1
|
Tong Y, Zhao X, Li H, Pei Y, Ma P, You J. Using homing pigeons to monitor atmospheric organic pollutants in a city heavily involving in coal mining industry. CHEMOSPHERE 2022; 307:135679. [PMID: 35839993 DOI: 10.1016/j.chemosphere.2022.135679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Coal is the most extensively used fossil fuel in China. It is well documented that coal combustion detrimentally affected air quality, yet the contribution of coal mining activity to air pollution is still largely unknown. Homing pigeons have been applied to assess the occurrence of atmospheric pollutants within cities. Herein, we sampled homing pigeons from both urban and mining areas in a typical coal industry city (Datong, China) as biomonitors for assessing local air pollution. Target organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were frequently detected in lung, liver, and fat tissues of the pigeons. The pollutants were predominately accumulated in lung, validating that respiration was the main accumulation route for these compounds in homing pigeons. In addition, pathological damage examination in lung and liver tissues revealed that the exposure to atmospheric pollutants impaired pigeon health. While the concentrations of PCBs and OCPs were similar in pigeons from urban and mining areas, the concentrations of PAHs were higher in pigeons from urban area. In contrast, more elevated levels of PBDEs (particularly BDE-209) were found in the mining area, which was consistent with the greater pathological damages and particulate matter levels. Unlike coal combustion, coal mining activities did not increase atmospheric PAH exposure to homing pigeons, but intensified PBDE contamination along with increasing emission of particulate matters. Overall, homing pigeons are promising biomonitors for assessing the respiratory exposure and risk of atmospheric pollutants within cities.
Collapse
Affiliation(s)
- Yujun Tong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Xiaoxi Zhao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Academic of Environmental Science, Guangzhou, 510045, China
| | - Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Yuanyuan Pei
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Development and Reform Institute, Guangzhou, 510040, China
| | - Ping Ma
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; Department of Eco-engineering, Guangdong Eco-Engineering Polytechnic, Guangzhou, 510520, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Cui J, Halbrook RS, Zang S, Masdo MA, Han S. Evaluation of homing pigeon feather tissue as a biomonitor of environmental metal concentrations in China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1521-1526. [PMID: 33755844 DOI: 10.1007/s10646-021-02387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment, and homing pigeons have been proposed as a biomonitor of atmospheric pollution. We evaluated metal concentrations in homing pigeon feather tissue as a biomonitoring tool. We measured cadmium, lead, and mercury concentrations in feathers collected from 5-6-yo homing pigeons from Guangzhou, Beijing, and Harbin, China during 2011, and feathers of 1, 5, and 10-yo homing pigeons collected from Guangzhou, Beijing, and Harbin, China during 2015-16. We compared metal concentrations in feathers between sexes and among ages and evaluated spatio-temporal differences. Correlations between feather metal concentrations and previously evaluated kidney and liver metal concentrations are reported. There were no significant differences in feather metal concentrations between male and female pigeons or among 1, 5, and 10-yo pigeons. Cadmium, lead, and mercury concentrations in feathers of 1-yo pigeons were significantly correlated with concentrations in liver and kidney tissues, although the correlations were not consistent. Spatio-temporal differences in feather metal concentrations suggest the usefulness of feathers in identifying areas of concern and remedial effectiveness. Homing pigeon feather metal concentrations appear to be useful as a screening biomonitoring tool.
Collapse
Affiliation(s)
- Jia Cui
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
- School of Management, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Richard S Halbrook
- Cooperative Wildlife Research Laboratory and Department of Zoology (Emeritus), Southern Illinois University, Carbondale, IL, 62901, USA
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China.
