1
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Quevarec L, Réale D, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM. Ionizing radiation affects the demography and the evolution of Caenorhabditis elegans populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114353. [PMID: 36516628 DOI: 10.1016/j.ecoenv.2022.114353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Ionizing radiation can reduce survival, reproduction and affect development, and lead to the extinction of populations if their evolutionary response is insufficient. However, demographic and evolutionary studies on the effects of ionizing radiation are still scarce. Using an experimental evolution approach, we analyzed population growth rate and associated change in life history traits across generations in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h-1 of ionizing radiation (gamma external irradiation). We found a higher population growth rate in the 1.4 mGy.h-1 treatment and a lower in the 50.0 mGy.h-1 treatment compared to the control. Realized fecundity was lower in both 1.4 and 50.0 mGy.h-1 than control treatment. High irradiation levels decreased brood size from self-fertilized hermaphrodites, specifically early brood size. Finally, high irradiation levels decreased hatching success compared to the control condition. In reciprocal-transplant experiments, we found that life in low irradiation conditions led to the evolution of higher hatching success and late brood size. These changes could provide better tolerance against ionizing radiation, investing more in self-maintenance than in reproduction. These evolutionary changes were with some costs of adaptation. This study shows that ionizing radiation has both demographic and evolutionary consequences on populations.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache 13115, Saint Paul Lez Durance, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| |
Collapse
|
3
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
4
|
Yao Y, Zhang T, Tang M. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119270. [PMID: 35398402 DOI: 10.1016/j.envpol.2022.119270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Jin L, Dou TT, Chen JY, Duan MX, Zhen Q, Wu HZ, Zhao YL. Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113064. [PMID: 34890989 DOI: 10.1016/j.ecoenv.2021.113064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have received increasing attentions owing to their potential hazards to the environment and human health; however, the multi-generational toxicity of graphene oxide under consecutive multi-generational exposure scenario still remains unclear. In the present study, Caenorhabditis elegans as an in vivo model organism was employed to explore the multi-generational toxicity effects of graphene oxide and the underlying mechanisms. Endpoints including development and lifespan, locomotion behaviors, defecation cycle, brood sizes, and oxidative response were evaluated in the parental generation and subsequent five filial generations. After continuous exposure for several generations, worms grew smaller and lived shorter. The locomotion behaviors were reduced across the filial generations and these reduced trends were following the impairments of locomotion-related neurons. In addition, the extended defecation cycles from the third filial generation were in consistency with the relative size reduction of the defecation related neuron. Simultaneously, the fertility function of the nematode was impaired under consecutive exposure as reduced brood sizes and oocytes numbers, increased apoptosis of germline, and aberrant expression of reproductive related genes ced-3, ced-4, ced-9, egl-1 and ced-13 were detected in exposed worms. Furthermore, the antioxidant enzyme, SOD-3 was significantly increased in the parent and filial generations. Thus, continuous multi-generational exposure to graphene oxide caused damage to the neuron development and the reproductive system in nematodes. These toxic effects could be reflected by indicators such as growth inhibition, shortened lifespan, and locomotion behavior impairment and induced oxidative response.
Collapse
Affiliation(s)
- Ling Jin
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ting-Ting Dou
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jing-Ya Chen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ming-Xiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Quan Zhen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Hua-Zhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China.
| | - Yun-Li Zhao
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China.
