1
|
da Luz DS, Guimarães PS, Castro MS, Primel EG, Giroldo D, Martins CDMG. Effects of the Pesticide Carbofuran on Two Species of Chlorophyceae (Desmodesmus communis and Pseudopediastrum boryanum) and Their Pesticide Bioremediation Ability. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38153230 DOI: 10.1002/etc.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum pesticides. We evaluated the effects of carbofuran on two species of microalgae, Pseudopediastrum boryanum and Desmodesmus communis, through measurements of cell viability, biomass, chlorophyll content, and the production of reactive oxygen species (ROS). The ability of these algae to remove carbofuran dissolved in the media was also determined. For the evaluations, both microalgae species were exposed to carbofuran (FURADAN 350 SC®) at concentrations of 100, 1000, and 10,000 µg L-1 for 7 days. Algae cell viability and chlorophyll-a concentration were not affected by the presence of carbofuran. Both species grew when exposed to the pesticide; however, the microalgae D. communis grew less than its respective control when exposed to the highest concentration (10,000 µg L-1 of carbofuran), indicating an adverse effect of the pesticide on this species. A significant increase in ROS production was observed in D. communis and P. boryanum when exposed to the highest concentration tested. The microalgae P. boryanum completely removed carbofuran in the media within 2 days, regardless of the concentration, whereas D. communis achieved the same result only after 5 days of exposure. Growth inhibition was observed only until the disappearance of carbofuran from the media. The present study suggests the use of microalgae, mainly P. boryanum, as potential tools for the remediation of environments contaminated by carbofuran because of their resistance to the insecticide and their ability to remove it rapidly from water. Environ Toxicol Chem 2024;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Daniéli Saul da Luz
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Muryllo Santos Castro
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ednei Giberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Danilo Giroldo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
2
|
Nam SH, Lee J, An YJ. The potential of Euglena species as a bioindicator for soil ecotoxicity assessment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109586. [PMID: 36858138 DOI: 10.1016/j.cbpc.2023.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Currently, there are no standard international test methods for assessing aquatic and soil toxicity, with aquatic toxicity tests based on limited Euglena species. Here, we proposed Euglena species as extended test species, especially as new soil test species for a paper-disc soil method, considering its ecologically important roles in providing highly bioavailable in-vivo nutrients to upper trophic level organisms. We conducted experiments to identify the optimal exposure duration for two Euglena species (Euglena viridis and Euglena geniculata). We demonstrated the toxic effects of nickel (model contaminant) on their photosynthetic parameters and growth in freshwater. The growth and photosynthetic activity of three Euglena species were significantly inhibited in nickel-contaminated soil during paper-disc soil tests, especially the test species adsorbed onto paper-disc soil. Euglena gracilis was more sensitive to nickel than E. viridis and E. geniculata in freshwater and soil. Thus, E. viridis and E. geniculata have potential as additional test species for improving test species diversity, while all three species have potential as new soil test species for soil toxicity assessment. Thus, results these species may be suitable for routine aquatic toxicity testing and new soil toxicity testing, addressing the current paucity of test species in freshwater and soil toxicity assessment.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Lu T, Zhang T, Yang W, Yang B, Cao J, Yang Y, Li M. Molecular Toxicity Mechanism Induced by the Antibacterial Agent Triclosan in Freshwater Euglena gracilis Based on the Transcriptome. TOXICS 2023; 11:toxics11050414. [PMID: 37235229 DOI: 10.3390/toxics11050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated to have high toxicological potential and adversely affects the water bodies. Since algae are one of the most significant primary producers on the planet, understanding the toxicological processes of TCS is critical for determining its risk in aquatic ecosystems and managing the water environment. The physiological and transcriptome changes in Euglena gracilis were studied in this study after 7 days of TCS treatment. A distinct inhibition ratio for the photosynthetic pigment content in E. gracilis was observed from 2.64% to 37.42% at 0.3-1.2 mg/L, with TCS inhibiting photosynthesis and growth of the algae by up to 38.62%. Superoxide dismutase and glutathione reductase significantly changed after exposure to TCS, compared to the control, indicating that the cellular antioxidant defense responses were induced. Based on transcriptomics, the differentially expressed genes were mainly enriched in biological processes involved in metabolism pathways and microbial metabolism in diverse environments. Integrating transcriptomics and biochemical indicators found that changed reactive oxygen species and antioxidant enzyme activities stimulating algal cell damage and the inhibition of metabolic pathways controlled by the down-regulation of differentially expressed genes were the main toxic mechanisms of TCS exposure to E. gracilis. These findings establish the groundwork for future research into the molecular toxicity to microalgae induced by aquatic pollutants, as well as provide fundamental data and recommendations for TCS ecological risk assessment.