- Heilongjiang Province Cold Region Ecological Safety Collaborative and Innovation Center, Harbin, 150025, Heilongjiang, People's Republic of China.
| | | | - Shuang Han
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, People's Republic of China
| |
Collapse
|
3
|
Tkachenko H, Kurhaluk N, Hetmański T, Włodarkiewicz A, Tomin V. Changes in energetic metabolism and lysosomal destruction in the skeletal muscle and cardiac tissues of pigeons (Columba livia f. urbana) from urban areas of the northern Pomeranian region (Poland). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1170-1185. [PMID: 34076799 PMCID: PMC8295091 DOI: 10.1007/s10646-021-02423-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 05/05/2023]
Abstract
The aim of the present study was to evaluate the biochemical responses of the skeletal muscle and cardiac tissues of the urban pigeon as a bioindicator organism tested in diverse environments (Szpęgawa as a rural environment and Słupsk as an urban environment, Pomeranian Voivodeship, northern Poland), resulting in changes in the level of lipid peroxidation at the initial and final stages of this process and the activities of Krebs cycle enzymes (succinate dehydrogenase, pyruvate dehydrogenase, isocitrate dehydrogenase, and alfa-ketoglutarate dehydrogenase). Szpęgawa village was chosen due to the intensive use of the European motorway A1 with significant traffic and pollution levels. The concentration of Pb was higher in the soil and feathers of pigeons nesting in the polluted areas (Szpęgawa). Our studies have shown that the presence of lead in soil and feathers of the pigeons resulted in the activation of lipid peroxidation, destabilization and increased activity of lysosomal membranes, and activation of mitochondrial enzymes of the Krebs cycle with energy deficiency (reduction of ATP levels) in cardiac and skeletal muscle tissues simultaneously.
Collapse
Affiliation(s)
- Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Tomasz Hetmański
- Department of Earth Sciences, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Agnieszka Włodarkiewicz
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
4
|
Kurhaluk N, Tkachenko H, Hetmański T, Włodarkiewicz A, Tomin V. Profile of Heavy Metals and Antioxidant Defense in the Muscle Tissues of Pigeons (Columba livia f. urbana) from Anthropogenically Transformed Areas in the Pomeranian Region (Northern Poland). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:601-614. [PMID: 33721064 PMCID: PMC8026478 DOI: 10.1007/s00244-021-00825-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/21/2021] [Indexed: 05/03/2023]
Abstract
Pigeons can be successfully used as bioindicators of a contaminated environment. We studied the relationship between the functioning of the pro/antioxidant balance in muscle tissues (skeletal muscle and cardiac tissues) of pigeons (Columba livia f. urbana) living in areas with different levels of pollution (Pomeranian Voivodeship, Northern Poland). The current study demonstrated the impact of the environment with preferential high Pb contamination in soil and feathers of pigeons on the formation of adaptive redox mechanisms in muscle tissues. An increase in the intensity of lipid peroxidation (estimated by the TBARS level) accompanied by enhancement of the oxidative modification of proteins (aldehydic and ketonic derivatives) and an important decrease in the activity of antioxidant enzymes (SOD, CAT, and GR) in pigeon muscle tissue was observed. These changes in enzyme activities were dependent on the type of muscle tissue (skeletal muscle and cardiac tissues). Our results confirm the concept of the recalculation of the De Ritis ratio (AsAT/AlAT) in both types of muscles indicating the tendency to cardio- and hepatocellular damage and toxicity caused by heavy metals from the polluted environment.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland
| | - Tomasz Hetmański
- Department of Earth Sciences, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Agnieszka Włodarkiewicz
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
5
|
González-Gómez X, Simal-Gándara J, Fidalgo Alvarez LE, López-Beceiro AM, Pérez-López M, Martínez-Carballo E. Non-invasive biomonitoring of organic pollutants using feather samples in feral pigeons (Columba livia domestica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115672. [PMID: 33254606 DOI: 10.1016/j.envpol.2020.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
A large portion of organic pollutants (OPs) represent a potential hazard to humans and living beings due to their toxic properties. For several years, birds have been used as biomonitor species of environmental pollution. Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl ethers (PBDEs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and pyrethroids (PYRs) were assessed in body feather samples of 71 feral pigeons (Columba livia domestica) collected from Asturias and Galicia (NW Spain). The percentage of detection for all chemical groups were above 90% in studied birds. The general pattern was dominated by PAHs (mean value ± standard deviation (SD) 32 ± 15 ng/g) followed by OCPs (3.8 ± 1.1 ng/g), PYRs (3.4 ± 3.8 ng/g), PCBs (1.6 ± 1.0 ng/g), OPPs (1.3 ± 0.70 ng/g) and PBDEs (0.80 ± 0.30 ng/g). Significant differences were observed between age, location and gender suggesting different sources of exposure and accumulation pathways.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, 32004, Ourense, Spain.
