1
|
Li H, Zheng L, Zhang X, Yu X, Zhong G, Chen X, Chen X, Chen L. SH3 domain‑binding glutamic acid‑rich protein‑like 3 is associated with hyperglycemia and a poor outcome in Epstein‑Barr virus‑negative gastric carcinoma. Oncol Lett 2025; 29:8. [PMID: 39492939 PMCID: PMC11526421 DOI: 10.3892/ol.2024.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024] Open
Abstract
SH3 domain-binding glutamic acid-rich protein-like 3 (SH3BGRL3) is involved in several human cancers. However, its relationship with gastric cancer (GC) remains elusive. Multiple online bioinformatic tools were used to evaluate the messenger (m)RNA expression levels of SH3BGRL3 in GC using data from The Cancer Genome Atlas and Gene Expression Omnibus databases. Reverse transcription-quantitative PCR and tissue microarray-based immunohistochemistry were performed to assess SH3BGRL3 expression in relation to clinicopathological parameters and outcomes in patients with GC. Significant differentially expressed genes (DEGs) of SH3BGRL3 were enriched and visualized. Furthermore, associations between the expression of SH3BGRL3 and the infiltration of immune cells were explored. SH3BGRL3 exhibited aberrant expression in tumor tissues compared with adjacent normal tissues at the mRNA and protein expression levels, especially in Epstein-Barr virus-negative GC (EBVnGC). Higher SH3BGRL3 expression was significantly associated with increasing tumor-node-metastasis staging, tumor budding, perineural invasion, EGFR expression, and a notably higher preoperative blood glucose concentration in clinical specimens. Multivariate analysis revealed that higher SH3BGRL3 expression was an independent adverse prognostic factor for the overall survival of patients with EBVnGC (hazard ratio, 1.666; P=0.018). Furthermore, the stratified analysis revealed that the SH3BGRL3 phenotype could help to refine prognosis in patients. The C-index of the nomogram was 0.740 when combining SH3BGRL3 with other clinicopathological parameters, which indicated a good model for clinical follow-up decisions. Gene functional enrichment analysis also revealed that the DEGs of SH3BGRL3 were mainly enriched in regulating ATP metabolism, ATP synthesis, oxidative phosphorylation and the electron transport chain in GC. Moreover, a higher SH3BGRL3 expression was significantly positively correlated with the infiltrating macrophages in GC. In conclusion, SH3BGRL3 is upregulated in GC, particularly in EBVnGC. Higher SH3BGRL3 expression is closely associated with hyperglycemia and poor outcomes in patients with EBVnGC, suggesting its potential as a biomarker and prognostic predictor.
Collapse
Affiliation(s)
- Houqiang Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lanqing Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Nursing Department, Fujian Provincial Hospital, Fuzhou, Fujian 35001, P.R. China
| | - Xia Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xunbin Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Guodong Zhong
- Department of Pathology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian 350003, P.R. China
| | - Xiaoyan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xin Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
2
|
Ghiglione N, Abbo D, Bushunova A, Costamagna A, Porporato PE, Martini M. Metabolic plasticity in pancreatic cancer: The mitochondrial connection. Mol Metab 2024; 92:102089. [PMID: 39736443 DOI: 10.1016/j.molmet.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity in pancreatic cancer significantly impacts patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. SCOPE OF THE REVIEW This review explores the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We discuss the significance of mitophagy dysregulation in PDAC pathogenesis, emphasizing its influence on treatment responses and prognosis. Furthermore, we analyze the impact of mitochondrial dynamics alterations, including fission and fusion processes, on PDAC progression and tumorigenesis. MAJOR CONCLUSION Targeting mitochondrial metabolism holds promise for advancing PDAC therapeutics. Ongoing clinical trials underscore the therapeutic potential of modulating key regulators of mitochondrial dynamics and mitophagy. Despite inherent challenges, these approaches offer diverse strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Noemi Ghiglione
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Anastasia Bushunova
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy.
