 400 mg/kg and 1.11% at 1500 mg/kg in dogs. The disposition parameters were well correlated with the body weight for all species using the allometric equation, which predicted values of CL (17.3 L/h), V1 (36.2 L), V2 (68.5 L) and CLD (15.2 L/h) for a 70-kg human. The oral absorption rate and bioavailability of SHetA2 was highly dependent on species, doses, formulations, and possibly other factors. The limited bioavailability at high doses was taken into consideration for the suggested first-in-human dose, which was much lower than the dose estimated based on toxicology studies. In summary, the present study provided the PK model for SHetA2 that depicted the disposition and absorption kinetics in preclinical species, and computational tools for human PK prediction.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
25
|
Ramraj SK, Smith KM, Janakiram NB, Toal C, Raman A, Benbrook DM. Correlation of clinical data with fallopian tube specimen immune cells and tissue culture capacity. Tissue Cell 2018; 52:57-64. [PMID: 29857829 DOI: 10.1016/j.tice.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Human fallopian tube fimbria secretory epithelial cells (hFTSECs) are considered an origin of ovarian cancer and methods for their culture from fallopian tube specimens have been reported. Our objective was to determine whether characteristics of the donors or surgeries were associated with the capacities of fimbria specimens to generate hFTSEC cultures or their immune profiles. There were no surgical complications attributable to fallopian tube removal. Attempts to establish primary hFTSEC cultures were successful in 37 of 55 specimens (67%). Success rates did not differ significantly between specimens grouped by patient or surgery characteristics. Established cultures could be revived after cryopreservation and none became contaminated with microorganisms. Two cultures evaluated for long term growth senesced between passages 10 and 15. M1 macrophages were the predominant cell type, while all other immune cells were present at much lower percentages. IL-10 and TGF-β exhibited opposing trends with M1 and M2 macrophages. Plasma IL-10 levels exhibited significant positive correlation with patient age. In conclusion, fallopian tube fimbria specimens exhibit a pro-inflammatory phenotype and can be used to provide a source of hFTSECs that can be cultured for a limited time regardless of the donor patient age or race, or the type of surgery performed.
Collapse
Affiliation(s)
- Satish Kumar Ramraj
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC1270, Oklahoma City, OK, 73104, United States
| | - Katie M Smith
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd Suite 2400, Oklahoma City, OK, 73104, United States
| | - Naveena B Janakiram
- Department of Hematologic Oncology, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC, 1205, Oklahoma City, OK, 73104, United States
| | - Coralee Toal
- University of Oklahoma Medical School, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States
| | - Ankita Raman
- Department of OBGYN, University of Nevada, Las Vegas, NV, 89102, United States
| | - Doris Mangiaracina Benbrook
- Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC1270, Oklahoma City, OK, 73104, United States; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd Suite 2400, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
26
|
Benbrook DM, Janakiram NB, Chandra V, Pathuri G, Madka V, Stratton NC, Masamha CP, Farnsworth CN, Garcia-Contreras L, Hatipoglu MK, Lighfoot S, Rao CV. Development of a dietary formulation of the SHetA2 chemoprevention drug for mice. Invest New Drugs 2017; 36:561-570. [PMID: 29273857 PMCID: PMC6014882 DOI: 10.1007/s10637-017-0550-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Development of cancer chemoprevention compounds requires enhanced consideration for toxicity and route of administration because the target population is healthy. The small molecule drug, SHetA2 (NSC 726189), exhibited in vivo chemoprevention activity and lack of toxicity when administered by oral gavage. Our objective was to determine if a dietary formulation of SHetA2 could achieve effective tissue drug levels without toxicity. C57bl/6 J mice were monitored on modified American Institute of Nutrition (AIN)76A diet mixed with SHetA2 in a 3:1 ratio with Kolliphor HS15, a self-emulsifying drug delivery system (SEDDS) to deliver 37.5, 62.5, 125, 187 or 250 mg SHetA2/kg/day. Blood and tissues were evaluated after 1, 3 and 6 weeks. The 187 mg/kg/day dose was identified as optimal based on achievement of maximum blood and tissue drug levels in the effective micromolar range without evidence of toxicity. The 250 mg/kg/day group exhibited lower drug levels and the highest intestinal drug content suggesting that an upper limit of intestinal absorption had been surpassed. Only this highest dose resulted in liver and kidney function tests that were outside of the normal range, and significant reduction of cyclin D1 protein in normal cervical tissue. SHetA2 reduced cyclin D1 to greater extents in cancer compared to non-cancer cell cultures. Given this differential effect, optimal chemoprevention without toxicity would be expected to occur at doses that reduced cyclin D1 in neoplastic, but not in normal tissues. These findings support further development of SHetA2 as a chemoprevention agent and potential food additive.