| | - Jesús Simal-Gándara
- Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, 32004, Ourense, Spain.
| | - Luis Eusebio Fidalgo Alvarez
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, 27003, Spain.
| | - Ana María López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, University of Santiago de Compostela, Lugo, 27003, Spain.
| | - Marcos Pérez-López
- Toxicology Area, Faculty of Veterinary Medicine (UEX), Caceres, 10003, Spain.
| | - Elena Martínez-Carballo
- Analytical and Food Chemistry Department, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, 32004, Ourense, Spain.
| |
Collapse
|
6
|
Cui J, Halbrook RS, Zang S, Han S, Li X. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:169-174. [PMID: 29273855 DOI: 10.1007/s10646-017-1882-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2017] [Indexed: 05/20/2023]
Abstract
Atmospheric pollution in urban areas is a major worldwide concern with potential adverse impacts on wildlife and humans. Biomonitoring can provide direct evidence of the bioavailability and bioaccumulation of toxic metals in the environment that is not available with mechanical air monitoring. The current study continues our evaluation of the usefulness of homing pigeon lung tissue as a biomonitor of atmospheric pollution. Homing pigeons (1-2, 5-6, and 9-10+ year old (yo)) collected from Guangzhou during 2015 were necropsied and concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) were measured in lung tissue. Lung Cd and Pb concentrations were significantly greater in 9-10+-year-old pigeons compared with those in other age groups, indicating their bioavailability and bioaccumulation. Lung Pb and Cd concentrations measured in 5-yo pigeons collected from Guangzhou during 2015 were significantly lower than concentrations reported in 5-yo homing pigeons collected from Guangzhou during 2011 and correlated with concentrations measured using mechanical air monitoring. In addition to temporal differences, spatial differences in concentrations of Cd, Pb, and Hg reported in ambient air samples and in pigeon lung tissues collected from Beijing and Guangzhou are discussed.
Collapse
Affiliation(s)
- Jia Cui
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin, Heilongjiang, 150025, PR China
| | - Richard S Halbrook
- Cooperative Wildlife Research Laboratory, Southern Illinois University (Emeritus), Carbondale, IL, 62901, USA
| | - Shuying Zang
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin, Heilongjiang, 150025, PR China.
| | - Shuang Han
- College of Geographical Science, Harbin Normal University, Harbin, Heilongjiang, 150025, PR China
| | - Xinyu Li
- College of Geographical Science, Harbin Normal University, Harbin, Heilongjiang, 150025, PR China
| |
Collapse
|
7
|
Pei Y, Halbrook RS, Li H, You J. Homing pigeons as a biomonitor for atmospheric PAHs and PCBs in Guangzhou, a megacity in South China. MARINE POLLUTION BULLETIN 2017; 124:1048-1054. [PMID: 27823830 DOI: 10.1016/j.marpolbul.2016.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 05/20/2023]
Abstract
UNLABELLED The occurrence of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) in urban atmosphere in Guangzhou, China were assessed using homing pigeons as a biomonitor. Contaminant concentrations in lung were significantly higher than those in liver and fat, indicating chemical uptake was mainly through respiratory route. Tricyclic PAHs and low chlorinated PCBs dominated composition of PAHs and PCBs in homing pigeons, similar as their composition in local atmosphere. Different age-dependent bioaccumulation patterns were noted for PAHs and PCBs. For 1-year old homing pigeons, higher levels of PAHs and PCBs in lung and liver tissues were probably ascribed to more intense flying than 5- and 10-year groups. Fat concentrations of PCBs were greater in aged pigeons than 1-year old pigeons, but PAH concentrations in fat slightly decreased in aged pigeons because of relatively fast biotransformation. Overall, homing pigeons could serve as a suitable biomonitor for urban atmospheric contaminants in coastal cities. CAPSULE Homing pigeons could serve as a good biomonitor for PAHs and PCBs in urban atmosphere, yet different biotransformation potential of the chemicals caused different bioaccumulation patterns in pigeon fat.