| |
Collapse
|
6
|
Bart S, Pelosi C, Nélieu S, Lamy I, Péry ARR. An energy-based model to analyze growth data of earthworms exposed to two fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:741-750. [PMID: 31811607 DOI: 10.1007/s11356-019-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/06/2019] [Indexed: 05/14/2023]
Abstract
The pesticide risk assessment for earthworms is currently performed using standardized tests, the model species Eisenia fetida, and the analyses of the data obtained are performed with ad hoc statistical tools. We assessed the impact of two fungicides on the entire growth pattern of the earthworm species Aporrectodea caliginosa, which is highly representative of agricultural fields. Individuals of three different ages (from hatching to 56 days old) were exposed to Cuprafor micro® (copper oxychloride) and Swing® Gold (dimoxystrobin and epoxiconazole). Data were analyzed with an energy-based toxicodynamic model coupled with a toxicokinetic model. The copper fungicide caused a drastic growth inhibition once the no effect concentration (NEC), estimated at 65 mg kg-1 of copper, was exceeded. The Swing® Gold negatively affected the growth with NEC values estimated at 0.387 mg kg-1 and 0.128 mg kg-1 for the dimoxystrobin and the epoxiconazole in this fungicide formulation, respectively. The time-profile of the effects on A. caliginosa individuals was fully accounted for by the model, whatever their age of exposure. Furthermore, toxicity data analyses, supported by measurements of fungicide concentrations in earthworm at the end of the experiment, allowed bettering understanding of the mechanisms of action of the fungicides towards earthworm growth.
Collapse
Affiliation(s)
- Sylvain Bart
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France.
| | - Céline Pelosi
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
- UMR EMMAH, INRA, Université d'Avignon et des Pays de Vaucluse, 84914, Avignon, France
| | - Sylvie Nélieu
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Isabelle Lamy
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Alexandre R R Péry
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| |
Collapse
|
7
|
Kuzmic M, Galas S, Lecomte-Pradines C, Dubois C, Dubourg N, Frelon S. Interplay between ionizing radiation effects and aging in C. elegans. Free Radic Biol Med 2019; 134:657-665. [PMID: 30743047 DOI: 10.1016/j.freeradbiomed.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/26/2022]
Abstract
Living species are chronically exposed to environmental ionizing radiations from sources that can be overexpressed by nuclear accidents. In invertebrates, reproduction is the most radiosensitive studied endpoint, likely to be connected with aging. Surprisingly, aging is a sparsely investigated endpoint after chronic ionizing radiation, whereas understanding it is of fundamental interest in biology and medicine. Indeed, aging and aging-related diseases (e.g., cancer and degenerative diseases) cause about 90% of deaths in developed countries. Therefore, glp-1 sterile Caenorhabditis elegans nematode was used to assess the impact of chronic gamma irradiation on the lifespan. Analyses were performed, at the individual level, on aging and, in order to delve deeper into the mechanisms, at the molecular level, on oxidative damage (carbonylation), biomolecules (lipids, proteins and nucleic acids) and their colocalization. We observed that ionizing radiation accelerates aging (whatever the duration (3-19 days)/dose (0.5-24 Gy)/dose rate (7 and 52 mGy h-1) tested) leading to a longevity value equivalent to that of wt nematode (∼25-30 days). Moreover, the level of protein oxidative damage (carbonylation) turned out to be good cellular biomarker of aging, since it increases with age. Conversely, chronic radiation treatments reduced carbonylation levels and induced neutral lipid catabolism whatever the dose rate and the final delivered dose. Finally, under some conditions a lipid-protein colocalization without any carbonyl was observed; this could be linked to yolk accumulation in glp-1 nematodes. To conclude, we noticed through this study a link between chronic gamma exposure, lifespan shortening and lipid level decrease associated with a decrease in the overall carbonylation.
Collapse
Affiliation(s)
- Mira Kuzmic
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Cécile Dubois
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France.
