1
|
Liu L, Wei D, Huang H, Guo C, Liu J, Hu C, Huang J. Effects of polystyrene microplastics on Euglena gracilis: Intracellular distribution and the protozoan transcriptional responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106802. [PMID: 38096643 DOI: 10.1016/j.aquatox.2023.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/02/2024]
Abstract
Microplastics (MPs) introduced into aquatic environments inevitably interact with aquatic organisms such as plankton, potentially yielding adverse effects on the aquatic ecosystem. The extent to which MPs can infiltrate planktonic cells and evoke a molecular response remains largely unknown. In the present study, the internalization of fluorescently labeled polystyrene (PS) MPs on Euglena gracilis cells was investigated, determining the transcriptional responses within protozoa after an 8-day exposure period. The results showed that exposure to 25 mg/L PS-MPs for 8 days, significantly inhibited protozoan growth (P < 0.05) and decreased the chlorophyll a content of E. gracilis. The photosynthetic efficiency of E. gracilis was suppressed by MPs after 4 days, and then recovered to control values by the eighth day. Fluorescence imaging confirmed the presence of MPs in E. gracilis. Transcriptomic analysis revealed the influence of PS-MPs on a diverse range of transcriptional processes, encompassing oxidative phosphorylation, oxidation-reduction process, photosynthesis, and antioxidant enzymes. Notably, a majority of the differentially expressed genes (DEGs) exhibited down-regulation. Furthermore, PS-MPs disturbed the transcriptional regulation of chloroplasts and photosynthesis. These findings indicate a direct interaction between PS-MPs and organelles within E. gracilis cells following internalization, thereby disrupting regular gene expression patterns and posing a substantial environmental risk to the aquatic ecosystem.
Collapse
Affiliation(s)
- Li Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Dong Wei
- College of Life Science, Linyi University, Linyi 276000, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Canyang Guo
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Jiaying Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
2
|
Chavan P, Kumar R, Rajamohan R, Kirubagaran R, Venugopalan VP. Bromoform Toxicity to Marine Microalgae: Studies using the Diatom Chaetoceros lorenzianus as a Model Organism. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:90-99. [PMID: 38169012 DOI: 10.1007/s00244-023-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Bromoform is the most prominent, relatively long-lived chlorination by-product in condenser effluents from seawater-based power plant cooling systems. There are few reports on the potential toxicity of this trihalomethane to marine phytoplankton. We investigated this using a marine diatom, Chaetoceros lorenzianus as the model organism. The study was conducted by exposing the diatom to bromoform concentrations 0, 50, 100, 150, 250, 500 and 1000 µg/L for exposure time of 3 and 24 h. The mode of action of bromoform was examined using endpoints which include chlorophyll a fluorescence, cell viability by SYTOX® green stain and genotoxicity by comet assay. The relative fluorescence unit and percent viability changed significantly at all concentrations in duration of study. The 24-h IC50 for viability and chlorophyll was estimated to be 255.6 µg/L and 343.5 µg/L, respectively. The tail DNA of 5-20% observed by comet assay indicated low-level DNA damage. Bromoform manages to target cell membrane and internal machinery, DNA and chlorophyll molecule of cell, leading to cause damage at multiple physiological levels. Based on the present data, the current discharge levels of bromoform 50-250 µg/L cause significant impact on the phytoplankton under investigation. However, the impact can be limited under actual field conditions wherein mixing of cooling water with natural water bodies is considered. Nevertheless, more studies are required to understand the toxicological response of organisms to bromoform, so that discharge levels can be continued to be kept within safe levels.