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Lihanová D, Lukáčová A, Beck T, Jedlička A, Vešelényiová D, Krajčovič J, Vesteg M. Versatile biotechnological applications of Euglena gracilis. World J Microbiol Biotechnol 2023; 39:133. [PMID: 36959517 DOI: 10.1007/s11274-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Euglena gracilis is a freshwater protist possessing secondary chloroplasts of green algal origin. Various physical factors (e.g. UV) and chemical compounds (e.g. antibiotics) cause the bleaching of E. gracilis cells-the loss of plastid genes leading to the permanent inability to photosynthesize. Bleaching can be prevented by antimutagens (i.e. lignin, vitamin C and selenium). Besides screening the mutagenic and antimutagenic activity of chemicals, E. gracilis is also a suitable model for studying the biological effects of many organic pollutants. Due to its capability of heavy metal sequestration, it can be used for bioremediation. E. gracilis has been successfully transformed, offering the possibility of genetic modifications for synthesizing compounds of biotechnological interest. The novel design of the "next generation" transgenic expression cassettes with respect to the specificities of euglenid gene expression is proposed. Moreover, E. gracilis is a natural source of commercially relevant bioproducts such as (pro)vitamins, wax esters, polyunsaturated fatty acids and paramylon (β-1,3-glucan). One of the highest limitations of large-scale cultivation of E. gracilis is its disability to synthesize essential vitamins B1 and B12. This disadvantage can be overcome by co-cultivation of E. gracilis with other microorganisms, which can synthesize sufficient amounts of these vitamins. Such co-cultures can be used for the effective accumulation and harvesting of Euglena biomass by bioflocculation.
Collapse
Grants
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
Collapse
Affiliation(s)
- Diana Lihanová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Alexandra Lukáčová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Terézia Beck
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Andrej Jedlička
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Dominika Vešelényiová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia.
| |
Collapse
|
5
|
Yu T, Xu X, Mao H, Han X, Liu Y, Zhang H, Lai J, Gu J, Xia M, Hu C, Li D. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1539-1554. [PMID: 36266516 DOI: 10.1007/s10695-022-01134-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fenpropathrin has been a commonly used insecticide to control agricultural and household insects over a few decades. Up to now, fenpropathrin residue in soil and water has been often determined due to its widespread use, which poses serious threat to environment and aquatic organisms. The potential of fenpropathrin to affect aquatic lives is still poorly understood. In this study, we used zebrafish (Danio rerio) embryo as an experimental model system to evaluate the toxicity of fenpropathrin to the development of zebrafish nervous system. Zebrafish embryos were separately exposed to fenpropathrin at the dose of 0.016 mg/L, 0.032 mg/L, 0.064 mg/L, starting at 6 h post-fertilizationhpf (hpf) up to 96 hpf. The results showed that fenpropathrin exposure gives rise to physiological, behavioral, and neurodevelopmental impairments in zebrafish embryos, including enhanced acetylcholinesterase (AChE) activity, abnormal swimming behavior, karyopyknosis in brain cells, increased intercellular space, and uneven migration of neuron in brain area. In addition, the expressions of genes concerning neurodevelopment and neurotransmitter system were inhibited following fenpropathrin exposure. We also found that fenpropathrin exposure distinctly induced oxidative stress by increasing reactive oxygen species (ROS) generation and inhibiting the production of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Expectedly, some apoptosis-associated genes were induced and the apoptosis appeared in the brain and heart cells of zebrafish embryos. Moreover, fenpropathrin exposure also inhibited the expressions of genes in Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1) and SOD. In summary, the results of this study indicate that oxidative stress-triggered apoptosis may be an underlying fundamental of fenpropathrin-induced neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jingli Lai
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jianfeng Gu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Mengling Xia
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
- School of Basic Medical Sciences, Fuzhou Medical College, Nanchang University, Fuzhou, 344000, Jiangxi, China.