| |
Collapse
|
3
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2024:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
5
|
Zhong Q, Li D, Yang XP. Progress in antitumor mechanisms and applications of phenformin (Review). Oncol Rep 2024; 52:151. [PMID: 39301645 PMCID: PMC11421015 DOI: 10.3892/or.2024.8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Phenformin, a biguanide compound, has attracted increased attention due to its prominent antitumor activity. As a multi‑target agent, the antitumor effects of phenformin involve a wide range of factors, including inhibition of mitochondrial complex I, activation of AMP‑activated protein kinase, impact on the tumor microenvironment, suppression of cancer stem cells and others. In addition, phenformin has been shown to markedly augment the effectiveness of various clinical treatment methods, including radiotherapy, chemotherapy, targeted therapy and immunotherapy. It is noteworthy that breakthrough progress has been made in the treatment of cancer with phenformin with application in clinical trials for the treatment of melanoma. Phenformin not only reduces the lesion area of patients, but also enhances the efficacy of dalafinib/trimetinib. In the present review, the novel breakthroughs in the antitumor effects and mechanisms of phenformin were discussed. In addition, the current review focuses on the clinical development value of phenformin, striving to provide new insights into the future research direction of phenformin in the field of tumor treatment.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Ping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
6
|
Shen Y, Yang Y, Wang Z, Lin W, Feng N, Shi M, Liu J, Ma W. Coptisine exerts anti-tumour effects in triple-negative breast cancer by targeting mitochondrial complex I. Br J Pharmacol 2024; 181:4262-4278. [PMID: 38982680 DOI: 10.1111/bph.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Triple-negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC. EXPERIMENTAL APPROACH In this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I-targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine-induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model. KEY RESULTS We demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models. CONCLUSION AND IMPLICATIONS Altogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.
Collapse
Affiliation(s)
- Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - You Yang
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiachen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
7
|
Freeland J, Muñoz M, O’Donnell E, Langerman J, Darrow M, Bergonio J, Suarez-Navarro J, Thorpe S, Canter R, Randall RL, Plath K, Carraway KL, Witte ON, Graeber TG, Carr-Ascher JR. Genetic Screen in a Preclinical Model of Sarcoma Development Defines Drivers and Therapeutic Vulnerabilities. Clin Cancer Res 2024; 30:4957-4973. [PMID: 39177582 PMCID: PMC11530313 DOI: 10.1158/1078-0432.ccr-24-1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE High-grade complex karyotype sarcomas are a heterogeneous group of tumors with a uniformly poor prognosis. Within complex karyotype sarcomas, there are innumerable genetic changes but identifying those that are clinically relevant has been challenging. EXPERIMENTAL DESIGN To address this, we utilized a pooled genetic screening approach, informed by The Cancer Genome Atlas (TCGA) data, to identify key drivers and modifiers of sarcoma development that were validated in vivo. RESULTS YAP1 and wild-type KRAS were validated as drivers and transformed human mesenchymal stem cells into two distinct sarcoma subtypes, undifferentiated pleomorphic sarcoma and myxofibrosarcoma, respectively. A subset of tumors driven by CDK4 and PIK3CA reflected leiomyosarcoma and osteosarcoma demonstrating the plasticity of this approach and the potential to investigate sarcoma subtype heterogeneity. All generated tumors histologically reflected human sarcomas and had increased aneuploidy as compared to simple karyotype sarcomas. Comparing differential gene expression of TCGA samples to model data identified increased oxidative phosphorylation signaling in YAP1 tumors. Treatment of a panel of soft tissue sarcomas with a combination of YAP1 and oxidative phosphorylation inhibitors led to significantly decreased viability. CONCLUSIONS Transcriptional co-analysis of TCGA patient samples to YAP1 and KRAS model tumors supports that these sarcoma subtypes lie along a spectrum of disease and adds guidance for further transcriptome-based refinement of sarcoma subtyping. This approach can be used to begin to understand pathways and mechanisms driving human sarcoma development, the relationship between sarcoma subtypes, and to identify and validate new therapeutic vulnerabilities for this aggressive and heterogeneous disease.
