1
|
Wang G, Yang F, Wang Y, Ren F, Hou Y, Su S, Li W. Magnetic response and bioaccessibility of toxic metal pollution in outdoor dustfall in Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125115. [PMID: 39401559 DOI: 10.1016/j.envpol.2024.125115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
Toxic metal content testing, environmental magnetic monitoring and in vitro bioaccessibility experiments each have their own advantages and are often used independently for environmental monitoring, but there are few studies that combine the three to evaluate the hazards of toxic metals to humans. This paper investigated the total content, magnetic properties and bioaccessibility of nine potentially toxic metal elements (Zn, Sn, Pb, Cu, Fe, Ni, Cr, Sr, Mn) in dustfall from different functional zones in Shanghai, China, and systematically compared the related results. The results show that these nine metal elements have different degrees of contamination and enrichment in outdoor dustfall, and their content distribution shows the following trend: Zn > Sn > Pb > Cu > Fe > Ni > Cr > Sr > Mn. Magnetic characteristics χlf and SIRM are mostly positively correlated with the metal elements, indicating that the higher the content of magnetic minerals in the sample, the higher the concentration of metal elements. It was also found that χlf, SIRM, and χARM can well reflect the characteristics of dustfall pollution. The magnetic minerals have a certain degree of enrichment, and the particle size of the magnetic minerals is relatively coarse, mainly in the form of coarse multi-domain and pseudo-single-domain particles, which are largely derived from anthropogenic pollution. The χlf and PM10 concentrations in the precipitation show relatively similar spatial trends, so χlf, SIRM, and χARM can be used as air pollution indices to facilitate the evaluation of metal elements pollution in dustfall. The overall trend in gastric bioaccessibility is Pb > Zn > Mn > Cu > Cr. Due to the increase in the pH of digestive fluid, the bioavailability of toxic metals decreases significantly from the gastric stage to the intestinal stage. χlf, SIRM, and χARM/SIRM are all related to the bioaccessibility of toxic metals in the intestinal stage, so they can be used as toxicity indicators to evaluate the bioaccessibility of toxic metals in dustfall.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fan Yang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yangyang Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feifan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China.
| | - Yumei Hou
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shiguang Su
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenxin Li
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
2
|
Li X, He A, Cao Y, Yun J, Bao H, Yan X, Zhang X, Dong J, Kelly FJ, Mudway I. Exposure risks of lead and other metals to humans: A consideration of specific size fraction and methodology. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133549. [PMID: 38447362 DOI: 10.1016/j.jhazmat.2024.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Particle size is a critical influencing factor in assessing human exposure risk as fine particles are generally more hazardous than larger coarse particles. However, how particle composition influences human health risk is only poorly understood as different studies have different utilised different definitions and as a consequence there is no consensus. Here, with a new methodology taking insights of each size fraction load (%GSFload), metal bioaccessibility, we classify which specific particle size can reliably estimate the human exposure risk of lead and other metals. We then validate these by correlating the metals in each size fraction with those in human blood, hair, crop grain and different anthropogenic sources. Although increasing health risks are linked to metal concentration these increase as particle size decrease, the adjusted-risk for each size fraction differs when %GSFload is introduced to the risk assessment program. When using a single size fraction (250-50 µm, 50-5 µm, 5-1 µm, and < 1 µm) for comparison, the risk may be either over- or under-estimated. However, by considering bulk and adjusting the risk, it would be possible to obtain results that are closer to the real scenarios, which have been validated through human responses and evidence from crops. Fine particle size fractions (< 5 µm) bearing the mineral crystalline or aggregates (CaCO3, Fe3O4, Fe2O3, CaHPO4, Pb5(PO4)3Cl) alter the accumulation, chemical speciation, and fate of metals in soil/dust/sediment from the different sources. Loaded lead in the size fraction of < 50 µm has a significantly higher positive association with the risk-receptor biomarkers (BLLs, Hair Pb, Corn Pb, and Crop Pb) than other size fractions (bulk and 50-250 µm). Thus, we conclude that the < 50 µm fraction would be likely to be recommended as a reliable fraction to include in a risk assessment program. This methodology acts as a valuable instrument for future research undertakings, highlighting the importance of choosing suitable size fractions and attaining improved accuracy in risk assessment results that can be effectively compared.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Ana He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yuhan Cao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Hongxiang Bao
- Frontier Medical Service Training Brigade, Army Medical University, Hutubi 831200, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
3
|
Vasiluk L, Sowa J, Sanborn P, Dutton MD, Hale B. The effect of particle size on oral bioavailability and bioaccessibility of soil Ni from different sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122761. [PMID: 37844864 DOI: 10.1016/j.envpol.2023.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The goal of the work was to contribute to a unified approach to assessing the risk to human health of soil ingestion, for contaminated sites with elevated [Ni]. Robust relationships between in vitro bioaccessibility and in vivo bioavailability of Ni in various soils, with mechanistic understanding, would enable site-specific assessments of human exposure through soil ingestion. Four soils (three ultramafic Brunisols with geogenic Ni and one Organic soil with anthropogenic Ni) were sieved into PS < 10 μm, 10-41 μm, 41-70 μm, 70-105 μm, 105-150 μm, and 150-250 μm, the [Ni]T for which ranged from 560 to 103000 mg/kg. Mass fraction-adjusted [Ni]IVBA (SBRC gastric) for each soil fraction was similar whether calculated for all particles <250 μm or <150 μm %NiIVBA ranged from 3% to 16% of [Ni]T and %NiABA (accumulated Ni in urine, kidneys, and small intestine of Sprague Dawley rats gavaged with a soil) ranged from 0% to 0.49%. The correlation between these two measurements was weak (R2 = 0.06). Multiple linear dose response relationships attributing variation in %NiABA to %NiIVBA plus soil physicochemical parameters known to influence trace element availability in soils were developed. As many soil properties measured in this study were highly correlated, ridge regression enabled a predictive relationship where the effect of each parameter was its true contribution to variation in %NiABA. Using a ridge constant (k) of 0.012, %NiABA could be predicted from %NiIVBA adjusted for soil absorptive entities (OrgC, and Fe oxides (negative coefficients)) and soil pH (positive coefficient). %NiABA predicted from this relationship was very close to 1:1 with the observed %NiABA except at the lowest observed values which were lower than predicted. This study shows that as the conditions increasingly favour soil Ni solubility, more of the Ni was bioavailable; this generalization was true regardless of particle size or soil origin.
