1
|
Sun J, Xiao P, Yin X, Zhu G, Brock TCM. Aquatic and sediment ecotoxicity data of difenoconazole and its potential environmental risks in ponds bordering rice paddies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116135. [PMID: 38402793 DOI: 10.1016/j.ecoenv.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Difenoconazole has a widespread agricultural use to control fungal diseases in crops, including rice. In edge-of-field surface waters the residues of this lipophilic fungicide may be toxic to both pelagic and benthic organisms. To allow an effect assessment we mined the regulatory and open literature for aquatic toxicity data. Since published sediment toxicity data were scarce we conducted 28 d sediment-spiked toxicity test with 8 species of benthic macroinvertebrates. Ecotoxicological threshold levels for effects were assessed by applying the species sensitivity distribution approach. Based on short-term L(E)C50's for aquatic organisms from water-only tests an acute Hazardous Concentration to 5% of the species (HC5) of 100 µg difenoconazole/L was obtained, while the HC5 based on chronic NOEC values was a factor of 104 lower (0.96 µg difenoconazole/L). For benthic macroinvertebrates the chronic HC5, based on 28d-L(E)C10 values, was 0.82 mg difenoconazole/kg dry weight sediment. To allow a risk assessment for water- and sediment-dwelling organisms, exposure concentrations were predicted for the water and sediment compartment of an edge-of-field pond bordering rice paddies treated with difenoconazole using the Chinese Top-Rice modelling approach, the Chinese Nanchang exposure scenario and the Equilibrium Partitioning theory. It appeared that in the vast majority of the 20 climate years simulated, potential risks to aquatic and sediment organisms cannot be excluded. Although the HC5 values based on laboratory toxicity data provide one line of evidence only, our evaluation suggests population- and community-level effects on these organisms due to chronic risks in particular.
Collapse
Affiliation(s)
- Jian Sun
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - PengFei Xiao
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou 311800, China
| | - XiaoHui Yin
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China.
| | - GuoNian Zhu
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
2
|
Yoo JW, Choi TJ, Park JS, Kim J, Han S, Kim CB, Lee YM. Pathway-dependent toxic interaction between polystyrene microbeads and methylmercury on the brackish water flea Diaphanosoma celebensis: Based on mercury bioaccumulation, cytotoxicity, and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132055. [PMID: 37480609 DOI: 10.1016/j.jhazmat.2023.132055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Given their worldwide distribution and toxicity to aquatic organisms, methylmercury (MeHg) and microplastics (MP) are major pollutants in marine ecosystems. Although they commonly co-exist in the ocean, information on their toxicological interactions is limited. Therefore, to understand the toxicological interactions between MeHg and MP (6-μm polystyrene), we investigated the bioaccumulation of MeHg, its cytotoxicity, and transcriptomic modulation in the brackish water flea Diaphanosoma celebensis following single and combined exposure to MeHg and MP. After single exposure to MeHg for 48-h, D. celebensis showed high Hg accumulation (34.83 ± 0.40 μg/g dw biota) and cytotoxicity, which was reduced upon co-exposure to MP. After transcriptomic analysis, 2, 253, and 159 differentially expressed genes were detected in the groups exposed to MP, MeHg, and MeHg+MP, respectively. Genes related to metabolic pathways and the immune system were significantly affected after MeHg exposure, but the effect of MeHg on these pathways was alleviated by MP co-exposure. However, MeHg and MP exhibited synergistic effects on the expression of gene related to DNA replication. These findings suggest that MP can reduce the toxicity of MeHg but that their toxicological interactions differ depending on the molecular pathway.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Tae-June Choi
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jong-Seok Park
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chang-Bae Kim
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
3
|
Yoo JW, Bae HJ, Jeon MJ, Jeong TY, Lee YM. Metabolomic analysis of combined exposure to microplastics and methylmercury in the brackish water flea Diaphanosoma celebensis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6807-6822. [PMID: 36445536 DOI: 10.1007/s10653-022-01435-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Owing to their widespread distribution and high bioaccumulation, microplastics (MPs) and mercury (Hg) are considered major threats to the ocean. MP interacts with Hg because of its high adsorption properties. However, their toxicological interactions with marine organisms, especially combined effects at the molecular level, are poorly understood. This study investigated the single and combined effects of MP and Hg on the metabolic profile of the brackish water flea Diaphanosoma celebensis. A total of 238 metabolites were significantly affected by MP, Hg, or MP + Hg. Metabolite perturbation patterns showed that toxicity of Hg and MP + Hg was similar and that of MP was not significant. Among the 223 metabolites affected by Hg, profiles of 32 unannotated metabolites were significantly different from those of MP + Hg, and combined effects of MP + Hg decreased the effect of Hg on 25 of these metabolites. Only 11 annotated metabolites were significantly affected by Hg or MP + Hg and were related to carbohydrate, lipid, vitamin, and ecdysteroid metabolism. Ten metabolites were decreased by Hg and MP + Hg and were not significantly different between the exposure groups. Enrichment analysis showed that galactose, starch, and sucrose metabolism were the most affected pathways. These findings suggest that MP has negligible toxic effect, and Hg can induce energy depletion, membrane damage, and disruption of growth, development, and reproduction. Although the impact of MP was negligible, the combined effects of MP + Hg could be metabolite specific. This study provides better understanding of the combined effects of MP and Hg on marine organisms.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hyeon-Jeong Bae