Collapse
Affiliation(s)
- Jack Freeland
- These authors contributed equally and are listed alphabetically
- Department of Molecular and Medical Pharmacology, Molecular Biology Interdepartmental Program, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Maria Muñoz
- These authors contributed equally and are listed alphabetically
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Edmond O’Donnell
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Justin Langerman
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Morgan Darrow
- Department of Pathology and Laboratory Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Jessica Bergonio
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Julissa Suarez-Navarro
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis; Davis, CA, 95616
| | - Steven Thorpe
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Robert Canter
- Department of Surgery, Division of Surgical Oncology, University of California, Davis; Sacramento, CA, 95817
| | - R. Lor Randall
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| |
Collapse
|
8
|
Blazanin N, Liang X, Mahmud I, Kim E, Martinez S, Tan L, Chan W, Anvar NE, Ha MJ, Qudratullah M, Minelli R, Peoples M, Lorenzi P, Hart T, Lissanu Y. Therapeutic modulation of ROCK overcomes metabolic adaptation of cancer cells to OXPHOS inhibition and drives synergistic anti-tumor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613317. [PMID: 39345502 PMCID: PMC11429714 DOI: 10.1101/2024.09.16.613317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Genomic studies have identified frequent mutations in subunits of the SWI/SNF chromatin remodeling complex including SMARCA4 and ARID1A in non-small cell lung cancer. Previously, we and others have identified that SMARCA4-mutant lung cancers are highly dependent on oxidative phosphorylation (OXPHOS). Despite initial excitements, therapeutics targeting metabolic pathways such as OXPHOS have largely been disappointing due to rapid adaptation of cancer cells to inhibition of single metabolic enzymes or pathways, suggesting novel combination strategies to overcome adaptive responses are urgently needed. Here, we performed a functional genomics screen using CRISPR-Cas9 library targeting genes with available FDA approved therapeutics and identified ROCK1/2 as a top hit that sensitizes cancer cells to OXPHOS inhibition. We validate these results by orthogonal genetic and pharmacologic approaches by demonstrating that KD025 (Belumosudil), an FDA approved ROCK inhibitor, has highly synergistic anti-cancer activity in vitro and in vivo in combination with OXPHOS inhibition. Mechanistically, we showed that this combination induced a rapid, profound energetic stress and cell cycle arrest that was in part due to ROCK inhibition-mediated suppression of the adaptive increase in glycolysis normally seen by OXPHOS inhibition. Furthermore, we applied global phosphoproteomics and kinase-motif enrichment analysis to uncover a dynamic regulatory kinome upon combination of OXPHOS and ROCK inhibition. Importantly, we found converging phosphorylation-dependent regulatory cross-talk by AMPK and ROCK kinases on key RHO GTPase signaling/ROCK-dependent substrates such as PPP1R12A, NUMA1 and PKMYT1 that are known regulators of cell cycle progression. Taken together, our study identified ROCK kinases as critical mediators of metabolic adaptation of cancer cells to OXPHOS inhibition and provides a strong rationale for pursuing ROCK inhibitors as novel combination partners to OXPHOS inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Nicholas Blazanin
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Xiaobing Liang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Eiru Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Sara Martinez
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Waikin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Nazanin Esmaeili Anvar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Md Qudratullah
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
| | - Rosalba Minelli
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Peoples
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Philip Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Yonathan Lissanu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
9
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Loftus AW, Zarei M, Kakish H, Hajihassani O, Hue JJ, Boutros C, Graor HJ, Nakazzi F, Bahlibi T, Winter JM, Rothermel LD. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma. Cancer Treat Rev 2024; 129:102795. [PMID: 38972133 PMCID: PMC11361048 DOI: 10.1016/j.ctrv.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.