Collapse
Affiliation(s)
- Yuanyuan Pei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard S Halbrook
- Cooperative Wildlife Research Laboratory, Southern Illinois University (Emeritus), Carbondale, IL 62091, USA
| | - Huizhen Li
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jing You
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Cai F, Calisi RM. Seasons and neighborhoods of high lead toxicity in New York City: The feral pigeon as a bioindicator. CHEMOSPHERE 2016; 161:274-279. [PMID: 27441986 DOI: 10.1016/j.chemosphere.2016.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 05/21/2023]
Abstract
Human-induced rapid environmental change has created a global pandemic of neurobehavioral disorders in which industrial compounds like lead are the root cause. We assessed the feral pigeon (Columba livia) as a lead bioindicator in New York City. We collected blood lead level records from 825 visibly ill or abnormally behaving pigeons from various NYC neighborhoods between 2010 and 2015. We found that blood lead levels were significantly higher during the summer, an effect reported in children. Pigeon blood lead levels were not significantly different between years or among neighborhoods. However, blood lead levels per neighborhood in Manhattan were positively correlated with mean rates of lead in children identified by the NYC Department of Health and Mental Hygiene as having elevated blood lead levels (>10 μg/dl). We provide support for the use of the feral pigeon as a bioindicator of environmental lead contamination for the first time in the U.S. and for the first time anywhere in association with rates of elevated blood lead levels in children. This information has the potential to enable measures to assess, strategize, and potentially circumvent the negative impacts of lead and other environmental contaminants on human and wildlife communities.
Collapse
Affiliation(s)
- Fayme Cai
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York City, NY, USA
| | - Rebecca M Calisi
- Department of Biology, Barnard College, Columbia University, New York City, NY, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Cui J, Halbrook RS, Zang S, You J. Use of homing pigeons as biomonitors of atmospheric metal concentrations in Beijing and Guangzhou, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:439-46. [PMID: 26703383 DOI: 10.1007/s10646-015-1601-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 05/20/2023]
Abstract
Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment and in the current study, homing pigeons were used as a biomonitor of atmospheric pollution in Beijing and Guangzhou, China. Cadmium (Cd), lead (Pb), and mercury (Hg) concentrations were measured in lung, kidney, and liver tissues of 25 homing pigeons collected from Beijing (n = 15) and Guangzhou (n = 10). Cadmium concentrations in all tissue and lung Pb concentrations were significantly greater in pigeons collected from Guangzhou compared to those collected from Beijing. Lung Cd and Pb concentrations corresponded to differences in ambient air concentrations between the two cities, suggesting that homing pigeons are valuable biomonitors of atmospheric metal contamination. Liver and kidney Hg concentrations were significantly greater in pigeons collected from Beijing compared to those collected from Guangzhou, while Hg concentrations in lung tissue were not significantly different. Results of the current study support a conclusion that homing pigeons provide valuable data for evaluating exposure and potential effects to environmental metal concentrations.
Collapse
Affiliation(s)
- Jia Cui
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | - Richard S Halbrook
- Cooperative Wildlife Research Laboratory, Southern Illinois University (Emeritus), Carbondale, IL, 62901, USA
| | - Shuying Zang
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China.