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, 17035, Republic of Korea
| | - Min Jeong Jeon
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, 17035, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
4
|
Martínez-Megías C, Mentzel S, Fuentes-Edfuf Y, Moe SJ, Rico A. Influence of climate change and pesticide use practices on the ecological risks of pesticides in a protected Mediterranean wetland: A Bayesian network approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163018. [PMID: 36963680 DOI: 10.1016/j.scitotenv.2023.163018] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 05/13/2023]
Abstract
Pollution by agricultural pesticides is one of the most important pressures affecting Mediterranean coastal wetlands. Pesticide risks are expected to be influenced by climate change, which will result in an increase of temperatures and a decrease in annual precipitation. On the other hand, pesticide dosages are expected to change given the increase in pest resistance and the implementation of environmental policies like the European ´Farm-to-Fork` strategy, which aims for a 50 % reduction in pesticide usage by 2030. The influence of climate change and pesticide use practices on the ecological risks of pesticides needs to be evaluated making use of realistic environmental scenarios. This study investigates how different climate change and pesticide use practices affect the ecological risks of pesticides in the Albufera Natural Park (Valencia, Spain), a protected Mediterranean coastal wetland. We performed a probabilistic risk assessment for nine pesticides applied in rice production using three climatic scenarios (for the years 2008, 2050 and 2100), three pesticide dosage regimes (the recommended dose, and 50 % increase and 50 % decrease), and their combinations. The scenarios were used to simulate pesticide exposure concentrations in the water column of the rice paddies using the RICEWQ model. Pesticide effects were characterized using acute and chronic Species Sensitivity Distributions built with toxicity data for aquatic organisms. Risk quotients were calculated as probability distributions making use of Bayesian networks. Our results show that future climate projections will influence exposure concentrations for some of the studied pesticides, yielding higher dissipation and lower exposure in scenarios dominated by an increase of temperatures, and higher exposure peaks in scenarios where heavy precipitation events occur right after pesticide application. Our case study shows that pesticides such as azoxystrobin, difenoconazole and MCPA are posing unacceptable ecological risks for aquatic organisms, and that the implementation of the ´Farm-to-Fork` strategy is crucial to reduce them.
Collapse
Affiliation(s)
- Claudia Martínez-Megías
- University of Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Ctra. Madrid-Barcelona KM 33.600, 28871 Alcalá de Henares, Madrid, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Sophie Mentzel
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Yasser Fuentes-Edfuf
- Department of Strategy, IE Business School, IE University, Paseo de la Castellana 259 E., 28046 Madrid, Spain
| | - S Jannicke Moe
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Bordin ER, Yamamoto FY, Mannes Y, Munhoz RC, Muelbert JRE, de Freitas AM, Cestari MM, Ramsdorf WA. Sublethal effects of the herbicides atrazine and glyphosate at environmentally relevant concentrations on South American catfish (Rhamdia quelen) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104057. [PMID: 36592679 DOI: 10.1016/j.etap.2022.104057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The objective of this work was to evaluate the effects following exposure (96 h) of South American catfish (R. quelen) embryos to active ingredients and commercial formulations from atrazine and glyphosate, isolated and in mixtures, at environmentally relevant concentrations. While the survival rates were not affected, sublethal effects were evidenced after exposure. The most frequent deformities were fin damage and axial and thoracic damage. The mixture of active ingredients caused an increase in SOD and GST, differing from the treatment with the mixture of commercial formulations. The activity of AChE was significantly reduced following the treatment with the active ingredient atrazine and in the mixture of active ingredients. In general, herbicide mixtures were responsible for causing more toxic effects to R. quelen embryos. Therefore, these responses showed to be suitable biomarkers of herbicides' exposure, in addition to generating more environmentally relevant baseline data for re-stablishing safety levels of these substances in aquatic bodies.