Collapse
Affiliation(s)
- Luba Vasiluk
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| | | | - Paul Sanborn
- Dept. of Ecosystem Science and Management, University of Northern British Columbia, Prince George, BC, Canada
| | | | - Beverley Hale
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Augustsson A, Lundgren M, Qvarforth A, Engström E, Paulukat C, Rodushkin I, Moreno-Jiménez E, Beesley L, Trakal L, Hough RL. Urban vegetable contamination - The role of adhering particles and their significance for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165633. [PMID: 37474053 DOI: 10.1016/j.scitotenv.2023.165633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
While urban-grown vegetables could help combat future food insecurity, the elevated levels of toxic metals in urban soils need to be met with measures that minimise transfer to crops. This study firstly examines soil/dust particle inclusion in leafy vegetables and its contribution to vegetable metals (As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn), using vegetable, soil and dust data from an open-field urban farm in southeastern Sweden. Titanium concentrations were used to assess soil/dust adherence. Results showed that vegetables contained 0.05-1.3 wt% of adhering particles (AP) even after washing. With 0.5 % AP, an adult with an average intake of vegetables could ingest approximately 100 mg of particles per day, highlighting leafy vegetables as a major route for soil/dust ingestion. The presence of adhering particles also significantly contributed to the vegetable concentrations of As (9-20 %), Co (17-20 %), Pb (25-29 %), and Cr (33-34 %). Secondly, data from an indoor experiment was used to characterise root metal uptake from 20 urban soils from Sweden, Denmark, Spain, the UK, and the Czech Republic. Combining particle adherence and root uptake data, vegetable metal concentrations were calculated for the 20 urban soils to represent hypothetical field scenarios for these. Subsequently, average daily doses were assessed for vegetable consumers (adults and 3-6 year old children), distinguishing between doses from adhering particles and root uptake. Risks were evaluated from hazard quotients (HQs; average daily doses/tolerable intakes). Lead was found to pose the greatest risk, where particle ingestion often resulted in HQs > 1 across all assessed scenarios. In summary, since washing was shown to remove only a portion of adhering metal-laden soil/dust particles from leafy vegetation, farmers and urban planners need to consider that measures to limit particle deposition are equally important as cultivating in uncontaminated soil.
Collapse
Affiliation(s)
- A Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - M Lundgren
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - A Qvarforth
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - E Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - C Paulukat
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
| | - I Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - E Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Universidad Autonoma de Madrid, Madrid, Spain
| | - L Beesley
- School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester M5 4WT, UK; Department of Environmental Geosciences, Czech University of Life Sciences Prague, Czech Republic
| | - L Trakal
- Department of Environmental Geosciences, Czech University of Life Sciences Prague, Czech Republic
| | - R L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| |
Collapse
|
5
|
Billmann M, Hulot C, Pauget B, Badreddine R, Papin A, Pelfrêne A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165263. [PMID: 37400023 DOI: 10.1016/j.scitotenv.2023.165263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Understanding the behavior of metal(loi)ds transported from soil to humans is critical for human health risk assessment (HHRA). In the last two decades, extensive studies have been conducted to better assess human exposure to potentially toxic elements (PTEs) by estimating their oral bioaccessibility (BAc) and quantifying the influence of different factors. This study reviews the common in vitro methods used to determine the BAc of PTEs (in particular As, Cd, Cr, Ni, Pb, and Sb) under specific conditions (particularly in terms of the particle size fraction and validation status against an in vivo model). The results were compiled from soils derived from various sources and allowed the identification of the most important influencing factors of BAc (using single and multiple regression analyses), including physicochemical soil properties and the speciation of the PTEs in question. This review presents current knowledge on integrating relative bioavailability (RBA) in calculating doses from soil ingestion in the HHRA process. Depending on the jurisdiction, validated or non-validated bioaccessibility methods were used, and risks assessors applied different approaches: (i) using default assumptions (i.e., RBA of 1); (ii) considering that bioaccessibility value (BAc) accurately represents RBA (i.e., RBA equal to BAc); (iii) using regression models to convert BAc of As and Pb into RBA as proposed by the USA with the US EPA Method 1340; or (iv) applying an adjustment factor as proposed by the Netherlands and France to use BAc from UBM (Unified Barge Method) protocol. The findings from this review should help inform risk stakeholders about the uncertainties surrounding using bioaccessibility data and provide recommendations for better interpreting the results and using bioaccessibility in risk studies.