Collapse
Affiliation(s)
- Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Christina Boutros
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Faith Nakazzi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tsegaw Bahlibi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jordan M Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Seo S, Kim H, Hwang JT, Kim JE, Kim J, Jeon S, Song YJ, Choi KH, Sim G, Cho M, Yoon JW, Kim H. HL156A, an AMP-Activated Protein Kinase Activator, Inhibits Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. Biomolecules 2024; 14:806. [PMID: 39062520 PMCID: PMC11274646 DOI: 10.3390/biom14070806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic kidney disorder. While metformin has demonstrated the ability to inhibit cyst growth in animal models of ADPKD via activation of adenosine monophosphate-activated protein kinase (AMPK), its effectiveness in humans is limited due to its low potency. This study explored the impact of HL156A, a new and more potent AMPK activator, in a mouse model of ADPKD. METHODS To investigate whether HL156A inhibits the proliferation of renal cyst cells in ADPKD in vitro, exogenous human telomerase reverse transcriptase (hTERT)-immortalized renal cyst cells from ADPKD patients were treated with HL156A, and an MTT (dimethylthiazol-diphenyltetrazolium bromide) assay was performed. To assess the cyst-inhibitory effect of HL156A in vivo, we generated Pkd1 conditional knockout (KO) mice with aquaporin 2 (AQP2)-Cre, which selectively expresses Cre recombinase in the collecting duct. The effectiveness of HL156A in inhibiting cyst growth and improving renal function was confirmed by measuring the number of cysts and blood urea nitrogen (BUN) levels in the collecting duct-specific Pkd1 KO mice. RESULTS When cyst cells were treated with up to 20 µM of metformin or HL156A, HL156A reduced cell viability by 25% starting at a concentration of 5 µM, whereas metformin showed no effect. When AQP2-Cre male mice were crossed with Pkd1flox/flox female mice, and when AQP2-Cre female mice were crossed with Pkd1flox/flox male mice, the number of litters produced by both groups was comparable. In collecting duct-specific Pkd1 KO mice, HL156A was found to inhibit cyst growth, reducing both the number and size of cysts. Furthermore, it was confirmed that kidney function improved as HL156A treatment led to a reduction in elevated BUN levels. Lastly, it was observed that the increase in AMPK phosphorylation induced by HL156A decreased ERK phosphorylation and α-SMA expression. CONCLUSION HL156A has potential as a drug that can restore kidney function in ADPKD patients by inhibiting cyst growth.
Collapse
Affiliation(s)
- Sujung Seo
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Jung-Taek Hwang
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jin Eop Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jisu Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Sohyun Jeon
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Young-jin Song
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Kwang-ho Choi
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Gwangeon Sim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Myunkyu Cho
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Jong-woo Yoon
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| | - Hyunsuk Kim
- Department of Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea; (S.S.); (J.-T.H.); (J.E.K.); (J.K.); (S.J.); (Y.-j.S.); (K.-h.C.); (G.S.); (M.C.); (J.-w.Y.)
| |
Collapse
|
12
|
Khalaf A, de Beauchamp L, Kalkman E, Rattigan K, Himonas E, Jones J, James D, Shokry ESA, Scott MT, Dunn K, Tardito S, Copland M, Sumpton D, Shanks E, Helgason GV. Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia. Sci Transl Med 2024; 16:eadi5336. [PMID: 38865484 DOI: 10.1126/scitranslmed.adi5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.
Collapse
MESH Headings
- Drug Repositioning
- Humans
- Mitochondria/metabolism
- Mitochondria/drug effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Animals
- Cell Line, Tumor
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Mice
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Calcium/metabolism
- Oxidative Phosphorylation/drug effects
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
Collapse
Affiliation(s)
- Ahmed Khalaf
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Eric Kalkman
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Joe Jones
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniel James
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | | | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Emma Shanks
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
13
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Liu S, Wen H, Li F, Xue X, Sun X, Li F, Hu R, Xi H, Boccellato F, Meyer TF, Mi Y, Zheng P. Revealing the pathogenesis of gastric intestinal metaplasia based on the mucosoid air-liquid interface. J Transl Med 2024; 22:468. [PMID: 38760813 PMCID: PMC11101349 DOI: 10.1186/s12967-024-05276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.