Collapse
Affiliation(s)
- Pooja Chavan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India.
| | - Rajesh Kumar
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Raja Rajamohan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603 102, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology, ESSO-National Institute of Ocean Technology, Pallikaranai, Chennai, 600 100, India
| | | |
Collapse
|
3
|
Yang B, Cui H, Gao J, Cao J, Klobučar G, Li M. Using a Battery of Bioassays to Assess the Toxicity of Wastewater Treatment Plant Effluents in Industrial Parks. TOXICS 2023; 11:702. [PMID: 37624206 PMCID: PMC10457805 DOI: 10.3390/toxics11080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Bioassays, as an addition to physico-chemical water quality evaluation, can provide information on the toxic effects of pollutants present in the water. In this study, a broad evaluation of environmental health risks from industrial wastewater along the Yangtze River, China, was conducted using a battery of bioassays. Toxicity tests showed that the wastewater treatment processes were effective at lowering acetylcholinesterase (AChE) inhibition, HepG2 cells' cytotoxicity, the estrogenic effect in T47D-Kbluc cells, DNA damage of Euglena gracilis and the mutagenicity of Salmonella typhimurium in the analyzed wastewater samples. Polycyclic aromatic hydrocarbons (PAHs) were identified as potential major toxic chemicals of concern in the wastewater samples of W, J and T wastewater treatment plants; thus, the potential harm of PAHs to aquatic organisms has been investigated. Based on the health risk assessment model, the risk index of wastewater from the industrial parks along the Yangtze River was below one, indicating that the PAHs were less harmful to human health through skin contact or respiratory exposure. Overall, the biological toxicity tests used in this study provide a good basis for the health risk assessment of industrial wastewater and a scientific reference for the optimization and operation of the treatment process.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haiyan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Chu Y, Zhang C, Chen X, Li X, Ren N, Ho SH. Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Li X, Wang Z, Bai M, Chen Z, Gu G, Li X, Hu C, Zhang X. Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23461-23473. [PMID: 34806148 DOI: 10.1007/s11356-021-17545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) released into aquatic environment interact with other pollutants that already exist in water, potentially altering their toxicity, which poses a new problem for aquatic ecosystems. In the present study, we first evaluated the effects of polystyrene MPs (mPS) on copper (Cu) toxicity to the protozoan Euglena gracilis using three methods based on 96-h acute toxicity, orthogonal test and 12-d sub-acute toxicity data. Thereafter, the 12-d sub-acute exposure was employed to investigate protozoan growth, photosynthetic parameters and pigments, soluble protein, total antioxidant capacity and trace metal accumulation in E. gracilis after exposure to either 1.5 mg/L of Cu, 75-nm mPS (1 and 5 mg/L) or a combination therein, with the objective to understand the underlined mechanisms. The results show that the concentration and exposure time are key factors influencing the effects of the mPS on Cu toxicity. A mPS concentration of 5 mg/L caused significantly more dissipation energy, which is used for photosynthesis and thus decreased photosynthetic efficiency, but this effect weakened after 12 d of exposure. Exposure to Cu alone resulted in significantly high Cu accumulation in the cells and inhibited uptake of manganese and zinc. The presence of mPS did not influence the effects of Cu on trace metal accumulation. Our result suggests that application of multiple methods and indices could provide more information for a comprehensive understanding of the effects of mPS on toxicity of other pollutants. In addition, long-term exposure seems necessary for evaluating mPS toxicity.
Collapse
Affiliation(s)
- Xiuling Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science, Linyi University, Linyi, 276000, People's Republic of China
| | - Zhengjun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ming Bai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Zhehua Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Gan Gu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
Sun L, Sun S, Bai M, Wang Z, Zhao Y, Huang Q, Hu C, Li X. Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105840. [PMID: 33945909 DOI: 10.1016/j.aquatox.2021.105840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, effects of polystyrene microplastics (MPS) on Euglena gracilis were investigated via examination on its photosynthesis and motility, two typical properties of the protozoan. No adverse effects were observed after 4-d exposure except for decrease in motility at two high MPS concentrations (5 and 25 mg/L). After 8-d duration, MPS at 1 mg/L had no obvious effects on E. gracilis, but two higher concentrations (5 and 25 mg/L) of MPS inhibited protozoan growth, motility, and photosynthesis. The reduced protozoan photosynthetic activity was reflected by changes in Fv/Fm (the maximum photochemical yield of PSII), ΔFIP (difference between FP and FI) and PIABS (the performance index), indicative of reduced quantum yield of electron transport and enhanced energy dissipation. A dose-dependent effect of MPS on E. gracilis was found in protozoan growth, photosynthesis and motility, especially photosynthetic indices. MPS of small size (75 nm) seemed more toxic to the protozoa than large size (1000 nm). Internalization of MPS in the cells and chloroplasts was observed clearly for the first time, likely responsible for their toxicity. Analysis on photosynthetic process and motility of E. gracilis could provide more comprehensive understanding of MPS toxicity in the aquatic environment, and may potentially serve as a biomonitoring tool.