Collapse
Affiliation(s)
- Madeleine Billmann
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France; Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 avenue du Grésillé BP 90406, F-49004 Angers Cedex 01, France
| | - Corinne Hulot
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | | | - Rabia Badreddine
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Arnaud Papin
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Aurélie Pelfrêne
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France.
| |
Collapse
|
6
|
Collot J, Binet P, Malabad AM, Pauget B, Toussaint ML, Chalot M. Floristic survey, trace element transfers between soil and vegetation and human health risk at an urban industrial wasteland. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132169. [PMID: 37523956 DOI: 10.1016/j.jhazmat.2023.132169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
This study aimed to determine the trace element accumulation in the soil and plants in an industrial wasteland and to estimate the extent of transfer to humans to measure the effects on and risks to vegetation and human health and find bioindicator plants representative of the levels of the main contaminants. In areas with the highest extractable trace element levels, we observed decreases in plant biodiversity explained by the disappearance of several families, favouring the coverage of tolerant species, such as Urtica dioica and Hedera helix. Trace elements were also found in the leaves of several plants, especially in a dominant species that is poorly studied, Alliaria petiolata. Indeed, this species had the highest contents of Zn (1750 mg.kg-1 DW), Ni (13.1 mg.kg-1 DW), and Cd (18 mg.kg-1 DW) found at the site and is a potential Zn bioindicator since its leaf contents were also representative of the Zn extractable contents in soil (R² = 0.94). The hazard quotient and carcinogen risk revealed that most of the site had an identified or possible risk, mainly due to Pb and As. Native species, especially A. petiolata, could be used in phytoextraction to manage and limit these human and environmental risks.
Collapse
Affiliation(s)
- Jordan Collot
- Chrono-Environnement UMR6249, Université Franche-Comté CNRS, F-25000 Besançon, France
| | - Philippe Binet
- Chrono-Environnement UMR6249, Université Franche-Comté CNRS, F-25000 Besançon, France
| | | | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Marie-Laure Toussaint
- Chrono-Environnement UMR6249, Université Franche-Comté CNRS, F-25000 Besançon, France
| | - Michel Chalot
- Chrono-Environnement UMR6249, Université Franche-Comté CNRS, F-25000 Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, Nancy 54000, France.
| |
Collapse
|
7
|
Kosheleva NE, Vlasov DV, Timofeev IV, Samsonov TE, Kasimov NS. Benzo[a]pyrene in Moscow road dust: pollution levels and health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1669-1694. [PMID: 35583719 DOI: 10.1007/s10653-022-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the priority pollutants in the urban environment. For the first time, the accumulation of BaP in road dust on different types of Moscow roads has been determined. The average BaP content in road dust is 0.26 mg/kg, which is 53 times higher than the BaP content in the background topsoils (Umbric Albeluvisols) of the Moscow Meshchera lowland, 50 km east of the city. The most polluted territories are large roads (0.29 mg/kg, excess of the maximum permissible concentration (MPC) in soils by 14 times) and parking lots in the courtyards (0.37 mg/kg, MPC excess by 19 times). In the city center, the BaP content in the dust of courtyards reaches 1.02 mg/kg (MPC excess by 51 times). The accumulation of BaP depends on the parameters of street canyons formed by buildings along the roads: in short canyons (< 500 m), the content of BaP reaches maximum. Relatively wide canyons accumulate BaP 1.6 times more actively than narrow canyons. The BaP accumulation in road dust significantly increases on the Third Ring Road (TRR), highways, medium and small roads with an average height of the canyon > 20 m. Public health risks from exposure to BaP-contaminated road dust particles were assessed using the US EPA methodology. The main BaP exposure pathway is oral via ingestion (> 90% of the total BaP intake). The carcinogenic risk for adults is the highest in courtyard areas in the south, southwest, northwest, and center of Moscow. The minimum carcinogenic risk is characteristic of the highways and TRR with predominance of nonstop traffic.
Collapse
Affiliation(s)
- Natalia E Kosheleva
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| | - Dmitry V Vlasov
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation.
| | - Ivan V Timofeev
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| | - Timofey E Samsonov
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| | - Nikolay S Kasimov
- Faculty of Geography, Lomonosov Moscow State University, GSP-1, Leninskie gory, Moscow, 119991, Russian Federation
| |
Collapse
|
8
|
Shentu J, Fang Y, Wang Y, Cui Y, Zhu M. Bioaccessibility and reliable human health risk assessment of heavy metals in typical abandoned industrial sites of southeastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114870. [PMID: 37037108 DOI: 10.1016/j.ecoenv.2023.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal pollution caused by a large number of abandoned industrial sites cannot be underestimated, but its human health risks have not been accurately assessed. This study investigated the pollution of heavy metals in soils of the typical abandoned industrial sites in southeastern China. Based on the bioaccessibility of different heavy metals (Pb, Ni, Cu, Zn, Cd, Cr) in the industrial soils, the human health risks were accurately evaluated, and the controlling factors were quantitatively assessed. The results showed that the heavy metals in each typical abandoned industrial sites had a high degree of spatial heterogeneity. Among them, Cd was the most susceptible to relevant discrete input from external factors such as human activities, followed by Zn, Pb, Cr, Ni and Cu. The bioaccessible concentration of heavy metals by the physiological-based extraction test (PBET) had a good correlation (R2 = 0.58 ∼ 0.86) with its bioavailable concentration by diethylenetriaminepentaacetic acid (DTPA) extraction. The regression model based on soil parameters had great potential to predict the bioaccessibility of heavy metals in abandoned industrial sites (R2 = 0.49 ∼ 0.95). The total concentration of heavy metals, Fe, soil texture and pH were the controlling factors of the metal bioaccessibility. Compared with the total concentration, the hazard index (HI) and carcinogenic risk (CR) values calculated based on gastrointestinal bioaccessibility were decreased by 39.0∼77.9% and 68.2∼79.9% in adults, and 45.3∼88.0% and 73.9∼83.5% in children, respectively. This work provides a feasible theoretical basis for reliable assessment of the human health risks of heavy metals in the abandoned industrial sites in the future.