Collapse
Affiliation(s)
- Simeng Liu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Fuhao Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
| | - Ruoyu Hu
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China
| | - Huayuan Xi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, 11743, UK
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin- Straße 12, 24105, Kiel, Germany
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China.
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3, Kangfuqian Street, Erqi District, Zhengzhou, Henan, 450002, China.
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 453000, China.
| |
Collapse
|
15
|
Al Assi A, Posty S, Lamarche F, Chebel A, Guitton J, Cottet-Rousselle C, Prudent R, Lafanechère L, Giraud S, Dallemagne P, Suzanne P, Verney A, Genestier L, Castets M, Fontaine E, Billaud M, Cordier-Bussat M. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity. Cell Death Dis 2024; 15:311. [PMID: 38697987 PMCID: PMC11065874 DOI: 10.1038/s41419-024-06668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.
Collapse
Affiliation(s)
- Alaa Al Assi
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Solène Posty
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France
| | - Frédéric Lamarche
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Amel Chebel
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Jérôme Guitton
- Laboratoire de biochimie et pharmacologie-toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, F-69495, Pierre Bénite, France. Laboratoire de Toxicologie, Faculté de pharmacie ISPBL, Université Lyon 1, 69373, Lyon, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France
| | - Renaud Prudent
- Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Lafanechère
- Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Stéphane Giraud
- Center for Drug Discovery and Development, Synergie Lyon Cancer Foundation, Lyon, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | | | - Peggy Suzanne
- Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | - Aurélie Verney
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (Team LIB), Equipe labellisée La Ligue 2017 and 2023. Université Lyon, INSERM, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Marie Castets
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, Inserm U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, France.
| | - Marc Billaud
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France.
| | - Martine Cordier-Bussat
- Cell death and Childhood Cancers Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052- CNRS UMR5286, Université Claude Bernard de Lyon1, Centre Léon Bérard, LabEx DEVweCAN, Institut Convergence Plascan, Lyon, France.
| |
Collapse
|
16
|
Hoang NM, Liu Y, Bates PD, Heaton AR, Lopez AF, Liu P, Zhu F, Chen R, Kondapelli A, Zhang X, Selberg PE, Ngo VN, Skala MC, Capitini CM, Rui L. Targeting DNMT3A-mediated oxidative phosphorylation to overcome ibrutinib resistance in mantle cell lymphoma. Cell Rep Med 2024; 5:101484. [PMID: 38554704 PMCID: PMC11031386 DOI: 10.1016/j.xcrm.2024.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.