| |
Collapse
|
6
|
Rezende-Teixeira P, Dusi RG, Jimenez PC, Espindola LS, Costa-Lotufo LV. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118983. [PMID: 35151812 DOI: 10.1016/j.envpol.2022.118983] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 05/27/2023]
Abstract
Worldwide pesticide usage was estimated in up to 3.5 million tons in 2020. The number of approved products varies among different countries, however, in Brazil, there are nearly 5000 of such products available. Among them, insecticides correspond to a group of mounting importance for controlling crop pests and disease-associated vectors in public health. Unfortunately, resistance to commercially approved insecticides is commonly observed, limiting the use of these products. Thus, the search for more effective and environmentally friendly products is both a challenge and a necessity since several insecticides are no longer allowed in many countries. In this review, we discuss the historical strategies used in the development of modern insecticides, including chemical structure alterations, mechanism of action and their impact on insecticidal activity. The environmental impact of each pesticide class is also discussed, with persistence data and activity on non-target organisms, along with the human toxicological effect. By tracing the historical route of discovery and development of blockbuster pesticides like DDT, pyrethroids and organophosphates, we also aim to categorize and relate the successful chemical alterations and novel pesticide development strategies that resulted in safer alternatives. A brief discussion on the Brazilian registration procedure and a perspective of insecticides currently approved in the country was also included.
Collapse
Affiliation(s)
- Paula Rezende-Teixeira
- Laboratório de Farmacologia Marinha, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Renata G Dusi
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, 70910-900, Brazil
| | - Paula C Jimenez
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Laila S Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, 70910-900, Brazil
| | - Letícia V Costa-Lotufo
- Laboratório de Farmacologia Marinha, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Corrigendum to ‘Removal efficiency of marine filamentous Cyanobacteria for Pyrethroids and their effects on the biochemical parameters and growth’ [Algal Res. 60 (2021) 102546]. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Removal efficiency of marine filamentous Cyanobacteria for Pyrethroids and their effects on the biochemical parameters and growth. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Xia M, Wang X, Xu J, Qian Q, Gao M, Wang H. Tris (1-chloro-2-propyl) phosphate exposure to zebrafish causes neurodevelopmental toxicity and abnormal locomotor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143694. [PMID: 33267995 DOI: 10.1016/j.scitotenv.2020.143694] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The organophosphate flame retardant, tris (1-chloro-2-propyl) phosphate (TCPP), is ubiquitous in environmental matrices; however, there is a paucity of information concerning its systemic toxicity. Herein, we investigated the effects of TCPP exposure on zebrafish neurodevelopment and swimming behavior to elucidate the underlying molecular mechanisms of neurotoxicity. Under TCPP gradient concentration exposure, the hatching rates were declined by up to 33.3% in 72 hpf, and the malformation rates increased from 15% to 50%. Meanwhile, TCPP led to abnormal behaviors including decreased locomotive activity in the dark and slow/insensitive responses to sound and light stimulation of larvae. TCPP caused excessive apoptosis and ROS accumulation in early embryonic development, with hair cell defects and structural deformity of neuromast. Abnormal expression of neurodevelopment (pax6a, nova1, sox11b, syn2a, foxo3a and robo2) and apoptosis-related genes (baxa, bcl2a and casp8) revealed molecular mechanisms regarding abnormal behavioral and phenotypic symptoms. Chronic TCPP exposure led to anxiety-like behavior and excessive panic, lower capacity for discrimination and risk avoidance, and conditioned place preference in adults. Social interaction tests demonstrated that long-term TCPP stress resulted in unsociable, eccentric, lonely and silent behaviors in adults. Zebrafish memory and cognitive function were severely reduced as concluded from T-maze tests. Potential mechanisms triggering behavioral abnormality were attributed to histopathological injury of diencephalon, abnormal changes in nerve-related genes at transcription and expression levels, and inhibited activity of AChE by TCPP stress. These findings provide an important reference for risk assessment and early warning to TCPP exposure, and offer insights for prevention/mitigation of pollutant-induced nervous system diseases.