Collapse
Affiliation(s)
- Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yi Fang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yangyang Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuxue Cui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
9
|
Alipour H. Dust temporal and spatial deposition affected by climate and soil mineralogical and chemical properties in a semi-arid area. Heliyon 2023; 9:e15181. [PMID: 37113775 PMCID: PMC10126863 DOI: 10.1016/j.heliyon.2023.e15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The important process of aerosol dusting is of economic, environmental and heath significance. The objective was to investigate the climatic parameters including rainfall (R), wind speed (WS), temperature (T), and relative humidity (RH), as well as soil mineralogical and chemical properties affecting dust deposition rate (DDR), in a unique and rarely studied area, the Kuhdasht watershed (456 km2) of Lorestan province, Iran. Data were collected seasonally using glass-traps inserted in ten research stations to indicate DDR seasonal and spatial variations using ARC-GIS. The spatial distribution of organic matter (OM), clay and CaCO3, and the mineralogical properties (using diffractograms obtained by XRD) of the dust and soil samples were determined. The city had the highest DDR decreasing toward the mountains. Spring (3.28-4.18 ton/km2) and autumn (1.82-2.52 ton/km2) resulted in the highest and the least DDR, respectively. The diffractograms indicated the sources of dust were local or from out of the borders. The clay minerals (kaolinite and illite) and the evaporating minerlas (gypsum, calcite, dolomite, and halite), detected in the soil and dust samples indicated their contribution to the process of DDR. According to the regression models and the correlation coefficients, DDR was highly and significantly correlated with R (R2= 0.691), WS (0.685) and RH (0.463) indicating such parameters can importantly affect DDR in the semi-arid areas.
Collapse
|
10
|
Ma X, Xia D, Liu X, Liu H, Fan Y, Chen P, Yu Q. Application of magnetic susceptibility and heavy metal bioaccessibility to assessments of urban sandstorm contamination and health risks: Case studies from Dunhuang and Lanzhou, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154801. [PMID: 35341853 DOI: 10.1016/j.scitotenv.2022.154801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Direct ingestion of sandstorm particles is an important pathway in human exposure to heavy metals. This study investigated the potential health risks of heavy metals transported in sandstorms from Dunhuang to Lanzhou in northwestern China using environmental magnetic parameters and metal bioaccessibilities in simulated gastric and intestinal tracts. The mean magnetic susceptibility of sandstorms in Lanzhou was 366.86 × 10-8 m3/kg, which was more than 5-fold higher than that of sandstorms in Dunhuang, indicating that these sandstorms continuously receive heavy metals with high magnetic mineral content along their pathways. Heavy metal concentrations in sandstorms were higher than background values and those in urban topsoil. Enrichment factors and pollution load indices showed that these heavy metals were derived from both natural and anthropogenic sources, with Cu, Zn, Pb, and Cd being strongly influenced by anthropogenic sources. The bioaccessibilities of Cd, Cu, Zn, and Pb in the sandstorms of Lanzhou were very high, ranging from 22.69% (Cu) to 50.86% (Pb) for gastric phase, and 12.07% (Pb)-22.11% (Cd) for interstinal phase, with the significant reduction in χlf of the physiologically-based extraction testing (PBET) treated sandstorms. The magnetic minerals are significant correlation with the concentrations of heavy metals in sandstorm and effect the release of heavy metals during human digestion process. The overall ecological risk posed by heavy metals contained in sandstorms was relatively low; however, the risk was moderate to high at individual sites. Ingestion posed the highest carcinogenic and non-carcinogenic risks for both adults and children, with the risk for children being higher.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Dunsheng Xia
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.
| | - Xinying Liu
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Hui Liu
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yijiao Fan
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peiyuan Chen
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiao Yu
- Key Laboratory of Western China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
11
|
Huang S, Huang F, Yang X, Xiao R, Wang Y, Xu M, Huang Y, Shi H, Wang P. Relative Contribution of Metal Content and Soil Particle Mass to Health Risk of Chromium-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095253. [PMID: 35564646 PMCID: PMC9100977 DOI: 10.3390/ijerph19095253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022]
Abstract
Three soil samples from a chromium (Cr)-contaminated field were classified into five particle fractions (i.e., 0–50 μm, 50–100 μm, 100–250 μm, 250–500 μm, and 500–1000 μm) and were further characterized to study their physicochemical properties and Cr bioaccessibility. The results indicated that the gastrointestinal bioaccessibility estimated by the Solubility Bioaccessibility Research Consortium (SBRC) method was on average 15.9% higher than that by the physiologically based extraction test (PBET) method. The health risk of all samples was within the safe range, and the health risk based on total Cr content may be overestimated by an average of 13.2 times compared to the bioaccessibility-based health risk. The health risk investigated from metal content was mainly contributed by the 50–250 μm fraction, which was 47.5, 50.2, and 43.5% for low-, medium-, and high-level polluted soils, respectively. As for the combined effect, the fractions of 100–250 μm and 500–1000 μm contributed the highest proportion to health risk, which was 57.1, 62.1, and 64.4% for low-level, medium-level, and high-level polluted soils, respectively. These results may further deepen the understanding of health risk assessment and quantify the contribution of the soil particle mass to health risk.