Collapse
Affiliation(s)
- Li Sun
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Ming Bai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Zhengjun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China.
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| |
Collapse
|
7
|
Zhao Y, Tang X, Qu F, Lv M, Liu Q, Li J, Li L, Zhang B, Zhao Y. ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114342. [PMID: 32179226 DOI: 10.1016/j.envpol.2020.114342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a series of highly persistent organic pollutants (POPs) ubiquitously distributed in marine environments. As key primary producers, microalgae are the start of PBDEs bioaccumulations and vulnerable to their toxicities. In order to deeply investigate the toxic mechanism of PBDEs on microalgal cells, the occurrence of programmed cell death (PCD) in a model diatom Thalassiosira pseudonana and its possible mediating mechanism were studied. The results indicated: cell death of T. pseudonana happened under the stress of BDE-47, which was proved to be PCD based on the correlations with three biochemical markers (DNA fragmentation, phosphatidylserine externalization and caspase activity) and three molecular markers [Metacaspase 2 gene (TpMC2), Death-associated protein gene (DAP3) and Death-specific protein 1 gene (TpDSP1)]; Furthermore, the changes of cellular ROS levels were correlated with the PCD markers and the dead cell rates, and the cell membrane and the chloroplast were identified as the major ROS production sites. Therefore, we concluded that PCD might be an important toxic mechanism of PBDEs on microalgal cells, and that chloroplast- and cell membrane-produced ROS was an important signaling molecule to mediate the PCD activation process. Our research firstly indicated microalgal PCD could be induced by PBDEs, and increased our knowledge of the toxic mechanisms by which POPs affect microalgal cells.
Collapse
Affiliation(s)
- Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fangyuan Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Kottuparambil S, Park J. Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Sci Rep 2019; 9:15323. [PMID: 31653882 PMCID: PMC6814832 DOI: 10.1038/s41598-019-51451-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
The freshwater flagellate alga Euglena agilis Carter was exposed to the polycyclic aromatic hydrocarbon (PAH) anthracene for 96 h under optimal photosynthetically active radiation (PAR), and responses of growth, photosynthetic pigment production, and photosynthetic efficiency were assessed. Anthracene reduced the growth rate (μ) and levels of chlorophyll a (Chl a), chlorophyll b (Chl b), and total carotenoids. The growth rate was more sensitive than photosynthetic parameters, with a median effective concentration (EC50) of 4.28 mg L-1. Between 5 and 15 mg L-1, anthracene inhibited the maximum quantum yield (Fv/Fm) of photosystem II (PSII) and the maximum photosynthetic electron transport rate through PSII (rETRmax) with EC50 values of 14.88 and 11.8 mg L-1, respectively. At all anthracene concentrations, intracellular reactive oxygen species (ROS) were elevated, indicating increased oxidative stress. Anthracene presumably reduced the PSII efficiency of photochemical energy regulation and altered the photochemistry through intracellular ROS formation. Acute exposure to PAHs may induce severe physiological changes in phytoplankton cells, which may influence vital ecological processes within the aquatic environments. Additionally, growth and Chl a content may serve as sensitive risk assessment parameters of anthracene toxicity in water management since EC50 values for both overlap with anthracene levels (8.3 mg L-1) permitted by the US Environmental Protection Agency (USEPA).