Collapse
Affiliation(s)
- Doris M Benbrook
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1217A, Oklahoma City, OK, 73104, USA. .,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,VA Medical Center, Oklahoma City, OK, 73104, USA
| | - Vishal Chandra
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1217A, Oklahoma City, OK, 73104, USA.,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Nicole C Stratton
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Chioniso P Masamha
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 1217A, Oklahoma City, OK, 73104, USA.,Butler University, 4600 Sunset Avenue, Indianapolis, IN, 46208, USA
| | | | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 1110 N. Stonewall, Oklahoma City, OK, 73117, USA
| | - Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, College of Pharmacy, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 1110 N. Stonewall, Oklahoma City, OK, 73117, USA
| | - Stan Lighfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,Hematologic Oncology Section, College of Medicine, Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St., Oklahoma City, OK, 73104, USA.,VA Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
27
|
Wright KD, Staruschenko A, Sorokin A. Role of adaptor protein p66Shc in renal pathologies. Am J Physiol Renal Physiol 2017; 314:F143-F153. [PMID: 28978535 DOI: 10.1152/ajprenal.00414.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p66Shc is one of the three adaptor proteins encoded by the Shc1 gene, which are expressed in many organs, including the kidney. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by p66Shc. The central goal of this review article is to summarize recent findings on p66Shc and the role it plays in kidney physiology and pathology. This article provides a review of the various mechanisms whereby p66Shc has been shown to function within the kidney through a wide range of actions. The mitochondrial and cytoplasmic signaling of p66Shc, as it relates to production of reactive oxygen species (ROS) and renal pathologies, is further discussed.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
28
|
Di Lisa F, Giorgio M, Ferdinandy P, Schulz R. New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol 2017; 174:1690-1703. [PMID: 26990284 PMCID: PMC5446581 DOI: 10.1111/bph.13478] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/13/2022] Open
Abstract
Although reactive oxygen species (ROS) act as crucial factors in the onset and progression of a wide array of diseases, they are also involved in numerous signalling pathways related to cell metabolism, growth and survival. ROS are produced at various cellular sites, and it is generally agreed that mitochondria generate the largest amount, especially those in cardiomyocytes. However, the identification of the most relevant sites within mitochondria, the interaction among the various sources, and the events responsible for the increase in ROS formation under pathological conditions are still highly debated, and far from being clarified. Here, we review the information linking the adaptor protein p66Shc with cardiac injury induced by ischaemia and reperfusion (I/R), including the contribution of risk factors, such as metabolic syndrome and ageing. In response to several stimuli, p66Shc migrates into mitochondria where it catalyses electron transfer from cytochrome c to oxygen resulting in hydrogen peroxide formation. Deletion of p66Shc has been shown to reduce I/R injury as well as vascular abnormalities associated with diabetes and ageing. However, p66Shc-induced ROS formation is also involved in insulin signalling and might contribute to self-endogenous defenses against mild I/R injury. In addition to its role in physiological and pathological conditions, we discuss compounds and conditions that can modulate the expression and activity of p66Shc. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Fabio Di Lisa
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaPadovaItaly
| | - Marco Giorgio
- Department of Experimental OncologyInstitute of OncologyMilanItaly
| | - Peter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Rainer Schulz
- Institut für PhysiologieJustus‐Liebig Universität GiessenGiessenGermany
| |
Collapse
|
29
|
Sharma A, Thavathiru E, Benbrook DM, Woo S. Bioanalytical method development and validation of HPLCUV assay for the quantification of SHetA2 in mouse and human plasma: Application to pharmacokinetics study. ACTA ACUST UNITED AC 2017; 6. [PMID: 29708233 PMCID: PMC5922436 DOI: 10.7243/2050-120x-6-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background SHetA2 is an oral anticancer agent being investigated for cancer
treatment and prevention. The aim of this study was to develop and validate
a simple, cost-effective, and sensitive HPLC-UV method for the
quantification of SHetA2 in biological samples and to apply the method to
pharmacokinetic studies of the drug. Methods Sample preparation for mouse and human plasmas involved liquid-liquid
precipitation and extraction using chilled acetonitrile with 2,
3-Diphenylquinoxaline as an internal standard. The separation of SHetA2 and
internal standard was achieved via Waters XBridge™ BEH 130 C18 (3.5
μm, 2.1×150 mm) column coupled with a Waters
XBridge™ C-18 (3.5 μm, 2.1×10 mm) guard column using
65% v/v acetonitrile: distilled water as a mobile phase in an
isocratic mode with a flow rate of 0.18 ml/min. The analytes were eluted at
a detection wavelength of 341 nm at a column temperature of
25°C. Results The method was validated across a range of 5-1000 ng/ml for SHetA2 in
plasma, with a lower limit of quantification of 5 ng/ml. The method showed
high recovery in human (79.9-81.8%) and mouse (95.4-109.2%)
plasma with no matrix effect. The intra- and inter-day accuracy and
precision studies demonstrated that the method was specific, sensitive, and
reliable. Stability studies showed that SHetA2 is stable for 20 h
postoperatively in the auto sampler, and for six weeks at -80°C in