Collapse
Affiliation(s)
- Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul D Bates
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alexa R Heaton
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Angelica F Lopez
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ruoyu Chen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Apoorv Kondapelli
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Xiyu Zhang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul E Selberg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Vu N Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Melissa C Skala
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Christian M Capitini
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
17
|
Tian J, Luo J, Zeng X, Ke C, Wang Y, Liu Z, Li L, Zhang Y, Hu Z, Yang C. Targeting oxidative phosphorylation to increase the efficacy of immune-combination therapy in renal cell carcinoma. J Immunother Cancer 2024; 12:e008226. [PMID: 38355278 PMCID: PMC10868282 DOI: 10.1136/jitc-2023-008226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are the standard of care for metastatic renal cell carcinoma (RCC); however, most patients develop de novo or acquired resistance to ICIs. Oxidative phosphorylation (OXPHOS) has been rarely explored as a potential target for correcting ICI resistance. METHODS We systematically analyzed RNA sequencing and clinical data from CheckMate, JAVELIN Renal 101, and NCT01358721 clinical trials, and clinicopathological data of 25 patients from Tongji Hospital to investigate the relationship between OXPHOS and ICI resistance. The Ndufb8-knockdown Renca cell line was derived to determine the effect of OXPHOS on RCC immunotherapy in vivo. RESULTS An analysis of the CheckMate series data revealed that high OXPHOS levels are risk factors for ICI in patients with RCC, but are affected by thevon Hippel-Lindau protein (VHL) and hypoxia-inducible factor-1α status. This result is consistent with correlation between clinicopathological characteristics and prognostic observations at our institute. Knockdown of the mitochondrial complex I subunit Ndufb8 of the Renca cell line had no effect on cell growth and migration in vitro, but slowed down cell growth in vivo. Among anti-programmed death ligand 1 (PD-L1)-treated BALB/c mice, shNdufb8 Renca tumors grew slower than shControl Renca tumors and the corresponding mice survived longer. Flow cytometry revealed that CD8+ T cells in shNdufb8 Renca tumors, which were exposed to a lower degree of hypoxia and expressed less programmed death-1 (PD-1) and T-cell immunoglobulin domain and mucin domain 3 (TIM-3), secreted more interferon-γ after stimulation. Immunofluorescence demonstrated that the shNdufb8 Renca tumors had a higher proportion of CD8+ T cells and the proportion of these cells was lower in the hypoxic area. CONCLUSIONS OXPHOS is a reliable predictor of immunotherapy response in RCC and is more pronounced in metastatic lesions. RCC cells generate a hypoxic tumor microenvironment and inhibit T-cell function through oxidative metabolism, thereby leading to immunotherapy resistance.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chunjin Ke
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhenghao Liu
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Le Li
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital Affiliated Tongji Medical College of Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
18
|
Landberg N, Köhnke T, Feng Y, Nakauchi Y, Fan AC, Linde MH, Karigane D, Lim K, Sinha R, Malcovati L, Thomas D, Majeti R. IDH1-mutant preleukemic hematopoietic stem cells can be eliminated by inhibition of oxidative phosphorylation. Blood Cancer Discov 2023; 5:731701. [PMID: 38091010 PMCID: PMC10905513 DOI: 10.1158/2643-3230.bcd-23-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.
Collapse
Affiliation(s)
- Niklas Landberg
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Yang Feng
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Miles H. Linde
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Daiki Karigane
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniel Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
19
|
Monavarian M, Page EF, Rajkarnikar R, Kumari A, Macias LQ, Massicano F, Lee NY, Sahoo S, Hempel N, Jolly MK, Ianov L, Worthey E, Singh A, Broude EV, Mythreye K. Development of adaptive anoikis resistance promotes metastasis that can be overcome by CDK8/19 Mediator kinase inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569970. [PMID: 38106208 PMCID: PMC10723298 DOI: 10.1101/2023.12.04.569970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anoikis resistance or evasion of cell death triggered by cell detachment into suspension is a hallmark of cancer that is concurrent with cell survival and metastasis. The effects of frequent matrix detachment encounters on the development of anoikis resistance in cancer remains poorly defined. Here we show using a panel of ovarian