| |
Collapse
|
8
|
Rossbach LM, Maremonti E, Eide DM, Oughton DH, Brede DA. Adaptive tolerance to multigenerational silver nanoparticle (NM300K) exposure by the nematode Caenorhabditis elegans is associated with increased sensitivity to AgNO3. Nanotoxicology 2019; 13:527-542. [DOI: 10.1080/17435390.2018.1557272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lisa M. Rossbach
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Dag M. Eide
- Norwegian Institute of Public Health, Oslo, Norway
| | - Deborah H. Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Dag A. Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
9
|
Thoré ESJ, Steenaerts L, Philippe C, Grégoir AF, Brendonck L, Pinceel T. Improving the reliability and ecological validity of pharmaceutical risk assessment: Turquoise killifish (Nothobranchius furzeri) as a model in behavioral ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:262-270. [PMID: 30357889 DOI: 10.1002/etc.4301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are essential for human well-being, but their increasing and continuous use pollutes the environment. Although behavioral ecotoxicology is increasingly advocated to assess the effects of pharmaceutical pollution on wildlife and ecosystems, a consensus on the actual environmental risks is lacking for most compounds. The main limitation is the lack of standardized reproducible tests that are based on sensitive behavioral endpoints and that accommodate a high ecological relevance. In the present study, we assessed the impact of a 3-wk exposure to the antidepressant fluoxetine on multiple behavioral traits in the promising new model organism Nothobranchius furzeri (turquoise killifish). Overall, our study shows that fluoxetine can impact feeding behavior, habitat choice in a novel environment, and antipredator response of N. furzeri individuals; effects on spontaneous activity and exploration tendency were less pronounced. However, effects became only apparent when individuals were exposed to fluoxetine concentrations that were 10 times higher than typical concentrations in natural aquatic environments. Ecotoxicologists are challenged to maximize both the reliability and ecological validity of risk assessments of pollutants. Our study contributes to the development of a time- and cost-efficient, standardized ecotoxicological test based on sensitive, ecologically relevant behavioral endpoints in N. furzeri. Environ Toxicol Chem 2019;38:262-270. © 2018 SETAC.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Laure Steenaerts
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Systemic Physiological and Ecotoxicological Research, University of Antwerp, Antwerp, Belgium
| | - Arnout F Grégoir
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
10
|
Fueser H, Majdi N, Haegerbaeumer A, Pilger C, Hachmeister H, Greife P, Huser T, Traunspurger W. Analyzing life-history traits and lipid storage using CARS microscopy for assessing effects of copper on the fitness of Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:255-262. [PMID: 29554610 DOI: 10.1016/j.ecoenv.2018.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Lipid storage provides energy for cell survival, growth, and reproduction and is closely related to the organismal response to stress imposed by toxic chemicals. However, the effects of toxicants on energy storage as it impacts certain life-history traits have rarely been investigated. Here, we used the nematode Caenorhabditis elegans as a test species for a chronic exposure to copper (Cu) at EC20 (0.50 mg Cu/l). Effects on the fatty acid distribution in C. elegans body were determined using coherent anti-Stokes Raman spectroscopy (CARS) to link population fitness responses with individual ecophysiological responses. Cu inhibited nematode reproductive capacity and offspring growth in addition to shortening the lifespan of exposed individuals. In adult nematodes, Cu exposure led to significant reduction of lipid storage compared to the Cu-free control: Under Cu, lipids filled only 0.5% of the nematode body volume vs. 7.5% in control nematodes, lipid droplets were on average 74% smaller and the number of tiny lipids (0-10 µm2) was increased. These results suggest that (1) Cu has an important effect on the life-history traits of nematodes; (2) the quantification of lipid storage can provide important information on the response of organisms to toxic stress; and (3) CARS microscopy is a promising tool for non-invasive quantitative and qualitative analyses of lipids as a measure of nematode fitness.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Nabil Majdi
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| | - Arne Haegerbaeumer
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| | - Christian Pilger
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Henning Hachmeister
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Paul Greife
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Thomas Huser
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Schultz CL, Wamucho A, Tsyusko OV, Unrine JM, Crossley A, Svendsen C, Spurgeon DJ. Multigenerational exposure to silver ions and silver nanoparticles reveals heightened sensitivity and epigenetic memory in Caenorhabditis elegans. Proc Biol Sci 2017; 283:rspb.2015.2911. [PMID: 27306046 DOI: 10.1098/rspb.2015.2911] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022] Open
Abstract
The effects from multigenerational exposures to engineered nanoparticles (ENPs) in their pristine and transformed states are currently unknown despite such exposures being an increasingly common scenario in natural environments. Here, we examine how exposure over 10 generations affects the sensitivity of the nematode Caenorhabditis elegans to pristine and sulfidized Ag ENPs and AgNO3 We also include populations that were initially exposed over six generations but kept unexposed for subsequent four generations to allow recovery from exposure. Toxicity of the different silver forms decreased in the order AgNO3, Ag ENPs and Ag2S ENPs. Continuous exposure to Ag ENPs and AgNO3 caused pronounced sensitization (approx. 10-fold) in the F2 generation, which was sustained until F10. This sensitization was less pronounced for Ag2S ENP exposures, indicating different toxicity mechanisms. Subtle changes in size and lifespan were also measured. In the recovery populations, the sensitivity to Ag ENPs and AgNO3 resulting from the initial multigenerational exposure persisted. Their response sensitivity for all endpoints was most closely related to the last ancestral exposed generation (F5), rather than unexposed controls. The mechanisms of transgenerational transfer of sensitivity are probably organized through the epigenome, and we encourage others to investigate such effects as a priority for mechanistic toxicology.