Collapse
Affiliation(s)
- Eduarda Roberta Bordin
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil; Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil.
| | | | - Yorrannys Mannes
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Renan César Munhoz
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | | | | | | | | |
Collapse
|
6
|
Mendieta Herrera J, Iñiguez Armijos C, Rosado Alcarria D, Aguilar Ramírez S. Toxicity of Difenoconazole and Atrazine and Their Photodegradation Products on Aquatic Biota: Environmental Implications in Countries Lacking Good Agricultural Practices. TOXICS 2023; 11:213. [PMID: 36976978 PMCID: PMC10051296 DOI: 10.3390/toxics11030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Agriculture is fundamental for human development, but it may also have a range of unwanted effects on ecosystems when pesticides inadvertently enter the environment. We determined the toxicity of difenoconazole and atrazine, as well as their photodegradation products, on the bioindicators Lemna minor and Daphnia magna. For L. minor, we assessed the number of leaves, biomass, and chlorophyll content exposed to different concentrations of difenoconazole (0-8 mg/L) and atrazine (0-3.84 mg/L). For D. magna, we assessed the mortality to difenoconazole (0-1.6 mg/L) and atrazine (0-80 mg/L). We found that the higher the concentrations of the pesticides, the higher the toxicity for both bioindicators. In L. minor, the highest toxicity for atrazine was 0.96 mg/L, whereas for difenoconazole, it was 8 mg/L. For D. magna, the 48 h LC50 for difenoconazole was 0.97 mg/L, while for atrazine, it was 86.19 mg/L. For L. minor, the toxicity of difenoconazole and atrazine was not different compared to that of their photodegradation products. In contrast, for D. magna, difenoconazole, but not atrazine, was more toxic compared to its respective photodegradation products. Pesticides are a serious threat to aquatic biota, and their photodegradation products remain toxic in the environment. Additionally, the use of bioindicators can help monitor these pollutants in aquatic ecosystems in countries where the application of pesticides is imperative for agricultural production.
Collapse
Affiliation(s)
- Julia Mendieta Herrera
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Carlos Iñiguez Armijos
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Daniel Rosado Alcarria
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, 24118 Kiel, Germany
| | - Silvio Aguilar Ramírez
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| |
Collapse
|
7
|
Nataraj B, Hemalatha D, Malafaia G, Maharajan K, Ramesh M. "Fishcide" effect of the fungicide difenoconazole in freshwater fish (Labeo rohita): A multi-endpoint approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159425. [PMID: 36244480 DOI: 10.1016/j.scitotenv.2022.159425] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Difenoconazole is widely used to protect crops, fruits, and vegetables. However, this fungicide can enter aquatic environments and cause harmful effects to non-target organisms and induce little-known biological disorders. Thus, aiming to expand our knowledge about the ecotoxicity of difenoconazole on freshwater ichthyofauna, we aimed to determine the median lethal concentration (LC50) of difenoconazole and evaluate its possible impacts from different toxicity biomarkers, using freshwater fish Labeo rohita as a model system. Using the probit analysis method, the 96 h LC50 value of difenoconazole in the fish was calculated as 4.5 mg L-1. Posteriorly, fish were exposed to two sublethal concentrations (0.45 mg L-1 1/10th and 0.9 mg L-1 1/5th LC50 value) for 21 days. A significant reduction of superoxide dismutase (SOD) and catalase (CAT) activity was noted in the gill, liver, and kidneys of fish compared to the control groups. The level of glutathione-S-transferase (GST) and lipid peroxidation (LPO) activity was higher in all vital tissues of difenoconazole-treated fish. Histological alterations in the gill include epithelial lifting, lamellar fusion, hypertrophy, and epithelial necrosis. At the same time, the liver showed pyknotic nucleus, vacuolation, cellular edema and tubular necrosis, shrinkage of glomeruli, vacuolation, and pyknotic nuclei in the kidney. DNA damage was increased significantly with tail formation based on the concentration and time-dependent manner. Therefore, our study confirms that the exposure of L. rohita to difenoconazole induces negative biological consequences and sheds light on the danger of this fungicide for freshwater fish species. We believe that studies like ours can support actions and strategies for the remediation/mitigation of aquatic pollution by difenoconazole and for the conservation of freshwater ichthyofauna.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