Collapse
Affiliation(s)
- Shuting Huang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
| | - Fei Huang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
- Correspondence: (F.H.); (R.X.)
| | - Xiaojun Yang
- Department of Geography, Florida State University, Tallahassee, FL 32306, USA;
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
- Correspondence: (F.H.); (R.X.)
| | - Yunze Wang
- Guangzhou Nanyang International School, Guangzhou 510000, China;
| | - Meili Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
| | - Yuxuan Huang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
| | - Hangyuan Shi
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
| | - Peng Wang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; (S.H.); (M.X.); (Y.H.); (H.S.); (P.W.)
| |
Collapse
|
12
|
Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spatial variations in the bioaccessibility and health risks induced by chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) in roadside dust from different land-use areas, i.e., commercial areas (CA), planned residential areas (PRA), spontaneous residential areas (SRA) and urban green areas (UGA) in Dhaka city, Bangladesh, were investigated. An in vitro simple bioaccessibility extraction test (SBET) method, which allows the simulation of the gastric (GP) and intestinal phases (IP) of human digestion, was applied to evaluate bioaccessibility and human health risk, assessed using United States Environmental Protection Agency (U.S. EPA) modelling. The average bioaccessible concentration of Zn was the highest in both the gastric (74.4–244.5 µg/g) and intestinal phases (74.4–244.5 µg/g) in all the land-use areas except UGA. The bioaccessibility percentages of Co and Cu in the IP phase and As in the GP phase were >40% for all the land-use categories. Carcinogenic (Cr, Ni, As and Pb) and non-carcinogenic human health risks were evaluated for the ingestion pathway, in both children and adults. The results suggest that there were no non-carcinogenic risks for adults and children exposed to roadside dust toxic metals, but the risk levels of roadside dust toxic metals in some sampling areas were high. The carcinogenic risks of Cr in SRA (for children) and Ni in CA (for both adults and children), PRA (for children) and UGA (for children) were found to be within a tolerable range of 10−6 to 10−4.
Collapse
|
13
|
Literature review and meta-analysis of gastric and intestinal bioaccessibility for nine inorganic elements in soils and soil-like media for use in human health risk assessment. Int J Hyg Environ Health 2022; 240:113929. [DOI: 10.1016/j.ijheh.2022.113929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
|
14
|
Jordanova N, Jordanova D, Tcherkezova E, Georgieva B, Ishlyamski D. Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148402. [PMID: 34465059 DOI: 10.1016/j.scitotenv.2021.148402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 05/16/2023]
Abstract
This study aims to evaluate the urban pollution by combined magnetometric and geochemical analyses on road dusts from three towns in the vicinity of Cu-smelter and ore mining. A collection of 117 road dust samples was investigated for their magnetic characteristics (magnetic susceptibility (χ), frequency dependent susceptibility, anhysteretic and isothermal (IRM) remanences), IRM step-wise acquisition and thermal demagnetization. Coarse grained magnetite and hematite were identified as major iron oxides in the emissions from ore spills and smelter, while traffic-related magnetic minerals were finer magnetite grains. Degree of pollution is assessed by geo-accumulation index, enrichment factor and Pollution Load Index (PLI) for a set of potentially toxic elements (PTEs). Using the geochemical data, we evaluate the carcinogenic and non-carcinogenic health risks for the population. Our results show that dust emissions from the industrial facilities likely pose significant health hazard for adults and children caused largely by Arsenic pollution in "hot spots". Based on the strong correlation between χ and most of the PTEs, detailed variations in pollution degree inside the urban areas are inferred. Strong linear regression between χ and PLI allows designating limit susceptibility values, corresponding to the PLI categories. This approach can be successfully applied for monitoring and mapping purposes at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Neli Jordanova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria.
| | - Diana Jordanova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Emilia Tcherkezova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Bozhurka Georgieva
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Daniel Ishlyamski
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| |
Collapse
|
15
|
Wang P, Xue J, Zhu Z. Comparison of heavy metal bioaccessibility between street dust and beach sediment: Particle size effect and environmental magnetism response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146081. [PMID: 33677293 DOI: 10.1016/j.scitotenv.2021.146081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Direct ingestion of urban sediment particles represents an important pathway of human exposure to heavy metals. The effect of particle sizes on metal bioaccessibilities in human digestive system has not been fully understood. In this study, an in-vitro simulation experiment (PBET), along with environmental magnetic measurements, is conducted on two urban sediments (street dusts and beach sediments) with different particle sizes (Φ31.1 ± 7.36 μm for street dusts and Φ134 ± 21.1 μm for beach sediments) for the purposes of assessing the particle size effect on metal bioaccessibilities in simulated gastric and intestinal tracts, and exploring the environmental magnetism response to different digestion processes. For street dusts, the bioaccessibilities of heavy metals decrease significantly from gastric (12.1 (Cu) ~ 39.9% (Pb)) to intestinal phase (0.41 (Pb) ~ 2.08% (Cd)) due to an increase in digestive juice pH. However, for beach sediments, the metal bioaccessibilities in the intestinal phase is similar to, or even higher than, those in the gastric phase. These demonstrate that clay minerals and Fe/Mn oxides concentrated in fine particles play an important role in adsorbing and fixating heavy metals in neutral intestinal tract. Compared with those of the original samples, the χfd% values of the PBET treated street dusts decrease significantly, and the decreasing extents (Δχfd%) are positively correlated with the concentrations of the PBET extracted Fe (p < 0.05). However, a reverse trend is observed for the beach sediment samples. These findings suggest that the magnetic minerals formed during the digestion process might affect the metal bioaccessibilities in gastrointestinal tract.