Collapse
Affiliation(s)
- Min Xia
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiaqi Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ming Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
11
|
Moreira RA, Rocha GS, da Silva LCM, Goulart BV, Montagner CC, Melão MDGG, Espindola ELG. Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111180. [PMID: 32861006 DOI: 10.1016/j.ecoenv.2020.111180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of pesticides and their mixtures in the environment can alter the ecological relationships between aquatic food chains. Since fipronil and 2,4-dichlorophenoxyacetic acid (2,4-D) are commonly found together in Brazilian water bodies, the present study aimed to investigate through an integrative approach the toxicity mechanisms of environmentally relevant concentrations of pesticides Regent® 800 WG (active ingredient - a.i. fipronil), DMA® 806 BR (a.i. 2,4-D) isolated and in mixtures on the green alga Raphidocelis subcapitata using multiple parameters: physiological (growth rate and chlorophyll a fluorescence), morphological (cell complexity and size), biochemical (composition of lipid classes) and related to the photosynthetic activity (variable fluorescence, the maximum quantum yield of the photosystem II - PSII - and the efficiency of the oxygen evolving complex - OEC - of PSII). The results indicated that fipronil significantly inhibited algal population growth, increased the chlorophyll a content (observed by fluorescence), cell size and lipid class content of triacylglycerol (TAG), free fatty acid (FFA) and acetone mobile polar lipid (AMPL) and, on the other hand, decreased variable fluorescence of algae. The tested concentrations of 2,4-D increased the chlorophyll a fluorescence, the cell size and the lipid classes TAG and FFA. The pesticide mixtures have had more effects on algae than isolated compounds, causing alterations in all parameters analyzed, including photosynthetic activity (maximum quantum yield and efficiency of the oxygen evolving complex of the PSII), in which no alterations were observed for the toxicity of the single pesticides. The results suggest that these analyses are important to evaluate pesticide toxicity mechanisms in ecological risk assessments of tropical regions. Thus, here we demonstrate the importance of using multiple parameters in ecotoxicological studies to obtain a better understanding of the toxicity of these compounds for phytoplankton.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Giseli Swerts Rocha
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Evaldo Luiz Gaeta Espindola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
12
|
Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Daam MA, Rocha O, Seleghim MHR. Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110829. [PMID: 32531577 DOI: 10.1016/j.ecoenv.2020.110829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of the insecticide carbofuran and herbicide diuron (individually and in mixture) to the invertebrates Paramecium caudatum and Ceriodaphnia silvestrii was evaluated. Acute and chronic toxicity tests were carried out with the diuron and carbofuran active ingredients and their commercial products, Diuron Nortox® 500 SC and Furadan® 350 SC, respectively. Individual toxicity tests showed that C. silvestrii was more sensitive to both carbofuran and diuron than P. caudatum. In single exposures, both pesticides caused adverse effects to C. silvestrii in environmentally relevant concentrations (48 h EC50 = 0.001 mg L-1 and 8 d LOEC = 0.00038 mg L-1 for formulated carbofuran; 8 d LOEC < 0.05 mg L-1 for formulated diuron). For P. caudatum, carbofuran and diuron in single exposures were only slightly toxic (24 h IC50 = 5.1 mg L-1 and 6.9 mg L-1 for formulated carbofuran and diuron, respectively). Acute and chronic exposures to diuron and carbofuran mixtures caused significant deviations of the toxicity predicted by the Concentration Addition and Independent Action reference models for both test species. For the protozoan P. caudatum, a dose-dependent deviation was verified for mortality, with synergism caused mainly by carbofuran and antagonism caused mainly by diuron. For protozoan population growth, however, an antagonistic deviation was observed when the active ingredient mixtures were tested. In the case of C. silvestrii, antagonism at low concentrations and synergism at high concentrations were revealed after acute exposure to active ingredient mixtures, whereas for reproduction an antagonistic deviation was found. Commercial formulation mixtures presented significantly higher toxicity than the active ingredient mixtures. Our results showed that carbofuran and diuron interact and cause different toxic responses than those predicted by the individually tested compounds. Their mixture toxicity should therefore be considered in risk assessments as these pesticides are likely to be present simultaneously in edge-of-field waterbodies.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Hugo C Dornfeld