Collapse
Affiliation(s)
- Carolin L Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK Department of Materials, Oxford University, Begbroke Science Park, Begbroke Hill, Yarnton, Oxford OX5 1PF, UK
| | - Anye Wamucho
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA
| | - Alison Crossley
- Department of Materials, Oxford University, Begbroke Science Park, Begbroke Hill, Yarnton, Oxford OX5 1PF, UK
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| |
Collapse
|
12
|
Lecomte-Pradines C, Hertel-Aas T, Coutris C, Gilbin R, Oughton D, Alonzo F. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:830-844. [PMID: 28837407 DOI: 10.1080/15287394.2017.1352194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding how toxic contaminants affect wildlife species at various levels of biological organization (subcellular, histological, physiological, organism, and population levels) is a major research goal in both ecotoxicology and radioecology. A mechanistic understanding of the links between different observed perturbations is necessary to predict the consequences for survival, growth, and reproduction, which are critical for population dynamics. In this context, experimental and modeling studies were conducted using the nematode Caenorhabditis elegans. A chronic exposure to external gamma radiation was conducted under controlled conditions. Results showed that somatic growth and reproduction were reduced with increasing dose rate. Modeling was used to investigate whether radiation effects might be assessed using a mechanistic model based upon the dynamic energy budget (DEB) theory. A DEB theory in toxicology (DEB-tox), specially adapted to the case of gamma radiation, was developed. Modelling results demonstrated the suitability of DEB-tox for the analysis of radiotoxicity and suggested that external gamma radiation predominantly induced a direct reduction in reproductive capacity in C. elegans and produced an increase in costs for growth and maturation, resulting in a delay in growth and spawning observed at the highest tested dose rate.
Collapse
Affiliation(s)
- Catherine Lecomte-Pradines
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO , Cadarache , Saint-Paul-lez-Durance , France
| | - Turid Hertel-Aas
- b Centre for Environmental Radioactivity (CERAD), Department of Environmental Science , Norwegian University of Life Sciences (NMBU) , Aas , Norway
| | - Claire Coutris
- b Centre for Environmental Radioactivity (CERAD), Department of Environmental Science , Norwegian University of Life Sciences (NMBU) , Aas , Norway
- c Division of Environment and Natural Resources , Norwegian Institute of Bioeconomy Research (NIBIO) , Aas , Norway
| | - Rodolphe Gilbin
- d Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LRTE , Cadarache , Saint-Paul-lez-Durance , France
| | - Deborah Oughton
- b Centre for Environmental Radioactivity (CERAD), Department of Environmental Science , Norwegian University of Life Sciences (NMBU) , Aas , Norway
| | - Frédéric Alonzo
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO , Cadarache , Saint-Paul-lez-Durance , France
| |
Collapse
|
13
|
Kuzmic M, Javot H, Bonzom JM, Lecomte-Pradines C, Radman M, Garnier-Laplace J, Frelon S. In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans. Free Radic Biol Med 2016; 101:465-474. [PMID: 27840319 DOI: 10.1016/j.freeradbiomed.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
All key biological macromolecules are susceptible to carbonylation - an irreparable oxidative damage with deleterious biological consequences. Carbonyls in proteins, lipids and DNA from cell extracts have been used as a biomarker of oxidative stress and aging, but formation of insoluble aggregates by carbonylated proteins precludes quantification. Since carbonylated proteins correlate with and become a suspected cause of morbidity and mortality in some organisms, there is a need for their accurate quantification and localization. Using appropriate fluorescent probes, we have developed an in situ detection of total proteins, DNA, RNA, lipids and carbonyl groups at the level of the whole organism. In C. elegans, we found that after UV irradiation carbonylation co-localizes mainly with proteins and, to a lesser degree, with DNA, RNA and lipids. The method efficiency was illustrated by carbonylation induction assessment over 5 different UV doses. The procedure enables the monitoring of carbonylation in the nematode C. elegans during stress, aging and disease along its life cycle including the egg stage.