8
|
Pinos-Vélez V, Araujo GS, Moulatlet GM, Pérez-González A, Cipriani-Ávila I, Tripaldi P, Capparelli MV. Acute Toxicity of Daphnia magna Neonates Exposed to Single and Composite Mixtures of Four Emerging Contaminants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:14. [PMID: 36520226 DOI: 10.1007/s00128-022-03663-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The effects of emerging contaminants on environmental health are of high concern, especially those potentially induced by mixtures. We assessed single and composite mixtures of triclosan (T), 17β-estradiol (E2), sulfamethoxazole (SMX), and nicotine (N) at various concentrations, on neonates of Daphnia magna. When used in single exposure, T and N induced high toxicity (100% immobility, each one), compared to SMX and E2 (2.5% and 10% immobility, respectively). When T, E2, SMX and N were in mixture, T had the highest contribution to the overall toxicity in mixture exposures. The N toxicity lowered when in a fourfold exposure (85% immobility in fourfold exposure). Due to the high toxicity of T and N, both alone and in the mixtures, our results can serve as a warning about the use of these substances and their release in the aquatic ecosystem.
Collapse
Affiliation(s)
- Verónica Pinos-Vélez
- Departamento de Biociencias, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador.
- Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.
| | - Giuliana S Araujo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, S/N, São Vicente, SP, 11330-900, Brazil
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Andrés Pérez-González
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Isabel Cipriani-Ávila
- Escuela de Química, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Piercosimo Tripaldi
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Mariana V Capparelli
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, C. P 24157, Ciudad del Carmen, Campeche, Mexico
| |
Collapse
|
9
|
Bordin ER, Munhoz RC, Panicio PP, de Freitas AM, Ramsdorf WA. Effects of environmentally relevant concentrations of atrazine and glyphosate herbicides, isolated and in mixture, on two generation of the freshwater microcrustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:884-896. [PMID: 35585359 DOI: 10.1007/s10646-022-02554-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The herbicides atrazine and glyphosate are used worldwide and their excessive usage results in the frequent presence of these pesticides in environmental compartments. We evaluated the effects of environmentally relevant concentrations of analytical standards and commercial formulations of atrazine (2 µg L-1) and glyphosate (65 µg L-1), isolated and in mixture (2 + 65 µg L-1) on the microcrustacean Daphnia magna. Through chronic exposure (21 days) of two generations, we observed effects on survival, reproductive capacity and responses of the antioxidant defense system (catalase) and biotransformation system (glutathione S-transferase). The survival of organisms was affected in the second generation (F1) with a mortality of 17% in the mixture of commercial formulations treatments. In the evaluation of the first generation (F0) we observed only effects on sexual maturation of organisms, while in the F1, changes were observed in all parameters evaluated. A statistical difference (p < 0.05) was also observed between the analytical standards and the commercial formulations for all parameters evaluated, indicating that other components present in the formulations can change the toxicity of products. We suggest that atrazine can modulate toxicity when mixed with glyphosate, as the standard analytical atrazine and mixture of analytical standards results were similar in most parameters. Given the difficulty in estimating effects of mixtures and considering that various stressors are found in the environment, our results support the need to carry out long-term studies and, above all, to verify what are the impacts across generations, so that the toxicity of products is not underestimated. Graphical abstract.