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jihae Park
- Ghent University Global Campus, Songomunhwa-Ro, 119, Yeonsu-gu, Incheon, 21985, Republic of Korea.
| |
Collapse
|
9
|
Xiao Y, Zhao P, Yang Y, Li M. Ecotoxicity evaluation of natural suspended particles using the microalga, Euglena gracilis. CHEMOSPHERE 2018; 206:802-808. [PMID: 29804002 DOI: 10.1016/j.chemosphere.2018.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
As vectors for pollutants, suspended particles (SPs) have been studied for many years. However, limited studies have focused on the ecotoxicity of natural SPs. This study examined ecotoxicity of natural SPs isolated from Gonghu Bay and its Ecological Restoration Area (ERA) water samples by Tangential Flow Filtration (TFF) using the microalga Euglena gracilis as a model organism. Effects of SPs on algae growth, photosynthesis pigment contents, superoxide dismutase (SOD) activity and DNA damage were characterized to determine the effects of ecological restoration. Additionally, SPs were separated into nanoscale (<1 μm diameter) and common-scale (≥1 μm diameter) groups by size, to compare the differences in toxicity of SPs with different sizes. We found, in naturally occurring concentrations in Gonghu Bay, nanoscale SPs were more toxic than common-scale ones. However, no significant adverse effects were detected in the nanoscale SPs from the ERA, which demonstrated that ecological restoration might reduce the toxicity of nanoscale SPs. The results were supported by the inhibition of growth, SOD activities and DNA damage, while no adverse influences were detected on pigment contents of E. gracilis in all the treated groups. Our study provides new insights into the toxic effects of SPs.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Chavan P, Kumar R, Kirubagaran R, Venugopalan VP. Comparative toxicological effects of two antifouling biocides on the marine diatom Chaetoceros lorenzianus: Damage and post-exposure recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:97-106. [PMID: 28601522 DOI: 10.1016/j.ecoenv.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 05/28/2023]
Abstract
Antifouling biocides are commonly used in coastal electric power stations to prevent biofouling in their condenser cooling systems. However, the environmental impact of the chemical biocides is less understood than the thermal stress effects caused by the condenser effluents. In this study, Chaetoceros lorenzianus, a representative marine diatom, was used to analyse the toxicity of two antifouling biocides, chlorine and chlorine dioxide. The diatom cells were subjected to a range of concentrations of the biocides (from 0.05 to 2mg/L, as total residual oxidants, TRO) for contact time of 30min. They were analysed for viability, genotoxicity, chlorophyll a and cell density endpoints. The cells were affected at all concentrations of the biocides (0.05-2mg/L), showing dose-dependent decrease in viability and increase in DNA damage. The treated cells were later incubated in filtered seawater devoid of biocide to check for recovery. The cells were able to recover in terms of overall viability and DNA damage, when they had been initially treated with low concentrations of the biocides (0.5mg/L of Cl2 or 0.2mg/L of ClO2). Chlorophyll a analysis showed irreparable damage at all concentrations, while cell density showed increasing trend of reduction, if treated above 0.5mg/L of Cl2 and 0.2mg/L of ClO2. The data indicated that in C. lorenzianus, cumulative toxic effects and recovery potential of ClO2 up to 0.2mg/L were comparable with those of Cl2, up to 0.5mg/L concentration in terms of the studied endpoints. The results indicate that at the biocide levels currently being used at power stations, recovery of the organism is feasible upon return to ambient environment. Similar studies should be carried out on other planktonic and benthic organisms, which will be helpful in the formulation of future guidelines for discharge of upcoming antifouling biocides such as chlorine dioxide.
Collapse
Affiliation(s)
- Pooja Chavan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, India
| | - Rajesh Kumar
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology, ESSO-National Institute of Ocean Technology, Pallikaranai, Chennai 600100, India
| | - Vayalam P Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
11
|
García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016; 34:859-873. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes.
Collapse
Affiliation(s)
- Jorge D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México.