Collapse
Affiliation(s)
- Mira Kuzmic
- Institut de radioprotection et de sûreté nucléaire, Cadarache, 13115 Saint Paul lez Durance cedex, France; Mediterranean Institute for Life Sciences, Mestrovicevo Setaliste 45, 21000 Split, Croatia
| | - Hélène Javot
- CEA, BIAM, Lab Biol Develop Plantes, Saint-Paul-lez-DurIncreased carbonylation, protein aance F-13108, France; CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France; Aix Marseille Université, BVME UMR7265, Marseille F-13284, France
| | - Jean-Marc Bonzom
- Institut de radioprotection et de sûreté nucléaire, Cadarache, 13115 Saint Paul lez Durance cedex, France
| | - Catherine Lecomte-Pradines
- Institut de radioprotection et de sûreté nucléaire, Cadarache, 13115 Saint Paul lez Durance cedex, France
| | - Miroslav Radman
- Mediterranean Institute for Life Sciences, Mestrovicevo Setaliste 45, 21000 Split, Croatia
| | - Jacqueline Garnier-Laplace
- Institut de radioprotection et de sûreté nucléaire, Cadarache, 13115 Saint Paul lez Durance cedex, France
| | - Sandrine Frelon
- Institut de radioprotection et de sûreté nucléaire, Cadarache, 13115 Saint Paul lez Durance cedex, France.
| |
Collapse
|
14
|
Yu CW, Liao VHC. Transgenerational Reproductive Effects of Arsenite Are Associated with H3K4 Dimethylation and SPR-5 Downregulation in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10673-10681. [PMID: 27579588 DOI: 10.1021/acs.est.6b02173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arsenic is a prevalent environmental toxin. Arsenic is associated with a wide variety of adverse effects; however, studies on whether As-induced toxicities can be transferred from parents to offspring have received little attention. Caenorhabditis elegans has become an important animal model in biomedical and environmental toxicology research. In this study, transgenerational reproductive toxicity by arsenite exposure and the underlying mechanisms in C. elegans were investigated over six generations (F0-F5). Following arsenite maternal exposure of the F0 generation, subsequent generations (F1-F5) were cultured under arsenite-free conditions. We found that the brood size of C. elegans was significantly reduced by arsenite exposure in F0 and that this reduction in brood size was also observed in the offspring generations (F1-F5), after the toxicant had been removed from the diet. In addition, adult worms from F0 and F1 generations accumulated arsenite and arsenate when F0 L4 larvae were exposed to arsenite for 24 h. We found that the mRNA level of H3K4me2 demethylase LSD/KDM1, spr-5, was significantly reduced in the F0 exposed generation and subsequent unexposed generations (F1-F3). Likewise, the mRNA levels of spr-5 were also significantly decreased in the F1-F3 generations. Moreover, dimethylation of global H3K4 was increased in the F0-F3 generations. Our study demonstrates that maternal arsenite exposure causes transgenerational reproductive effects in C. elegans, which might be associated with H3K4 dimethylation and SPR-5 downregulation.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
15
|
Goussen B, Péry ARR, Bonzom JM, Beaudouin R. Transgenerational Adaptation to Pollution Changes Energy Allocation in Populations of Nematodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12500-12508. [PMID: 26419286 DOI: 10.1021/acs.est.5b03405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Assessing the evolutionary responses of long-term exposed populations requires multigeneration ecotoxicity tests. However, the analysis of the data from these tests is not straightforward. Mechanistic models allow the in-depth analysis of the variation