Collapse
Affiliation(s)
- Eduarda Roberta Bordin
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Renan César Munhoz
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
10
|
Leite LDS, Ogura AP, Dos Santos DV, Espíndola ELG, Daniel LA. Acute toxicity of disinfection by-products from chlorination of algal organic matter to the cladocerans Ceriodaphnia silvestrii and Daphnia similis: influence of bromide and quenching agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35800-35810. [PMID: 35061173 DOI: 10.1007/s11356-022-18752-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Algal organic matter (AOM) in water reservoirs is a worldwide concern for drinking water treatment; once it is one of the main precursors for disinfection by-products formation (DBPs). In this context, this study investigated the ecotoxicity of DBPs from chlorination of AOM to Ceriodaphnia silvestrii and Daphnia similis (Crustacea, Cladocera). The bioassays evaluated three scenarios, including the AOM extracted from Chlorella sorokiniana, the quenching condition used in the tests, and the DBPs formed after the chlorination of the two test waters with AOM (with and without bromide presence). The results showed that AOM has no toxic effects for the tested species under typical environmental concentration (5 mg∙L-1). However, since AOM is a potential precursor of DBPs, the toxicity of two test waters (TW-1 and TW-2) after the chlorination process (25 mg Cl2·L-1, for 7 days, at 20 °C) was tested. The sample with higher toxicity to the tested species was TW-1, in which chloroform and chloral hydrate were quantified (615 and 267 µg∙L-1, respectively). However, TW-2 showed lower concentration of chloroform and chloral hydrate (260 and 157 µg∙L-1, respectively), although bromodichloromethane, dibromochloromethane, and bromoform were also detected (464, 366, and 141 µg∙L-1, respectively). Although free chlorine is highly toxic to the tested species, the quenching conditions also affected the organisms' survival due to the use of ascorbic acid and the presence of reaction intermediates. Nonetheless, both species were more affected by TW-1 and TW-2 than the quenching condition. These results endorse the importance of removing the AOM before the disinfection process to avoid the formation of DBPs. In addition, ecotoxicological analyses could provide a more comprehensive assessment of water quality, especially considering the challenges of quantifying DBPs and other emerging contaminants.
Collapse
Affiliation(s)
- Luan de Souza Leite
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, , São Paulo, 13566-59, Brazil.
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, , São Paulo, 13566-59, Brazil
| |
Collapse
|
11
|
Gad AF. Emamectin benzoate as a potential molluscicide against white garden snail, Theba pisana in association with biochemical defects. PEST MANAGEMENT SCIENCE 2022; 78:1657-1664. [PMID: 34989113 DOI: 10.1002/ps.6785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The white garden snail, Theba pisana, is distributed worldwide and is a serious molluscan pest of different crops. Emamectin benzoate (EMB) 'an avermectin derivative' is a novel biorational agent and highly effective pesticide. This study focused on the lethal and in vivo sublethal toxic effect of EMB on the energy reserves (glycogen, lipids and proteins), total energy reserves and activities of glutathione S-transferase (GST), γ-glutamyl transferase (γ-GT), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the hepatopancreas of T. pisana for up to 7 days of exposure. RESULTS The median lethal dose (LD50 ) at 48 h of EMB treatment was 5.34 μg g-1 body weight (b.w.). Sublethal doses of 1.07 and 3.20 μg g-1 b.w. (i.e., 20% and 60% of the LD50 ) led to significant dose- and time-dependent decreases in glycogen and lipids; these doses increased the total protein level. Overall, the tested sublethal doses significantly decreased the total energy reserves. Moreover, GST and γ-GT activities were elevated, whereas the activities of AST and ALT were inhibited in the exposed snails. A decrease in LDH activity after 1 and 3 days of exposure and an increase after 7 days of exposure were seen in snails treated with EMB. CONCLUSION EMB exerted lethal toxicity on T. pisana and consequently caused changes in energy reserve levels and enzyme activities in the animal. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Amira F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
12
|
Dornelas ASP, de Jesus Ferreira JS, Silva LCR, de Souza Saraiva A, Cavallini GS, Gravato CAS, da Maia Soares AMV, Almeida Sarmento R. The sexual reproduction of the nontarget planarian Girardia tigrina is affected by ecologically relevant concentrations of difenoconazole: new sensitive tools in ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27095-27103. [PMID: 34981389 DOI: 10.1007/s11356-021-18423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The fungicide difenoconazole, widely used to reduce the negative impacts of fungi diseases on areas with intensive farming, can reach freshwater systems causing deleterious effects on nontarget organisms. The acute and chronic toxicity of a commercial formulation containing 250 g L-1 of difenoconazole (Prisma®) as the active ingredient was assessed in the freshwater planarian Girardia tigrina. The endpoints evaluated were feeding rate, locomotion, regeneration, and sexual reproduction of planarians. The estimated 48 h LC50 of the commercial formulation