plasma. Repetitive freezing and thawing may be avoided by preparing the
aliquots and storing them at -80°C. The developed method was
successfully applied to study the plasma pharmacokinetics of SHetA2 in
tumor-bearing nude mice after intravenous and oral administration. Conclusion A novel method for quantifying SHetA2 in mouse and human plasmas has
been validated and is being applied for pharmacokinetic evaluation of SHetA2
in tumor-bearing mice. The developed method will be utilized for the
quantification of SHetA2 in clinical studies.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave. CPB331, Oklahoma City, Oklahoma 73117-1200, USA
| | - Elangovan Thavathiru
- Department of Obstetrics and Gynecology, Stephenson Cancer Center (SCC), University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma 73104, USA
| | - Doris Mangiaracina Benbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave. CPB331, Oklahoma City, Oklahoma 73117-1200, USA.,Department of Obstetrics and Gynecology, Stephenson Cancer Center (SCC), University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma 73104, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave. CPB331, Oklahoma City, Oklahoma 73117-1200, USA
| |
Collapse
|
30
|
Na Y, Kaul SC, Ryu J, Lee JS, Ahn HM, Kaul Z, Kalra RS, Li L, Widodo N, Yun CO, Wadhwa R. Stress Chaperone Mortalin Contributes to Epithelial-to-Mesenchymal Transition and Cancer Metastasis. Cancer Res 2016; 76:2754-2765. [DOI: 10.1158/0008-5472.can-15-2704] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
The second annual conference of International ovarian cancer consortium and the symposium on tumor microenvironment and therapeutic resistance. Genes Cancer 2016. [DOI: 10.18632/genesandcancer.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
The second annual conference of International ovarian cancer consortium and the symposium on tumor microenvironment and therapeutic resistance. Genes Cancer 2016. [PMCID: PMC4773701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
The second Annual Meeting of the International Ovarian Cancer Consortium (IOCC) was held in conjunction with the Symposium on Tumor Microenvironment and Therapeutic Resistance at the Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, and USA. A brief welcoming event along with the banquet on Aug 16th was followed by the eight thematic scientific sessions from August 16 to 18, 2015. Forty-three lectures, organized in eight sessions, were discussed in front of an audience of more than hundred attendees. Emphasis was put on oncogene signaling in cancer genesis and progression, new approaches in Precision Medicine and therapy of ovarian cancer, the role of tumor microenvironment in carcinogenesis, and preventive/curative potential of natural products. In this meeting-report, we highlight the findings and the perspectives in cancer biology and therapeutic strategies that emerged during the conference.
Collapse
|
33
|
Gnanasekaran KK, Benbrook DM, Nammalwar B, Thavathiru E, Bunce RA, Berlin KD. Synthesis and evaluation of second generation Flex-Het scaffolds against the human ovarian cancer A2780 cell line. Eur J Med Chem 2015; 96:209-17. [DOI: 10.1016/j.ejmech.2015.03.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
|
34
|
Bhat SS, Anand D, Khanday FA. p66Shc as a switch in bringing about contrasting responses in cell growth: implications on cell proliferation and apoptosis. Mol Cancer 2015; 14:76. [PMID: 25890053 PMCID: PMC4421994 DOI: 10.1186/s12943-015-0354-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/29/2015] [Indexed: 01/19/2023] Open
Abstract
p66Shc, a member of the ShcA (Src homologous- collagen homologue) adaptor protein family, is one of the three isoforms of this family along with p46Shc and p52Shc. p66Shc, a 66 kDa protein is different from the other isoforms of the ShcA family. p66Shc is the longest isoform of the ShcA family. p66Shc has an additional CH domain at the N-terminal, called the CH2 domain, which is not not present in the other isoforms. This CH2 domain contains a very crucial S36 residue which is phosphorylated in response to oxidative stress and plays a role in apoptosis. Whereas p52Shc and p46Shc are ubiquitously expressed, p66Shc shows constrained expression. This adaptor protein has been shown to be involved in mediating and executing the post effects of oxidative stress and increasing body of evidence is pinpointing to its role in carcinogenesis as well. It shows proto-oncogenic as well as pro-apoptotic properties. This multitasking protein is involved in regulating different networks of cell signaling. On one hand it shows an increased expression profile in different cancers, has a positive role in cell proliferation and migration, whereas on the other hand it promotes apoptosis under oxidative stress conditions by acting as a sensor of ROS (Reactive Oxygen Species). This paradoxical role of p66Shc could be attributed to its involvement in ROS production, as ROS is known to both induce cell proliferation as well as apoptosis. p66Shc by regulating intracellular ROS levels plays a crucial role in regulating longevity and cell senescence. These multi-faceted properties of p66Shc make it a perfect candidate protein for further studies in various cancers and aging related diseases. p66Shc can be targeted in terms of it being used as a possible therapeutic target in various diseases. This review focuses on p66Shc and highlights its role in promoting apoptosis via different cell signaling networks, its role in cell proliferation, along with its presence and role in different forms of cancers.
Collapse
Affiliation(s)
- Sahar S Bhat
- Department Of Biotechnology, University of Kashmir, Srinagar, 190006, Kashmir, India.
| | - Deepak Anand
- Department of Life Sciences, King Fahad University of Petroleum and Minerals, Bld: 7, Room: 129, Dhahran, 31261, Kingdom of Saudi Arabia.
| | - Firdous A Khanday
- Department of Life Sciences, King Fahad University of Petroleum and Minerals, Bld: 7, Room: 129, Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|