cancer models, that repeated exposure to suspension stress in vitro followed by attached recovery growth leads to the development of anoikis resistance paralleling in vivo development of anoikis resistance in ovarian cancer ascites. This resistance is concurrent with enhanced invasion, chemoresistance and the ability of anoikis adapted cells to metastasize to distant sites. Adapted anoikis resistant cells show a heightened dependency on oxidative phosphorylation and can also evade immune surveillance. We find that such acquired anoikis resistance is not genetic, as acquired resistance persists for a finite duration in the absence of suspension stress. Transcriptional reprogramming is however essential to this process, as acquisition of adaptive anoikis resistance in vitro and in vivo is exquisitely sensitive to inhibition of CDK8/19 Mediator kinase, a pleiotropic regulator of transcriptional reprogramming. Our data demonstrate that growth after recovery from repeated exposure to suspension stress is a direct contributor to metastasis and that inhibition of CDK8/19 Mediator kinase during such adaptation provides a therapeutic opportunity to prevent both local and distant metastasis in cancer.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Emily Faith Page
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Resha Rajkarnikar
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Asha Kumari
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Liz Quintero Macias
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| | - Felipe Massicano
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh PA 15213
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Lara Ianov
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth Worthey
- UAB Biological Data Science Core, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama, Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
20
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Xu Y, Xue D, Kyani A, Bankhead A, Roy J, Ljungman M, Neamati N. First-in-Class NADH/Ubiquinone Oxidoreductase Core Subunit S7 (NDUFS7) Antagonist for the Treatment of Pancreatic Cancer. ACS Pharmacol Transl Sci 2023; 6:1164-1181. [PMID: 37588763 PMCID: PMC10425995 DOI: 10.1021/acsptsci.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/18/2023]
Abstract
Pancreatic cancer cells adapt to nutrient-scarce metabolic conditions by increasing their oxidative phosphorylation reserve to survive. Here, we present a first-in-class small-molecule NDUFS7 antagonist that inhibits oxidative phosphorylation (OXPHOS) for the treatment of pancreatic cancer. The lead compound, DX2-201, suppresses the proliferation of a panel of cell lines, and a metabolically stable analogue, DX3-213B, shows significant efficacy in a syngeneic model of pancreatic cancer. Exome sequencing of six out of six clones resistant to DX2-201 revealed a pV91M mutation in NDUFS7, providing direct evidence of its drug-binding site. In combination studies, DX2-201 showed synergy with multiple metabolic modulators, select OXPHOS inhibitors, and PARP inhibitors. Importantly, a combination with 2-deoxyglucose overcomes drug resistance in vivo. This study demonstrates that an efficacious treatment for pancreatic cancer can be achieved through inhibition of OXPHOS and direct binding to NDUFS7, providing a novel therapeutic strategy for this hard-to-treat cancer.
Collapse
Affiliation(s)
- Yibin Xu
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biostatistics and Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
23
|
Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin Ther Targets 2023; 27:939-952. [PMID: 37736880 PMCID: PMC11034819 DOI: 10.1080/14728222.2023.2261631] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Drugs targeting mitochondria are emerging as promising antitumor therapeutics in preclinical models. However, a few of these drugs have shown clinical toxicity. Developing mitochondria-targeted modified natural compounds and US FDA-approved drugs with increased therapeutic index in cancer is discussed as an alternative strategy. AREAS COVERED Triphenylphosphonium cation (TPP+)-based drugs selectively accumulate in the mitochondria of cancer cells due to their increased negative membrane potential, target the oxidative phosphorylation proteins, inhibit mitochondrial respiration, and inhibit tumor proliferation. TPP+-based drugs exert minimal toxic side effects in rodents and humans. These drugs can sensitize radiation and immunotherapies. EXPERT OPINION TPP+-based drugs targeting the tumor mitochondrial electron transport chain are a new class of oxidative phosphorylation inhibitors with varying antiproliferative and antimetastatic potencies. Some of these TPP+-based agents, which are synthesized from naturally occurring molecules and FDA-approved drugs, have been tested in mice and did not show notable toxicity, including neurotoxicity, when used at doses under the maximally tolerated dose. Thus, more effort should be directed toward the clinical translation of TPP+-based OXPHOS-inhibiting drugs in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