on planarians expressed as the concentration of the active ingredient difenoconazole was 47.5 mg a.i.L-1. A significant decrease of locomotion (LOEC = 18.56 mg a.i.L-1), delayed regeneration (LOEC = 9.28 mg a.i.L-1), and sexual reproduction impairment, i.e., decreased fecundity and fertility rates (LOEC ≤ 1.16 mg a.i.L-1) were observed on planarians exposed to sublethal concentrations of the formulation. This study demonstrated the importance of using reproductive, physiological, and behavioral parameters as more sensitive and complementary tools to assess the deleterious effects induced by a commercial formulation of difenoconazole on a nontarget freshwater organism. The added value and importance of our research work, namely, the impairment of sexual reproduction of planarians, contributes to the development of useful tools for ecotoxicology and highlights the fact that those tools should be developed as guidelines for testing of chemicals. Our results showed that the use of reproductive parameters of Girardia tigrina would help to complement and achieve a better assessment of the risk posed by triazole fungicides to freshwater ecosystems.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Joel Santiago de Jesus Ferreira
- Curso de Engenharia de Bioprocessos E Biotecnologia, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Laila Cristina Rezende Silva
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Althiéris de Souza Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos (Laboratório de Conservação de Agroecossistemas E Ecotoxicologia), Campos Belos, Goiás, 73840-000, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| |
Collapse
|
13
|
Radwan MA, Gad AF. Insights into the ecotoxicological perturbations induced by the biocide Abamectin in the white snail, Theba pisana. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:201-210. [PMID: 35193456 DOI: 10.1080/03601234.2022.2044708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abamectin (avermectin B1, ABM) has been widely used as a biocide in agriculture, veterinary and medicine around the world. Yet, there is still a lack of knowledge about the ecotoxicological effects of ABM. In this study, we investigated the acute toxicity and sub-lethal (20% and 60% LD50) biochemical responses of ABM on the non-target land snail, Theba pisana. Mortality of snails increased with the dose increase, resulting 48 h- LD50 value of 1.048 µg/snail. The biochemical results showed a decrease in glycogen content and lipids for two sub-lethal doses after all time intervals, whereas increased the level of total proteins after exposure to 60% LD50 ABM. Overall, the tested sub-lethal doses significantly decreased the total energy reserves. ABM-exposure to snails elevated γ-Glutamyl transferase and Lactate dehydrogenase activities at all-time intervals. A significant increase of Glutathione-S-transferase activity was also recorded in snails exposed to 20% and 60% LD50 after 7 days and all time intervals, respectively. However, ABM inhibited the activity of Aspartate aminotransferase and Alanine aminotransferase after 7 days of exposure. Our investigation provides new insights into the disturbances of energy reserves and enzyme activities in T. pisana that are sensitive and may be used as biomarkers for assessing ABM toxicity.
Collapse
Affiliation(s)
- Mohamed A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Amira F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
14
|
Brigante J, Costa JO, Espíndola ELG, Daam MA. Acute toxicity of the insecticide abamectin and the fungicide difenoconazole (individually and in mixture) to the tropical stingless bee Melipona scutellaris. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1872-1879. [PMID: 34379243 DOI: 10.1007/s10646-021-02458-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Stingless bees have been recognized as essential plant pollinators and producers of various natural products in neotropical areas. Research into the potential risks of pesticides they may be exposed to in agricultural fields, however, remains meagre. Especially the toxicity of pesticide mixtures likely to occur under real-world conditions and that are likely to exert synergetic effects has been poorly studied. The aim of the present study was therefore to evaluate the single and mixture acute contact and oral toxicity of commercial products containing the insecticide abamectin and the fungicide difenoconazole in laboratory bioassays with the Brazilian native stingless bee Melipona scutellaris. In addition, a comparison of the insecticide sensitivity of stingless bees relative to the honeybee Apis mellifera was made based on previously published toxicity data. Except for oral exposure to abamectin, M. scutellaris appeared to be more sensitive that A. mellifera in the single compound toxicity tests. A difenoconazole concentration at the NOEC (no observed effect concentration) level indicated a synergetic toxic interaction with abamectin. A sensitivity comparison based on published toxicity data for A. mellifera and stingless bees indicated several insecticidal modes of action having a high relative sensitivity to stingless bees that need especial consideration in future studies. The research findings highlight the need for testing native bee species and environmentally relevant pesticide mixtures in risk assessments to avoid underestimation of potential risks to bee populations and the subsequent loss of pollination ecosystem services.