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| |
Collapse
|
12
|
Esperanza M, Cid Á, Herrero C, Rioboo C. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:210-221. [PMID: 26117094 DOI: 10.1016/j.aquatox.2015.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis in C. reinhardtii cells. This is supported by the observation of typical hallmarks of apoptosis, such as mitochondrial membrane depolarization, alterations in nuclear morphology and subG1 nuclei in cells exposed to the highest assayed concentrations. To our knowledge, this is the first study that provides a comprehensive analysis of oxidative DNA base damage in unicellular algal cells exposed to a prooxidant pollutant, as well as of its possible relation with other physiological effects. These results reinforce the need for additional studies on the genotoxicity of environmental pollutants on ecologically relevant organisms such as microalgae that can provide a promising basis for the characterization of potential pollutant hazards in the aquatic environment.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
13
|
Hu C, Wang Q, Zhao H, Wang L, Guo S, Li X. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. CHEMOSPHERE 2015; 128:184-190. [PMID: 25703902 DOI: 10.1016/j.chemosphere.2015.01.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 06/04/2023]
Abstract
Potential environmental risks posed by nanomaterials increase with their extensive production and application. As a newly emerging carbon material, graphene oxide (GO) exhibits excellent electrochemical properties and has promising applications in many areas. However, the ecotoxicity of GO to organisms, especially aquatic organisms, remains poorly understood. Accordingly, this study examined the toxicity of GO with protozoa Euglena gracilis as test organism. Growth inhibition test was initially performed to investigate acute toxic effects. Protozoa were subsequently exposed to GO ranging from 0.5 mg L(-1) to 5 mg L(-1) for 10 d. The growth, photosynthetic pigment content, activities of antioxidant enzymes, ultrastructure of the protozoa, as well as the shading effect of GO, were analyzed to determine the mechanism of the toxicity effect. Results showed that the 96 h EC50 value of GO in E. gracilis was 3.76±0.74 mg L(-1). GO at a concentration of 2.5 mg L(-1) exerted significant (P<0.01) adverse effects on the organism. These effects were evidenced by the inhibition of growth and the enhancement of malondialdehyde content and antioxidant enzyme activities. Shading effect and oxidative stress may be responsible for GO toxicity.
Collapse
Affiliation(s)
- Changwei Hu
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, Linyi University, Middle Part of Shuangling Road, Linyi 276000, Shandong Province, PR China.
| | - Qing Wang
- College of Resources and Environment, Linyi University, Middle Part of Shuangling Road, Linyi 276000, Shandong Province, PR China
| | - Haitao Zhao
- College of Resources and Environment, Linyi University, Middle Part of Shuangling Road, Linyi 276000, Shandong Province, PR China
| | - Lizhi Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, Linyi University, Middle Part of Shuangling Road, Linyi 276000, Shandong Province, PR China
| | - Shaofen Guo
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, Linyi University, Middle Part of Shuangling Road, Linyi 276000, Shandong Province, PR China
| | - Xiuling Li
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, Linyi University, Middle Part of Shuangling Road, Linyi 276000, Shandong Province, PR China
| |
Collapse
|
14
|
Peng C, Lee JW, Sichani HT, Ng JC. Toxic effects of individual and combined effects of BTEX on Euglena gracilis. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:10-8. [PMID: 25463212 DOI: 10.1016/j.jhazmat.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 05/26/2023]
Abstract
BTEX is a group of volatile organic compounds consisting of benzene, toluene, ethylbenzene and xylenes. Environmental contamination of BTEX can occur in the groundwater with their effects on the aquatic organisms and ecosystem being sparsely studied. The aim of this study was to evaluate the toxic effects of individual and mixed BTEX on Euglena gracilis (E. gracilis). We examined the growth rate, morphological changes and chlorophyll contents in E. gracilis Z and its mutant SMZ cells treated with single and mixture of BTEX. BTEX induced morphological change, formation of lipofuscin, and decreased chlorophyll content of E. gracilis Z in a dose response manner. The toxicity of individual BTEX on cell growth and chlorophyll inhibition is in the order of xylenes>ethylbenzene>toluene>benzene. SMZ was found more sensitive to BTEX than Z at much lower concentrations between 0.005 and 5 μM. The combined effect of mixed BTEX on chlorophyll contents was shown to be concentration addition (CA). Results from this study suggested that E. gracilis could be a suitable model for monitoring BTEX in the groundwater and predicting the combined effects on aqueous ecosystem.