of physiological traits over many generations, by quantifying the trend of the physiological and toxicological parameters of the model. In the present study, a bioenergetic mechanistic model has been used to assess the evolution of two populations of the nematode Caenorhabditis elegans in control conditions or exposed to uranium. This evolutionary pressure resulted in a brood size reduction of 60%. We showed an adaptation of individuals of both populations to experimental conditions (increase of maximal length, decrease of growth rate, decrease of brood size, and decrease of the elimination rate). In addition, differential evolution was also highlighted between the two populations once the maternal effects had been diminished after several generations. Thus, individuals that were greater in maximal length, but with apparently a greater sensitivity to uranium were selected in the uranium population. In this study, we showed that this bioenergetics mechanistic modeling approach provided a precise, certain, and powerful analysis of the life strategy of C. elegans populations exposed to heavy metals resulting in an evolutionary pressure across successive generations.
Collapse
Affiliation(s)
- Benoit Goussen
- Unité Modèles pour l'Écotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS) , BP2, F-60550 Verneuil en Halatte, France
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ÉCOtoxicologie des radionucléides (LECO) , BP3, F-13115 Cadarache, France
| | - Alexandre R R Péry
- Unité Modèles pour l'Écotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS) , BP2, F-60550 Verneuil en Halatte, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ÉCOtoxicologie des radionucléides (LECO) , BP3, F-13115 Cadarache, France
| | - Rémy Beaudouin
- Unité Modèles pour l'Écotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS) , BP2, F-60550 Verneuil en Halatte, France
| |
Collapse
|
16
|
Margerit A, Lecomte-Pradines C, Svendsen C, Frelon S, Gomez E, Gilbin R. Nested interactions in the combined toxicity of uranium and cadmium to the nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:139-148. [PMID: 25938694 DOI: 10.1016/j.ecoenv.2015.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Uranium is a natural, ubiquitous radioactive element for which elevated concentrations can be found in the vicinity of some nuclear fuel cycle facilities or intensive farming areas, and most often in mixtures with other contaminants such as cadmium, due to co-occurrence in geological ores (e.g. U- or P-ore). The study of their combined effects on ecosystems is of interest to better characterize such multi-metallic polluted sites. In the present study, the toxicity of binary mixture of U and Cd on physiological parameters of the soil nematode Caenorhabditis elegans was assessed over time. Descriptive modeling using concentration and response addition reference models was applied to compare observed and expected combined effects and identify possible synergistic or antagonistic interactions. A strong antagonism between U and Cd was identified for length increase and brood size endpoints. The study revealed that the combined effects might be explained by two nested antagonistic interactions. We demonstrate that the first interaction occurred in the exposure medium. We also identified a significant second antagonistic interaction which occurred either during the toxicokinetic or toxicodynamic steps. These findings underline the complexity of interactions that may take place between chemicals and thus, highlight the importance of studying mixtures at various levels to fully understand underlying mechanisms.