Collapse
Affiliation(s)
- Janete Brigante
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil
| | - Joyce Oliveira Costa
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil
| | - Evaldo L G Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal.
| |
Collapse
|
15
|
Thuy NTN, Luan HNT, Hieu VVK, Ngan MTT, Trung NT, Hung LVT, Van TTT. Optimum fabrication parameters for preparing high performance SERS substrates based on Si pyramid structure and silver nanoparticles. RSC Adv 2021; 11:31189-31196. [PMID: 35496849 PMCID: PMC9041556 DOI: 10.1039/d1ra05215b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, we propose simple and inexpensive methods to prepare micro/nano hierarchical Surface-Enhanced Raman Scattering (SERS) substrates, in which pyramid structure is created by using anisotropic wet etching of a silicon wafer and a silver thin film is deposited on these pyramid arrays by thermal evaporation. The ensemble is then annealed at 450 °C for 2 hours to form silver nanoparticles (AgNPs). The sizes and density of the pyramids and AgNPs are optimized mainly by changing the etching temperature (60-80 °C), the thickness of the Ag-film (15-45 nm) and etching time (3-10 min). The ultraviolet visible (UV-Vis) absorbance spectra show that the AgNPs formed with the 30 nm-thick film exhibit the strongest plasmonic effect. Under these conditions, the spherical AgNPs with sizes of 42-48 nm are densely distributed on the silicon micro-pyramid array. The obtained SERS signal is the strongest at the pyramid base-edge size of 7-10 μm. The enhancement factor obtained from the abamectin probe molecules is as high as 1 × 106 and the SERS substrates enable the detection of abamectin concentrations as low as 5.7 × 10-9 M. Therefore, this work provides a novel SERS substrate structure that has a high potential for use in medicine and biotechnology or as a food security sensor.
Collapse
Affiliation(s)
| | - Huynh Nguyen Thanh Luan
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Van Vo Kim Hieu
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Tribology Lab, Department of Mechanical Engineering, University of Ulsan 93 Daehak-ro, Nam-gu Ulsan 44610 South Korea
| | - Mai Thi Thanh Ngan
- Faculty of Applied Sciences, HCMC University of Technology and Education Vietnam
| | - Nguyen Tri Trung
- Faculty of Applied Sciences, HCMC University of Technology and Education Vietnam
| | - Le Vu Tuan Hung
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Faculty of Physics and Engineering Physics, University of Science, VNU-HVM Vietnam
| | - Tran T T Van
- Faculty of Materials Science and Technology, University of Science, VNU-HCM Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
16
|
da Silva Pinto TJ, Moreira RA, da Silva LCM, Yoshii MPC, Goulart BV, Fraga PD, da Silva Rolim VL, Montagner CC, Daam MA, Espindola ELG. Toxicity of fipronil and 2,4-D formulations (alone and in a mixture) to the tropical amphipod Hyalella meinerti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38308-38321. [PMID: 33733415 DOI: 10.1007/s11356-021-13296-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/01/2021] [Indexed: 05/22/2023]
Abstract
Conventional farming uses a large volume of pesticides that may reach aquatic ecosystems. This is also the case for the insecticide fipronil and the herbicide 2,4-D, which are widely used in many crops. This study aimed at evaluating the individual and mixture toxicity of these pesticides to the tropical amphipod Hyalella meinerti. To this end, acute toxicity tests (96 h) were conducted. Chronic bioassays (10 days) were also carried out, in which the body length and dry biomass were evaluated as endpoints. In addition, a complete factorial mixture chronic toxicity test was carried out. H. meinerti was sensitive to fipronil in the acute toxicity tests, with a LC50-96-h of 0.86 μg L-1 (95% CI 0.26-0.46), and no acute effects were observed after 2,4-D exposure even at the highest test concentration of 100 mg L-1. In the chronic toxicity tests, all tested concentrations of both pesticides decreased the growth of H. meinerti, in which losses on biomass reached 45% and 65% for 2,4-D and fipronil, respectively. The pesticide mixture indicated antagonism although it still significantly decreased the body growth. The results obtained indicate a high sensitivity of H. meinerti exposed to environmentally realistic concentrations, demonstrating that there are risks for the species in real field conditions.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Priscille Dreux Fraga
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Victor Luiz da Silva Rolim
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13560-970, Brazil
| |
Collapse
|
17
|