Collapse
Affiliation(s)
- Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia
| | - Jong-Wha Lee
- Department of Environmental Health, Soonchunhyang University, Asan-si, Chungcheongnam-do 336-745, Republic of Korea
| | - Homa Teimouri Sichani
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia.
| |
Collapse
|
15
|
Li M, Gao X, Wu B, Qian X, Giesy JP, Cui Y. Microalga Euglena as a bioindicator for testing genotoxic potentials of organic pollutants in Taihu Lake, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:633-640. [PMID: 24570293 DOI: 10.1007/s10646-014-1214-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
The microalga Euglena was selected as a bioindicator for determining genotoxicity potencies of organic pollutants in Meiliang Bay of Taihu Lake, Jiangsu, China among seasons in 2008. Several methods, including the comet assay to determine breaks in DNA and quantification of antioxidant enzymes were applied to characterize genotoxic effects of organic extracts of water from Taihu Lake on the flagellated, microalga Euglena gracilis. Contents of photosynthetic pigments, including Chl a, Chl b and carotenoid pigments were inversely proportion to concentrations of organic extracts to which E. gracilis was exposed. Organic extracts of Taihu Lake water also affected activities of superoxide dismutase (SOD) and peroxidase (POD) of E. gracilis. There were no statistically significant differences in SOD activities among seasons except in June but significant differences in POD activities were observed among all seasons. The metrics of DNA fragmentation in the alkaline unwinding assay (Comet assay), olive tail moment (OTM) and tail moment (TM), used as measurement endpoints during the genotoxicity assay were both greater when E. gracilis was exposed to organic of water collected from Taihu Lake among four seasons. It is indicated that the comet assay was useful for determining effects of constituents of organic extracts of water on E. gracilis and this assay was effective as an early warning to organic pollutants.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, 163 Xianlin Avenue, Nanjing, 210023, China,
| | | | | | | | | | | |
Collapse
|
16
|
Liu F, Liu Y, Jiang D, Zhang R, Cui Y, Li M. Health risk assessment of semi-volatile organic pollutants in Lhasa River China. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:567-576. [PMID: 24414987 DOI: 10.1007/s10646-014-1176-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
The semi-volatile organic compounds in Lhasa River were determined qualitatively and quantitatively by gas chromatography method with mass spectrometric detection. Total concentrations of 23 organic pollutants in samples from five sites ranged from 1.56 to 2.78 μg/L. The average concentrations for ΣPAEs, ΣPAHs and ΣBTEXs obtained in this study were 1.53, 0.33 and 0.51 μg/L, respectively. Moreover, the results of analysis of variable showed that there were significant differences (P < 0.05) among the sites for levels of ΣPAHs, ΣPAEs and ΣBTEXs. Cluster analysis was applied to detect spatial similarity for grouping of sites under the monitoring network. The results indicated that the five sites in this study could be divided into two significant groups, i.e. low and high pollutant groups. Health risk assessment was conducted by multimedia environmental goals (MEG), risk quotient (RQ) for each pollutant and hazard quotient (HQ) approach from USA ecological risk assessment (ERA) for screening stage. Calculated both total ambient severity and RQ were less than 1 and therefore minimal risk to human and ecological health. For analysis results of HQ, whether for the ingestion exposure or dermal adsorption pathway were all less than 1, the results also agreed with the RQ model and MEG model for evaluating the potential for adverse health effects due to exposure semi-volatile organic compounds from surface water. Therefore, SVOCs in Lhasa River posed little or no threat to the health of local consumers and ecological environment.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University (Xianlin Campus), 163 Xianlin Avenue, Nanjing, 210023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Wang W, Li M, Cui Y, Gao X, Chen K, Qian X. Potential health impact and genotoxicity analysis of drinking source water from Liuxihe Reservoir (P.R. China). ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:647-656. [PMID: 24429671 DOI: 10.1007/s10646-014-1181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Water from the Liuxihe Reservoir (a source of drinking water for Guangzhou City, P. R. China) was analyzed for semi-volatile organic compounds (SVOCs) and the results were used for a potential health impact assessment and genotoxicity test with the microalgae Euglena gracilis. The SVOCs were tested using USEPA Method 525.2, and the health risk assessment was conducted at a screening level using the hazard quotient (HQ) approach. Alkaline single-cell gel electrophoresis (comet assay) was used to evaluate DNA damage and determine the genotoxicity of the source water. The concentrations of the SVOCs in Liuxihe Reservoir were very low and phthalic acid esters were the main SVOCs present. The mean HQ values of pollutants were all less than one, indicating no risk. However, the lifetime carcinogenic risks (LCRs) were found to be close to the threshold of 1.00E-5. The results show that the water in the Liuxihe Reservoir might pose a potential carcinogenic risk to local residents. The highly concentrated extracts of the water samples could induce DNA damage in the microalgal cells and a dose-effect relationship was identified. These results showed that Liuxihe Reservoir water, as a source of drinking water, could pose a potential LCR to local consumers.