Collapse
Affiliation(s)
- Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Junhui Xue
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, China
| | - Zongmin Zhu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Li X, Yan X, Wu T, Zhang X, Yu H. Risks and phyto-uptake of micro-nano size particulates bound with potentially toxic metals in Pb-contaminated alkaline soil (NW China): The role of particle size fractions. CHEMOSPHERE 2021; 272:129508. [PMID: 33494015 DOI: 10.1016/j.chemosphere.2020.129508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The fate and risk in the environment of potentially toxic metals (PTMs) pollutants depends on the size-fractions of contaminated soil. In this study, the variable micro-nano size-fractions of 50-250 μm, 5-50 μm, 1-5 μm, <1 μm in long-term Pb-contaminated alkaline soil (NW China) were obtained by Sequential Wet Sieving Separation Procedure (SWSSP). The chemical speciation, mobility and risk of PTMs in micro-nano particle fractions as well as their uptaken and translocation in Maize (Zea mays L.) plant were systematically determined. The results demonstrated that higher accumulation of both investigated PTMs was observed in the fine fractions of <1 μm. The metallic Pb predominantly occurred in all size-fractions (65%-86%) identified by XPS, and the reducible forms of lead oxide (Ⅱ,Ⅳ) would also likely preferred to enrich in the fine fraction of <1 μm. The mobility and bioaccessibility of PTMs in fine fraction of <1 μm were higher than other fractions, which were identified by the multi-indices, enrichment factor (EF), accumulation factor (AF), mobility factor (MF), potential ecological risk index of single metal (Eri) and the comprehensive potential ecological risk index (RI). The scenario for phyto-uptake of Pb and Cu in <1 μm soil nanoparticles under pot tests indicated that the Pb and Cu enriched in <1 μm with high ecological risk were inclined to translocate into the Maize roots and shoots with nano size fractions. The results implied that further environmental management should be needed in order to prevent the risk of PTMs from Pb-bearing micro-nano size fractions in the industrial contaminated alkaline soil.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geograph and Tourim, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China.
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China
| | - Ting Wu
- Department of Environmental Science, School of Geograph and Tourim, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geograph and Tourim, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Hongtao Yu
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
17
|
Duarte-Restrepo E, Noguera-Oviedo K, Butryn D, Wallace JS, Aga DS, Jaramillo-Colorado BE. Spatial distribution of pesticides, organochlorine compounds, PBDEs, and metals in surface marine sediments from Cartagena Bay, Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14632-14653. [PMID: 33216302 DOI: 10.1007/s11356-020-11504-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Cartagena Bay is an estuarine system located in the Caribbean Sea (Colombia, South America), that receives fresh water from Canal del Dique, which is connected to the Magdalena River, the most important river of Colombia, with some of the most prominent Colombian cities located in its watershed, which has a high sediment yield. An analysis of persistent organic pollutants and heavy metals was carried out on marine sediments from Cartagena Bay. Cartagena Bay sediments deployed the occurrence of total levels of pesticides (thiocarbamates, bromacil, triazines, organochlorines, and organophosphorus), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), in sediments ranging from 0.83-33.67 ng/g dry-weight, 0.05-0.34 ng/g dry-weight, and 0.06-19.58 ng/g dry-weight, respectively. Their concentrations were lower than those reported in NOAA Screening Quick Reference Tables. DDTs and PCBs are banned organochlorine compounds, since, even at low levels, their presence in sediments represents a threat to aquatic organisms and, therefore, to human health through the trophic chain. Sediments showed high concentrations of strontium (50-959.6 mg/kg). All metals evaluated in the marine sediments were found in the S6 sampling point; this was near tannery and hydrocarbon industries (Pb 37.1 mg/kg, Cr 137.2 mg/kg, Cd 1.7 mg/kg, Cu 64.4 mg/kg, As 13.1 mg/kg, Sr 318.9 mg/kg); these results exceeded the accepted values of threshold effect levels (TEL) used as an indicator of their potential risk on marine life.
Collapse
Affiliation(s)
- Edisson Duarte-Restrepo
- Agrochemical Research Group, Chemistry Program, Faculty of Exact and Natural Sciences, University of Cartagena, Cartagena, Colombia
- Doctoral Program in Environmental Toxicology, Pharmaceutical Sciences Faculty, University of Cartagena, Cartagena, Bolivar, Colombia
| | - Katia Noguera-Oviedo
- Chemistry Department, University at Buffalo, The State University of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA
| | - Deena Butryn
- Chemistry Department, University at Buffalo, The State University of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA
| | - Joshua S Wallace
- Chemistry Department, University at Buffalo, The State University of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, 611 Natural Science Complex, Buffalo, NY, 14260, USA.
| | - Beatriz E Jaramillo-Colorado
- Agrochemical Research Group, Chemistry Program, Faculty of Exact and Natural Sciences, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
18
|
Li Y, Padoan E, Ajmone-Marsan F. Soil particle size fraction and potentially toxic elements bioaccessibility: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111806. [PMID: 33360288 DOI: 10.1016/j.ecoenv.2020.111806] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In the last decade, extensive studies have been conducted to quantify the influence of different factors on potentially toxic elements (PTE) bioaccessibility in soil; one of the most important is soil size fraction. However, there is no agreement about the size fraction and the methods to investigate bioaccessibility, as very few review articles are available on soil PTE bioaccessibility and none addressed the influence of particle size on PTE bioaccessibility. This study provides a review of the relations between PTE bioaccessibility and soil particle size fractions. The available research indicates that PTE bioaccessibility distribution across different size fractions varies widely in soil, but a general trend of higher bioaccessibility in finer size fraction was found. The different elements may exhibit different relationships between bioaccessibility and soil size fraction and, in some cases, their bioaccessibility seems to be more related to the source and to the chemico-physical form of PTE in soil. Often, soil pollution and related health risk are assessed based on PTE total concentration rather than their bioaccessible fraction, but from the available studies it appears that consensus must be pursued on the methods to determine PTE bioaccessibility in the fine soil size fractions to achieve a more accurate human health risk assessment.