Collapse
Affiliation(s)
- Adrien Margerit
- Biogeochemistry, Bioavailability and Radionuclide Transfer Laboratory (PRP-ENV/SERIS/L2BT), Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 183, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| | - Catherine Lecomte-Pradines
- Laboratory of ECOtoxicology (PRP-ENV/SERIS/LECO), Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 183, BP3, 13115 St-Paul-lez-Durance Cedex, France
| | - Claus Svendsen
- NERC Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh-Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Sandrine Frelon
- Biogeochemistry, Bioavailability and Radionuclide Transfer Laboratory (PRP-ENV/SERIS/L2BT), Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 183, BP3, 13115 St-Paul-lez-Durance Cedex, France
| | - Elena Gomez
- UMR Hydrosciences- Université Montpellier 1, DSESP-Faculté de Pharmacie, BP 14491, no 15 Av Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Rodolphe Gilbin
- Biogeochemistry, Bioavailability and Radionuclide Transfer Laboratory (PRP-ENV/SERIS/L2BT), Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 183, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| |
Collapse
|
17
|
Jansen M, Coors A, Vanoverbeke J, Schepens M, De Voogt P, De Schamphelaere KAC, De Meester L. Experimental evolution reveals high insecticide tolerance in Daphnia inhabiting farmland ponds. Evol Appl 2015; 8:442-53. [PMID: 26029258 PMCID: PMC4430768 DOI: 10.1111/eva.12253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/04/2015] [Indexed: 11/27/2022] Open
Abstract
Exposure of nontarget populations to agricultural chemicals is an important aspect of global change. We quantified the capacity of natural Daphnia magna populations to locally adapt to insecticide exposure through a selection experiment involving carbaryl exposure and a control. Carbaryl tolerance after selection under carbaryl exposure did not increase significantly compared to the tolerance of the original field populations. However, there was evolution of a decreased tolerance in the control experimental populations compared to the original field populations. The magnitude of this decrease was positively correlated with land use intensity in the neighbourhood of the ponds from which the original populations were sampled. The genetic change in carbaryl tolerance in the control rather than in the carbaryl treatment suggests widespread selection for insecticide tolerance in the field associated with land use intensity and suggests that this evolution comes at a cost. Our data suggest a strong impact of current agricultural land use on nontarget natural Daphnia populations.
Collapse
Affiliation(s)
- Mieke Jansen
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven, Belgium
| | - Anja Coors
- ECT Oekotoxikologie GmbH Flörsheim a.M, Germany ; Biodiversity and Climate Research Centre (BiK-F) Frankfurt a.M, Germany
| | - Joost Vanoverbeke
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven, Belgium
| | - Melissa Schepens
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven, Belgium
| | - Pim De Voogt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit Amsterdam Amsterdam, The Netherlands
| | - Karel A C De Schamphelaere
- Laboratory for Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University Ghent, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven, Belgium
| |
Collapse
|
18
|
Goussen B, Beaudouin R, Dutilleul M, Buisset-Goussen A, Bonzom JM, Péry ARR. Energy-based modelling to assess effects of chemicals on Caenorhabditis elegans: a case study on uranium. CHEMOSPHERE 2015; 120:507-514. [PMID: 25278179 DOI: 10.1016/j.chemosphere.2014.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
The ubiquitous free-living nematode Caenorhabditis elegans is a powerful animal model for measuring the evolutionary effects of pollutants which is increasingly used in (eco) toxicological studies. Indeed, toxicity tests with this nematode can provide in a few days data on the whole life cycle. These data can be analysed with mathematical tools such as toxicokinetic-toxicodynamic modelling approaches. In this study, we assessed how a chronic exposure to a radioactive heavy metal (uranium) affects the life-cycle of C. elegans using a mechanistic model. In order to achieve this, we exposed individuals to a range of seven concentrations of uranium. Growth and reproduction were followed daily. These data were analysed with a model for nematodes based on the Dynamic Energy Budget theory, able to handle a wide range of plausible biological parameters values. Parameter estimations were performed using a Bayesian framework. Our results showed that uranium affects the assimilation of energy from food with a no-effect concentration (NEC) of 0.42 mM U which would be the threshold for effects on both growth and reproduction. The sensitivity analysis showed that the main contributors to the model output were parameters linked to the feeding processes and the actual exposure concentration. This confirms that the real exposure concentration should be measured accurately and that the feeding parameters should not be fixed, but need to be reestimated during the parameter estimation process.
Collapse
Affiliation(s)
- Benoit Goussen
- Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France.
| | - Rémy Beaudouin
- Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte, France
| | - Morgan Dutilleul
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Adeline Buisset-Goussen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Alexandre R R Péry
- Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte, France
| |
Collapse
|