24
|
He P, Feng J, Xia X, Sun Y, He J, Guan T, Peng Y, Zhang X, Liu M, Pang X, Chen Y. Discovery of a Potent and Oral Available Complex I OXPHOS Inhibitor That Abrogates Tumor Growth and Circumvents MEKi Resistance. J Med Chem 2023; 66:6047-6069. [PMID: 37130350 DOI: 10.1021/acs.jmedchem.2c01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Targeting oxidative phosphorylation (OXPHOS) has emerged as a promising therapeutic strategy for cancer therapy. Here, we discovered a 1H-1,2,3-triazole derivative HP661 as a highly potent and orally available OXPHOS inhibitor that effectively blocked the activity of mitochondrial complex I. HP661 specifically compromised the mitochondrial oxygen consumption of high-OXPHOS lung cancer cells but not that of low-OXPHOS lung cancer cells or normal cells in the low nanomolar range. Notably, mitogen-activated protein kinase kinase (MEK) inhibitor (trametinib)-resistant lung cancer cells with high levels of OXPHOS also showed marked sensitivity to HP661, as indicated by decreased clonogenic growth and increased cell apoptosis upon treatment. In a mouse model of high-OXPHOS lung cancer, HP661 treatment not only significantly suppressed tumor growth but also augmented the therapeutic efficacy of trametinib by impairing tumor mitochondrial respiration. In summary, we identified HP661 as a highly effective OXPHOS inhibitor to abrogate the growth of high OXPHOS-dependent tumors and conquer high OXPHOS-mediated drug resistance.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Xinting Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Zhang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
25
|
The oxidative phosphorylation inhibitor IM156 suppresses B-cell activation by regulating mitochondrial membrane potential and contributes to the mitigation of systemic lupus erythematosus. Kidney Int 2023; 103:343-356. [PMID: 36332729 DOI: 10.1016/j.kint.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
Abstract
Current treatment strategies for autoimmune diseases may not sufficiently control aberrant metabolism in B-cells. To address this concern, we investigated a biguanide derivative, IM156, as a potential regulator for B-cell metabolism in vitro and in vivo on overactive B-cells stimulated by the pro-inflammatory receptor TLR-9 agonist CpG oligodeoxynucleotide, a mimic of viral/bacterial DNA. Using RNA sequencing, we analyzed the B-cell transcriptome expression, identifying the major molecular pathways affected by IM156 in vivo. We also evaluated the anti-inflammatory effects of IM156 in lupus-prone NZB/W F1 mice. CD19+B-cells exhibited higher mitochondrial mass and mitochondrial membrane potential compared to T-cells and were more susceptible to IM156-mediated oxidative phosphorylation inhibition. In vivo, IM156 inhibited mitochondrial oxidative phosphorylation, cell cycle progression, plasmablast differentiation, and activation marker levels in CpG oligodeoxynucleotide-stimulated mouse spleen B-cells. Interestingly, IM156 treatment significantly increased overall survival, reduced glomerulonephritis and inhibited B-cell activation in the NZB/W F1 mice. Thus, our data indicated that IM156 suppressed the mitochondrial membrane potentials of activated B-cells in mice, contributing to the mitigation of lupus activity. Hence, IM156 may represent a therapeutic alternative for autoimmune disease mediated by B-cell hyperactivity.
Collapse
|
26
|
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, Kantarjian HM, Ravandi F, Collins ME, Francesco MED, Dumbrava EE, Fu S, Gao S, Gay JP, Gera S, Han J, Hong DS, Jabbour EJ, Ju Z, Karp DD, Lodi A, Molina JR, Baran N, Naing A, Ohanian M, Pant S, Pemmaraju N, Bose P, Piha-Paul SA, Rodon J, Salguero C, Sasaki K, Singh AK, Subbiah V, Tsimberidou AM, Xu QA, Yilmaz M, Zhang Q, Li Y, Bristow CA, Bhattacharjee MB, Tiziani S, Heffernan TP, Vellano CP, Jones P, Heijnen CJ, Kavelaars A, Marszalek JR, Konopleva M. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat Med 2023; 29:115-126. [PMID: 36658425 DOI: 10.1038/s41591-022-02103-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Timothy A Yap
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meghan E Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason P Gay
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonal Gera
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Han
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Molina
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maro Ohanian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyun A Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher A Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cobi J Heijnen
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Psychological Sciences, Rice University, Houston, TX, USA
| | - Annemieke Kavelaars
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|