Pitombeira de Figueirêdo L, Athayde DB, Daam MA, Guerra G, Duarte-Neto PJ, Sarmento H, Espíndola ELG. Integrated ecosystem models (soil-water) to analyze pesticide toxicity to aquatic organisms at two different temperature conditions. CHEMOSPHERE 2021; 270:129422. [PMID: 33421753 DOI: 10.1016/j.chemosphere.2020.129422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In order to increase the knowledge about pesticides considering the soil-water interaction, ecosystem models (mesoscosms) were used to analyze the of leachate on the immobility and feeding rate of the cladocerans, Ceriodaphnia silvestrii and D. similis and algae Raphidocelis subcapitata, at two different temperatures. Mesocosm were filled with natural soil (latosolo) that were contaminated with insecticide/acaricide Kraft 36 EC® and fungicide Score 250 EC®, using the recommended concentration for strawberry crops (10.8 g abamectin/ha and 20 g difenoconazole/ha). Pesticides were applied once (hand sprayers) and the precipitation was simulated twice a week (Days 1, 4, 8, 11, 15 and 18). The mesocosm were kept in a room with a controlled temperature (23 and 33 °C) and photoperiod (12h light/12h dark). The Kraft 36 EC® insecticide showed toxicity for both species of cladocerans tested, with effects on immobility and feeding rate, both at 23 and 33 °C. Score 250 EC® showed to be toxic only for the experiments that analyzed the immobility of C. silvestrii at 23 °C and the feeding of D. smilis at 33 °C, demonstrating that the effects are species-specific and related to the temperature at which they are tested. While for species R. subcapitata there was an effect only for mixture treatments of the pesticides analyzed at both temperatures. Thereby, zooplanktonic organisms may be at risk when exposed to this compound even after percolating in a soil column, which could lead to effects on the entire aquatic trophic chain and that temperature can influence the organism response to the contaminant.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Danillo B Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Glauce Guerra
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Hugo Sarmento
- Laboratory of Microbial Processes and Biodiversity, Department of Hydrobiology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, Brazil
| | - Evaldo L G Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
18
|
Dey S, Ballav P, Samanta P, Mandal A, Patra A, Das S, Mondal AK, Ghosh AR. Time-Dependent Naphthalene Toxicity in Anabas testudineus (Bloch): A Multiple Endpoint Biomarker Approach. ACS OMEGA 2021; 6:317-326. [PMID: 33458483 PMCID: PMC7807757 DOI: 10.1021/acsomega.0c04603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/20/2020] [Indexed: 05/23/2023]
Abstract
Polyaromatic compounds are the major, widespread contaminants in the aquatic environment. However, the adverse impacts of these compounds on blood pathophysiology (hematological profiling and serum biochemical responses) are poorly understood. As a consequence, this study was intended to evaluate the toxic effects of naphthalene, one of the polycyclic aromatic hydrocarbons, on the blood pathophysiology of Anabas testudineus using multiple end-point biomarker approach. A. testudineus was exposed to short-term (1 and 5 d) and long-term (10, 15, and 21 d) naphthalene concentrations, that is, T1 (0.71 mg/L indicates 25% of LC50) and T2 (1.42 mg/L indicates 50% of LC50 value). The results disclosed significant decrease in red blood cells, hemoglobin (Hb), packed cell volume, and platelet levels, while other blood parameters, namely, white blood cells, percent lymphocyte, mean cell volume, mean corpuscular Hb, and mean corpuscular Hb concentration showed enhanced levels under naphthalene intoxication. Results were more detrimental under T2 concentration. Cholesterol, glucose, calcium, high-density lipoprotein, and low-density lipoprotein levels gradually increased throughout the different exposure periods under T1 and T2 concentrations, while the triglyceride level gradually decreased during exposure periods. Finally, integrated biomarker responses (IBR) analysis indicated that serum biochemical parameters are more powerful than hematological parameters for determining the naphthalene-induced fish health status. Additionally, the IBR study clearly identified that long-term (>5 d) exposure was more harmful than short-term (<5 d) naphthalene exposure. So, these responses may be derived as biomarkers for monitoring naphthalene pollution in an aquatic ecosystem.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Puspita Ballav
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Palas Samanta
- Department
of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Arghya Mandal
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Atanu Patra
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Subhas Das
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Kumar Mondal
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Apurba Ratan Ghosh
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| |
Collapse
|