| | - Jing You
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
10
|
Elliott JE, Brogan J, Lee SL, Drouillard KG, Elliott KH. PBDEs and other POPs in urban birds of prey partly explained by trophic level and carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:157-65. [PMID: 25897724 DOI: 10.1016/j.scitotenv.2015.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 05/18/2023]
Abstract
As urban sprawl and agricultural intensification continue to invade prime wildlife habitat, some animals, even apex predators, are managing to adapt to this new environment. Chemical pollution is one of many stressors that wildlife encounter in urban environments. Predators are particularly sensitive to persistent chemical pollutants because they feed at a high trophic level where such pollution is biomagnified. To examine levels of pollution in urban birds of prey in the Lower Mainland region of British Columbia, Canada, we analyzed persistent organic contaminants in adult birds found dead of trauma injury. The hepatic geometric mean concentration of sum polybrominated diphenyl ethers (∑PBDEs) in 13 Cooper's hawks (Accipiter cooperii) from Greater Vancouver was 1873 ng/g (lipid weight) with one bird reaching 197,000n g/g lipid weight, the highest exposure reported to date for a wild bird. Concentrations of ∑PBDEs, ∑PCBs (polychlorinated biphenyls) and, surprisingly, cyclodiene insecticides were greatest in the urban environment while those of DDE (1,1-dichloroethylene bis[p-chlorophenyl) were highest in a region of intensive agriculture. The level of most chlorinated and brominated contaminants increased with trophic level (δ(15)N). The concentrations of some contaminants, PBDEs in particular, in these birds of prey may have some toxicological consequences. Apex predators in urban environments continue to be exposed to elevated concentrations of legacy pollutants as well as more recent brominated pollutants.
Collapse
Affiliation(s)
- John E Elliott
- Environment Canada, Science & Technology Branch, Pacific Wildlife Research Centre, Delta, British Columbia V4K 3N2, Canada; Department of Biological Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jason Brogan
- Department of Biological Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sandi L Lee
- Environment Canada, Science & Technology Branch, Pacific Wildlife Research Centre, Delta, British Columbia V4K 3N2, Canada
| | - Ken G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
11
|
Cui J, Wu B, Halbrook RS, Zang S. Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1490-7. [PMID: 24100781 DOI: 10.1007/s10646-013-1135-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 05/20/2023]
Abstract
Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment. In the current study, 1-2, 5-6, and 9-10+ year old homing pigeons collected from the Haidian District of Beijing during 2011 were necropsied and concentrations of cadmium, lead, and mercury were measured in liver, lung, and kidney tissue. At necropsy, gray/black discoloration of the margins of the lungs was observed in 98 % of the pigeons. There were no significant differences in metal concentrations as a function of gender. Cadmium concentrations in all tissues and Pb concentrations in the lung tissues were significantly greater in 9-10+ year old pigeons compared to other age groups indicating that Cd and Pb were bioavailable. Mercury concentrations were not significantly different among age groups. Cadmium concentrations in kidney and lung tissues of 9-10+ year old pigeons were similar to or exceeded concentrations of Cd reported in pigeons from another high traffic urban area and most wild avian species from Korea suggesting that Cd in this region of Beijing may be of concern. Homing pigeons provide valuable exposure and bioaccumulation data not readily available from air monitoring alone, thus providing information regarding potential health effects in wildlife and humans in urban areas. As environmental quality standards are implemented in China, homing pigeons will serve as a valuable bio-monitor of the efficacy of these actions.
Collapse
Affiliation(s)
- Jia Cui
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin, 150025, Heilongjiang, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Cizdziel JV, Dempsey S, Halbrook RS. Preliminary evaluation of the use of homing pigeons as biomonitors of mercury in urban areas of the USA and China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:302-307. [PMID: 23229303 DOI: 10.1007/s00128-012-0918-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
Mercury was determined in the tissues (feather, lung, liver, and kidney) of homing pigeons (Columbia livia domestica) from both the USA (Glendora, California and Midland, Texas) and China (Beijing and Chengdu). Among these cities, mercury concentrations were greatest in samples from Beijing, which is known to have relatively high levels of airborne mercury. Among the tissues, levels were highest in the feather, followed by kidney, liver, and lung. There was no significant trend for mercury with pigeon age, weight, or sex, except for mercury with bird weight in the lung of the Beijing samples. Overall, the data adds to the growing body of evidence that the homing pigeon can serve as a useful biomonitor in urban areas.
Collapse
Affiliation(s)
- James V Cizdziel
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | | | | |
Collapse
|
13
|
|