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Emanuela C Freitas
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
13
|
Dutta J, Baruah P. Evaluating differential effect of deltamethrin and carbofuran on growth characteristics of Westiellopsis prolifica Janet, a dominant nitrogen fixing cyanobacterium of tropical rice field ecosystem. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Sarasamma S, Audira G, Juniardi S, Sampurna BP, Liang ST, Hao E, Lai YH, Hsiao CD. Zinc Chloride Exposure Inhibits Brain Acetylcholine Levels, Produces Neurotoxic Signatures, and Diminishes Memory and Motor Activities in Adult Zebrafish. Int J Mol Sci 2018; 19:ijms19103195. [PMID: 30332818 PMCID: PMC6213992 DOI: 10.3390/ijms19103195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Bonifasius Putera Sampurna
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, No. 55 Hwa-Kang Rd, Taipei 11114, Taiwan.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
15
|
Xiao Y, Zhao P, Yang Y, Li M. Ecotoxicity evaluation of natural suspended particles using the microalga, Euglena gracilis. CHEMOSPHERE 2018; 206:802-808. [PMID: 29804002 DOI: 10.1016/j.chemosphere.2018.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
As vectors for pollutants, suspended particles (SPs) have been studied for many years. However, limited studies have focused on the ecotoxicity of natural SPs. This study examined ecotoxicity of natural SPs isolated from Gonghu Bay and its Ecological Restoration Area (ERA) water samples by Tangential Flow Filtration (TFF) using the microalga Euglena gracilis as a model organism. Effects of SPs on algae growth, photosynthesis pigment contents, superoxide dismutase (SOD) activity and DNA damage were characterized to determine the effects of ecological restoration. Additionally, SPs were separated into nanoscale (<1 μm diameter) and common-scale (≥1 μm diameter) groups by size, to compare the differences in toxicity of SPs with different sizes. We found, in naturally occurring concentrations in Gonghu Bay, nanoscale SPs were more toxic than common-scale ones. However, no significant adverse effects were detected in the nanoscale SPs from the ERA, which demonstrated that ecological restoration might reduce the toxicity of nanoscale SPs. The results were supported by the inhibition of growth, SOD activities and DNA damage, while no adverse influences were detected on pigment contents of E. gracilis in all the treated groups. Our study provides new insights into the toxic effects of SPs.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Gil FN, Gonçalves AC, Becker JD, Viegas CA. Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:871-889. [PMID: 29611082 DOI: 10.1007/s10646-018-1929-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Accidental spills and misuse of pesticides may lead to current and/or legacy environmental contamination and may pose concerns regarding possible risks towards non-target microbes and higher eukaryotes in ecosystems. The present study was aimed at comparing transcriptomic responses to effects of sub-lethal levels of six environmentally relevant pesticide active substances in the Saccharomyces cerevisiae eukaryotic model. The insecticide carbofuran, the fungicide pyrimethanil and the herbicides alachlor, S-metolachlor, diuron and methyl(4-chloro-2-methylphenoxy)acetate were studied. Some are currently used agricultural pesticides, while others are under restricted utilization or banned in Europe and/or North America albeit being used in other geographical locations. In the present work transcriptional profiles representing genome-wide responses in a standardized yeast population upon 2 h of exposure to concentrations of each compound exerting equivalent toxic effects, i.e., inhibition of growth by 20% relative to the untreated control cells, were examined. Hierarchical clustering and Venn analyses of the datasets of differentially expressed genes pointed out transcriptional patterns distinguishable between the six active substances. Functional enrichment analyses allowed predicting mechanisms of pesticide toxicity and response to pesticide stress in the yeast model. In general, variations in transcript numbers of selected genes assessed by Real-Time quantitative reverse transcription polymerase chain reaction confirmed microarray data and correlated well with growth inhibitory effects. A possible biological relevance of mechanistic predictions arising from these comparative transcriptomic analyses is discussed in the context of better understanding potential modes of action and adverse side-effects of pesticides.
Collapse
Affiliation(s)
- Fátima N Gil
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Alina C Gonçalves
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande N°6, 2780-156, Oeiras, Portugal
| | - Cristina A Viegas
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av Rovisco Pais, 1049-001, Lisboa, Portugal.