Collapse
Affiliation(s)
- Weili Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Campus, 163 Xianlin Avenue, Nanjing, 210023, China
| | | | | | | | | | | |
Collapse
|
18
|
Peng C, Arthur DM, Sichani HT, Xia Q, Ng JC. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ. CHEMOSPHERE 2013; 93:2381-2389. [PMID: 24034892 DOI: 10.1016/j.chemosphere.2013.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/03/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.
Collapse
Affiliation(s)
- Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Australia
| | | | | | | | | |
Collapse
|
19
|
Wu B, Liu S, Cheng S, Zhang Y, Zhang X. Hepatic gene expression analysis of mice exposed to raw water from Meiliang Bay, Lake Taihu, China. J Appl Toxicol 2012; 33:1416-23. [PMID: 22899542 DOI: 10.1002/jat.2805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 11/06/2022]
Abstract
Lake water is a micro-polluted water system, and characterization of its toxicity remains difficult. Microarray-based determination of altered gene expression might be an alterative approach. We chose raw water from Meiliang Bay, Lake Taihu, China as the target water. Male mice were exposed to the lake water for 90 days. Total hepatic RNA was applied to interrogate the Affymetrix Mouse Genome 430A 2.0 array. Gene ontology analysis, pathway analysis and gene network analysis were used to identify biological effects of differently expressed genes. The results showed that the expressions of 170 genes were altered. Nine biological processes and nine biological pathways were significantly perturbed (P ≤ 0.01), mainly linked to the regulation of cell processes, DNA repair, chromatin modification, oxidative reduction and carbohydrate metabolism. Important genes, such as Prkca, Pik3r1, Fgfr1 and Zbtb16, were identified by gene network analysis. This study provided excellent insights into early toxicological effects related to raw Lake Taihu water, and illustrated that the toxicogenomic approach might be a useful tool to evaluate potential environmental health effects of raw lake water.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Zhang Y, Zhang X, Wu B, Cheng S. Evaluating the transcriptomic and metabolic profile of mice exposed to source drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:78-83. [PMID: 21793498 DOI: 10.1021/es201369x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcriptomic and metabonomic methods were used to investigate mice's responses to drinking source water (DSW) exposure. After mice were fed with DSW for 90 days, hepatic transcriptome was characterized by microarray and serum metabonome were determined by (1)H nuclear magnetic resonance (NMR) spectroscopy. A total of 243 differentially expressed genes (DEGs) were identified, among which 141 genes were up-regulated and 102 genes were down-regulated. Metabonomics revealed significant changes in concentrations of creatine, pyruvate, glutamine, lysine, choline, acetate, lipids, taurine, and trimethylamine oxide. Four biological pathways were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis where both gene expression and metabolite concentrations were altered in response to DSW exposure. These results highlight the significance of combined use of transcriptomic and metabonomic approaches in evaluating potential health risk induced by DSW contaminated with various hazardous materials.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | | | | | | |
Collapse
|