Collapse
Affiliation(s)
- Yan Li
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, Grugliasco, Torino 10095, Italy.
| | - Elio Padoan
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, Grugliasco, Torino 10095, Italy.
| | - Franco Ajmone-Marsan
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, Grugliasco, Torino 10095, Italy.
| |
Collapse
|
19
|
Dahmardeh Behrooz R, Kaskaoutis DG, Grivas G, Mihalopoulos N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. CHEMOSPHERE 2021; 262:127835. [PMID: 32763581 DOI: 10.1016/j.chemosphere.2020.127835] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/26/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the bioaccessibility and health risks related to heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb, Zn and metalloid As) in airborne dust samples (TSP and PM2.5) in Zabol, Iran during the summer dust period, when peak concentration levels of PM are typically observed. High bioaccessibilities of carcinogenic metals in PM2.5 (i.e. 53.3%, 48.6% and 47.6% for Ni, Cr and As, respectively) were calculated. The carcinogenic and non-carcinogenic health risks were assessed for three exposure pathways (inhalation, ingestion and dermal contact), separately for children and adults. Non-carcinogenic inhalation risks were very high (Hazard Index: HI > 1) both for children and adults, while the carcinogenic risks were above the upper acceptable threshold of 10-4 for adults and marginally close (5.0-8.4 × 10-5) for children. High carcinogenic risks (>10-4) were found for the ingestion pathway both for children and adults, while HI values > 1 (8.2) were estimated for children. Carcinogenic and non-carcinogenic risk estimates for dermal contact were also above the limits considered acceptable, except for the carcinogenic risk for children (7.6 × 10-5). Higher non-carcinogenic and carcinogenic risks (integrated for all elements) were associated with the inhalation pathway in adults and children with the exception of carcinogenic risk for children, where the ingestion route remains the most important, while As was linked with the highest risks for nearly all exposure pathways. A comparative evaluation shows that health risks related with toxic elements in airborne particles in Sistan are among the highest reported in the world.
Collapse
Affiliation(s)
- Reza Dahmardeh Behrooz
- Department of Environmental Science, Faculty of Natural Resources, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| |
Collapse
|
20
|
Hiller E, Filová L, Jurkovič Ľ, Mihaljevič M, Lachká L, Rapant S. Trace elements in two particle size fractions of urban soils collected from playgrounds in Bratislava (Slovakia). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3925-3947. [PMID: 32638253 DOI: 10.1007/s10653-020-00656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Today, it is proven that the contaminated urban soils are hazardous for the human health. Soil substrates of playgrounds call for special research as they are places where children are directly exposed to soil contaminants. Therefore, the objective of this work was to measure the pseudo-total contents and bioaccessibility of several metals and metalloids (As, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, V, Zn) in two grain sizes (< 150 μm and < 50 μm) of playground soils in Bratislava city (the capital of Slovakia). The content of metal(loid)s in the soils was controlled by a number of factors, with their increased contents (above 75% percentile or higher) at sites influenced by point sources of pollution (industry and agriculture) or at old sites located in the city centre. Cobalt, Cr, Fe, Mn, Ni and V had relatively uniform contents in soils compared to the other elements. As regression modelling with a categorical variable confirmed, the age of urban areas influenced the accumulation of As, Bi, Cd, Cu, Hg, Pb, Sb and Sn in playground soils. Exploratory statistical techniques with compositionally transformed data (principal component analysis, cluster analysis and construction of symmetric coordinates for correlation analysis) divided trace elements into the two main groupings, Co, Cr, Fe, Mn, Ni, V and Bi, Cd, Cu, Hg, Pb, Sb, Sn, Zn. Median concentrations of the elements in smaller soil grains (< 50 μm) were significantly higher than in coarser grains (< 150 μm). Cobalt, Cu, Mn, Pb, Sn and Zn had significantly higher bioaccessible proportions (% of the pseudo-total content) in < 50 μm soil size than in < 150 μm; however, the same order of bioaccessibility was achieved in both grain sizes. The highest bioaccessibility had Cd, Cu, Pb and Zn (~ 40% and more), followed by Co, As, Mn, Sb (18-27%), Hg, Ni, Sn (10-12%) and finally Cr, Fe and V (less than 4%). The hazard index and carcinogenic risk values were higher in < 50 μm than in < 150 μm and significantly decreased in the two soil sizes when the bioaccessibility results were included in the health hazard calculation.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48, Bratislava, Slovak Republic
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43, Prague 2, Czech Republic
| | - Lucia Lachká
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Stanislav Rapant
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
21
|
van der Kallen CC, Gosselin M, Zagury GJ. Oral and inhalation bioaccessibility of metal(loid)s in chromated copper arsenate (CCA)-contaminated soils: Assessment of particle size influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139412. [PMID: 32464400 DOI: 10.1016/j.scitotenv.2020.139412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Soil samples adjacent to ten CCA-treated utility poles were collected, sieved into four fractions (<2 mm, 250-90 μm, 90-20 μm and <20 μm), and characterized for their total metal(loid) (As, Cu, Cr, Pb, and Zn) content and physico-chemical properties. Oral bioaccessibility tests were performed using In Vitro Gastrointestinal (IVG) method for fractions 250-90 μm and 90-20 μm. Inhalation bioaccessibility tests were performed in particle size fraction <20 μm using two simulated lung fluids: artificial lysosomal fluid (ALF) and Gamble's solution (GS). The total concentration of metal(loid)s increased with decreasing particle size. Oral As bioaccessibility (%) increased with increasing particle size in 9 out of 10 soils (p < .05), but oral As bioaccessibility expressed in mg/kg was not significantly different for both particle size. Oral Cu bioaccessibility (% and mg/kg) was not influenced by particle size, but oral Cr bioaccessibility (% and mg/kg) increased when reducing particle size (p < .05), although Cr bioaccessibility was very low (< 8%). Oral bioaccessibility (%) of metal(loid)s decreased in the order: Cu > As > Pb > Zn > Cr. Bioaccessibility (%) in simulated lung fluids decreased in the order: Cu > Zn > As > Pb ≈ Cr using ALF, and As > Cu using GS solution. For all elements, inhalation bioaccessibility (% and mg/kg) using ALF was higher than oral bioaccessibility, except for Pb bioaccessibility (mg/kg) in two samples. However, solubility of metal(loid)s in GS presented the lowest values. Copper showed the highest oral and inhalation bioaccessibility (%) and Cr showed the lowest. Moreover, organic matter content and cation exchange capacity in particle size 90-20 μm were negatively correlated with Cu and Pb oral bioaccessibility (%).