- Department of Bioengineering, IST, UL, Av Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
17
|
Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Sarmento H, Rocha O, Seleghim MHR. Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:312-321. [PMID: 28433596 DOI: 10.1016/j.ecoenv.2017.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
In aquatic environments, organisms are often exposed to mixtures of several pesticides. In this study, the effects of carbofuran and diuron and their mixtures on the microalgae Raphidocelis subcapitata were investigated. For this purpose, toxicity tests were performed with the single compounds (active ingredients and commercial formulations) and their combinations (only active ingredients). According to the results, the toxicity of active ingredients and their commercial formulations to R. subcapitata was similar. In the single exposures, both carbofuran and diuron inhibited significantly the R. subcapitata growth and caused physiological (chlorophyll a content) and morphological (complexity and cell size) changes in cells, as captured by flow cytometry single-cell properties. Regarding the mixture toxicity tests, data fitted to both reference models, concentration addition (CA) and independent action (IA), and evidenced significant deviations. After the CA fitting, dose-ratio dependent deviation had the best fit to the data, demonstrating synergism caused mainly by diuron and antagonism caused mainly by carbofuran. After fitting the IA model, a synergistic deviation represented the best fit for the diuron and carbofuran mixtures. In general, the two reference models indicated the occurrence of synergism in the mixtures of these compounds, especially when diuron was the dominant chemical in the combinations. The increased toxicity caused by the mixture of these pesticides could pose a greater environmental risk for phytoplankton. Thus, exposure to diuron and carbofuran mixtures must also be considered in risk assessments, since the combination of these compounds may result in more severe effects on algae population growth than single exposures.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Hugo C Dornfeld
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Emanuela C Freitas
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
18
|
Differential physiological, oxidative and antioxidative responses of cyanobacterium Anabaena sphaerica to attenuate malathion pesticide toxicity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Shakir SK, Kanwal M, Murad W, Daud MK, Azizullah A. Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:329-341. [PMID: 26603051 DOI: 10.1007/s10646-015-1591-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Pesticides are highly toxic substances. Their toxicity may not be absolutely specific to the target organisms but can adversely affect different processes in the non-target host plants. In the present study, the effect of over application of four commonly used pesticides (emamectin benzoate, alpha-cypermethrin, lambda-cyhalothrin and imidacloprid) was evaluated on the germination, seedling vigor and photosynthetic pigments in tomato. The obtained results revealed that seed germination was decreased by the pesticides and this effect was more prominent at early stages of exposure. All the tested pesticides reduced the growth of tomato when applied in higher concentration than the recommended dose, but at lower doses the pesticides had some stimulatory effects on growth as compared to the control. A similar effect of pesticides was observed on the photosynthetic pigments, i.e. a decrease in pigments concentrations was caused at higher doses but an increase was observed at lower doses of pesticides. The calculation of EC50 values for different parameters revealed the lowest EC50 values for emamectin (ranged as 51-181 mg/L) followed by alpha-cypermethrin (191.74-374.39), lambda-cyhalothrin (102.43-354.28) and imidacloprid (430.29-1979.66 mg/L). A comparison of the obtained EC50 values for different parameters of tomato with the recommended doses revealed that over application of these pesticides can be harmful to tomato crop. In a few cases these pesticides were found toxic even at the recommended doses. However, a field based study in this regard should be conducted to further verify these results.
Collapse
Affiliation(s)
- Shakirullah Khan Shakir
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Memoona Kanwal
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Waheed Murad
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - M K Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Sciences and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
20
|
Staley ZR, Harwood VJ, Rohr JR. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit Rev Toxicol 2015; 45:813-36. [PMID: 26565685 PMCID: PMC4750050 DOI: 10.3109/10408444.2015.1065471] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pesticides have a pervasive presence in aquatic ecosystems throughout the world. While pesticides are intended to control fungi, insects, and other pests, their mechanisms of action are often not specific enough to prevent unintended effects, such as on non-target microbial populations. Microorganisms, including algae and cyanobacteria, protozoa, aquatic fungi, and bacteria, form the basis of many food webs and are responsible for crucial aspects of biogeochemical cycling; therefore, the potential for pesticides to alter microbial community structures must be understood to preserve ecosystem services. This review examines studies that focused on direct population-level effects and indirect community-level effects of pesticides on microorganisms. Generally, insecticides, herbicides, and fungicides were found to have adverse direct effects on algal and fungal species. Insecticides and fungicides also had deleterious direct effects in the majority of studies examining protozoa species, although herbicides were found to have inconsistent direct effects on protozoans. Our synthesis revealed mixed or no direct effects on bacterial species among all pesticide categories, with results highly dependent on the target species, chemical, and concentration used in the study. Examination of community-level, indirect effects revealed that all pesticide categories had a tendency to reduce higher trophic levels, thereby diminishing top-down pressures and favoring lower trophic levels. Often, indirect effects exerted greater influence than direct effects. However, few studies have been conducted to specifically address community-level effects of pesticides on microorganisms, and further research is necessary to better understand and predict the net effects of pesticides on ecosystem health.
Collapse
Affiliation(s)
- Zachery R. Staley
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Jason R. Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL
| |
Collapse
|
21
|
Wang L, Ren Z, Kim H, Xia C, Fu R, Chon TS. Characterizing response behavior of medaka ( Oryzias latipes ) under chemical stress based on self-organizing map and filtering by integration. ECOL INFORM 2015. [DOI: 10.1016/j.ecoinf.2014.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Chahal KS, Prakash A, Majeed ABA. The role of multifunctional drug therapy against carbamate induced neuronal toxicity during acute and chronic phase in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:220-229. [PMID: 26151868 DOI: 10.1016/j.etap.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The current study has been designed to examine the effect of multifunctional drug therapy on carbofuran induced acute (2.187 mg/kg, s.c.) and sub-acute (0.2187 mg/kg, s.c.) neurotoxicity in male wistar rats. Drug treatment which includes nimodipine (Ca(2+) channel blocker), diazepam, ropinirole (dopamine agonist) and GSPE (antioxidant) was started 2h after carbofuran administration. Morris water maze was employed for aiming spatial memory. Narrow beam walk and rotarod were employed for testing motor functions. Brain acetylcholinesterase activity, thiobarbituric acid reactive species, nitrite, reduced glutathione, catalase levels, and mitochondrial complexes were also estimated. Carbofuran treatment resulted in significant development of cognitive and motor functions manifested as impairment in learning and memory along with increased thiobarbituric acid reactive species, nitrite levels and decreased acetylcholinesterase activity, reduced glutathione, catalase levels, and mitochondrial complexes. The standard antidote therapy (atropine) was not able to provide neuroprotection but was able to provide symptomatic relief. The multifunctional drug therapy attenuated carbofuran induced cognitive and motor dysfunction, acetylcholinesterase activity and other biochemical parameters. The triple combination in sub-acute study may be avoided in future as two drug combinations provide adequate neuroprotection. Thus it can be concluded that standard antidotal therapy may not provide neuroprotection while the multifunctional drug therapy offers neuroprotection against carbofuran and may dramatically increase survival and life quality.
Collapse
Affiliation(s)
- Karan Singh Chahal
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India; Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
23
|
Gbadegesin MA, Owumi SE, Akinseye V, Odunola OA. Evaluation of hepatotoxicity and clastogenicity of carbofuran in male Wistar rats. Food Chem Toxicol 2014; 65:115-9. [DOI: 10.1016/j.fct.2013.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/10/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
|
24
|
Azizullah A, Richter P, Ullah W, Ali I, Häder DP. Ecotoxicity evaluation of a liquid detergent using the automatic biotest ECOTOX. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1043-1052. [PMID: 23783251 DOI: 10.1007/s10646-013-1091-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Synthetic detergents are common pollutants reaching aquatic environments in different ways after usage at homes, institutions and industries. In this study a liquid detergent, used for dish washing, was evaluated for its toxicity during long- and short-term tests using the automatic biotest ECOTOX. Different parameters of Euglena gracilis like motility, swimming velocity, gravitactic orientation, cell compactness and cell growth were used as end points. In short-term experiments, the maximum adverse effects on motility, velocity, cell shape and gravitaxis were observed after 1 h of exposure. With further increase in exposure time to the detergent a slight recovery of these parameters was observed. In long-term experiments, the detergent caused severe disturbances to E. gracilis. Motility, cell growth and cell compactness (shape) with EC50 values of 0.064, 0.18 and 2.05 %, respectively, were found as the most sensitive parameters to detergent stress. There was a slight positive effect on gravitactic orientation at the lowest two concentrations; at higher concentrations of the detergent cells orientation was highly impaired giving EC50 values of 1.75 and 2.52 % for upward swimming and r-value, respectively.
Collapse
Affiliation(s)
- Azizullah Azizullah
- Department of Biology, Cell Biology Division, Friedrich-Alexander University, Staudtstr. 5, 91058, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
25
|
The stepwise behavioral responses: behavioral adjustment of the Chinese rare minnow (Gobiocypris rarus) in the exposure of carbamate pesticides. BIOMED RESEARCH INTERNATIONAL 2013; 2013:697279. [PMID: 23956999 PMCID: PMC3730393 DOI: 10.1155/2013/697279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022]
Abstract
In order to illustrate the behavioral regulation in environmental stress, the behavioral responses of the Chinese rare minnow (Gobiocypris rarus) to arprocarb, carbofuran, and oxamyl were analyzed with an online monitoring system. The Self-Organizing Map (SOM) was used to define the patterns of the behavioral data obtained from treatments at concentrations of 0.1 toxic unit (TU), 1 TU, 2 TU, 5 TU, 10 TU, and 20 TU and a control. In certain cases, differences among the carbamate pesticides (CPs) tested were observed. The profiles of behavioral strength (BS) in SOM varied according to the concentration used. The time of the first significant decrease of the BS varied inversely with the CP concentrations. The results suggested that the behavioral regulation in the stepwise behavioral responses (SBR) was evident. The primary movement behaviors shown by the SBR model included no effect, stimulation, acclimation, adjustment (readjustment), and toxic effect, especially at the lower concentrations. However, higher stress (10 TU and 20 TU) might limit the function of the behavioral adjustment produced by the intrinsic response mechanisms. It was concluded that SBR, which were affected by both the concentration and the exposure time, could be used as a suitable indicator in the ecotoxicological risk assessment of CPs.
Collapse
|
26
|
Singh B, Kaur J, Singh K. Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 2013; 40:146-54. [PMID: 23442144 DOI: 10.3109/1040841x.2013.763222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Organophosphorus pesticide, malathion, is used in public health, residential, and agricultural settings worldwide to control the pest population. It is proven that exposure to malathion produce toxic effects in humans and other mammals. Due to high toxicity, studies are going on to design effective methods for removal of malathion and its associated compounds from the environment. Among various techniques available, degradation of malathion by microbes proves to be an effective and environment friendly method. Recently, research activities in this area have shown that a diverse range of microorganisms are capable of degrading malathion. Therefore, we aimed at providing an overview of research accomplishments on this subject and discussed the toxicity of malathion and its metabolites, various microorganisms involved in its biodegradation and effect of various environmental parameters on its degradation.
Collapse
Affiliation(s)
- Baljinder Singh
- Punjab Pollution Control Board , Patiala, Punjab , India and
| | | | | |
Collapse
|
27
|
Zhang G, Chen L, Chen J, Ren Z, Wang Z, Chon TS. Evidence for the Stepwise Behavioral Response Model (SBRM): the effects of Carbamate Pesticides on medaka (Oryzias latipes) in an online monitoring system. CHEMOSPHERE 2012; 87:734-741. [PMID: 22264860 DOI: 10.1016/j.chemosphere.2011.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
The Stepwise Behavioral Response Model (SBRM), which is a conceptual model, postulated that an organism displays a time-dependent sequence of compensatory Stepwise Behavioral Response (SBR) during exposure to pollutants above their respective thresholds of resistance. In order to prove the model, in this study, the behavioral responses (BRs) of medaka (Oryzias latipes) in the exposure of Arprocarb (A), Carbofuran (C) and Methomyl (M) were analyzed in an online monitoring system (OMS). The Self-Organizing Map (SOM) was utilized for patterning the obtained behavioral data in 0.1 TU (Toxic Unit), 1 TU, 2 TU, 5 TU, 10 TU and 20 TU treatments with control. Some differences among different Carbamate Pesticides (CPs) were observed in different concentrations and the profiles of behavior strength (BS) on SOM were variable depending upon levels of concentration. The time of the first significant decrease of BS (SD-BS) was in inverse ratio to the CP concentrations. Movement behavior showed by medaka mainly included No effect, Stimulation, Acclimation, Adjustment (Readjustment) and Toxic effect, which proved SBRM as a time-dependence model based on the time series BS data. Meanwhile, it was found that SBRM showed evident stress-dependence. Therefore, it was concluded that medaka SBR was both stress-dependent and time-dependent, which supported and developed SBRM, and data mining by SOM could be efficiently used to illustrate the behavioral processes and to monitor toxic chemicals in the environment.
Collapse
Affiliation(s)
- Gaosheng Zhang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | | | | | | | | | | |
Collapse
|