Collapse
Affiliation(s)
- Cecile C van der Kallen
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal (QC), H3C 3A7, Canada
| | - Mathieu Gosselin
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal (QC), H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal (QC), H3C 3A7, Canada.
| |
Collapse
|
22
|
Chang X, Li YX. Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114307. [PMID: 32443187 DOI: 10.1016/j.envpol.2020.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/02/2019] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is an important pollutant and it is of significance to explore the Pb distribution, influencing factors and health risk. Pb concentration and mass load per unit area in 385 street dust samples collected from 19 cities in China were determined during 2011-2013. The results show that the Pb concentration are 68.8, 105.4, 41.7, 49.7, 75.6, 81.7, 131.9, 67.5, 109.3, 164.1, 74.8, 66.4, 99.8, 58.4, 114.0, 59.6, 103.7, 55.4 and 80.4 for Beijing, Chengdu, Daqing, Harbin, Jilin, Jinan, Kunming, Lanzhou, Luoyang, Panzhihua, Qingdao, Yinchuan, Guangzhou, Tangshan, Xi'an, Guangyuan, Nanjing, Taiyuan and Tianjin, respectively. The Pb pollution level of urban street dust varies among cities in the range of 1.72-5.56 times higher than soil background values. The allometric function can fit the change in Pb concentration with particle size well. The medium-sized (38-120 μm) particles contributed 60.2%-80.4% to the Pb load and should be highlighted when selecting street dust management techniques. Influenced by the distribution of Pb ore, the Pb concentration of urban street dust in China shows obvious regional differences, with value in the south 112% higher than that in the north. Among all kinds of mining types, metal-related mining activities discharge a large amount of Pb dust in the process of crushing and smelting, thus contributing most to the Pb load. The Pb load was also affected by transportation. The relationship between Pb load and gross domestic product (GDP) was described with the environmental Kuznets curve (EKC) model, which indicated that the Pb emissions of most cities were still increasing. Finally, the human health risk assessment model with adjusted parameters showed that the Pb risk of all cities was below the threshold. Despite all this, given the EKC law of Pb emission, long-term follow-up assessments are needed.
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Li X, Gao Y, Zhang M, Zhang Y, Zhou M, Peng L, He A, Zhang X, Yan X, Wang Y, Yu H. In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110151. [PMID: 31923754 DOI: 10.1016/j.ecoenv.2019.110151] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 05/25/2023]
Abstract
Potentially toxic metals (PTMs), associated with different size particles in soil, may play an important role in adverse health effect and risk for human. The objective is to evaluate the lung and gastrointestinal bioaccessibility and risk of PTMs in Pb-contaminated alkaline urban soil depending on the particle size fractions. The size fractions of 50-250 μm, 5-50 μm, 1-5 μm, <1 μm in Pb-contaminated alkaline urban soil from Baoji Heavy Industrial Base City, NW China, were screened by Sequential Wet Sieving Separation Procedure (SWSSP) based on Stokes' Law. The concentrations of 9 potentially toxic metals (As, Ba, Co, Cr, Cu, Mn, Ni, Pb and Zn) in each particle size fractions were characterized by ICP-OES and ICP-MS, and the in vitro bioaccessibility dependent of size fractions were evaluated by the simulation fluids of Artificial Lysosomal Fluid (ALF) and Gamble for lung, PBET, SBET, IVG, SBRC, UBM for gastric and intestinal, respectively. Health risks were assessed considering simulated external exposure using intestinal and lung bioaccessibility. The lung and gastrointestinal bioaccessibility and exposure risks of PTMs in fine particle size (i.e. <1 μm) was higher than larger particle size fractions (i.e. 50-250 μm, 5-50 μm, 1-5 μm), however, some different variations of bioaccessibility observed the simulation fluids and time dependent. In case of single PTMs, the lung bioaccessibilities of PTMs in ALF were higher than those in Gamble fluids, most prominent in Co, Cu, Mn and Zn, while the gastrointestinal [G + I] bioaccessibility of PTMs was less than those in gastric [G], like Cu, Mn, Pb and Zn mostly. The non-carcinogenic risks of these PTMs to children via inhalation were acceptable and higher than those of adults, but reverse for carcinogenic risk. Comparatively, the non-carcinogenic and carcinogenic risks of PTMs via ingestion pathway were both higher than those for adults. Although the risks from ingestion were in acceptable range, the total carcinogenic risks for children were more than 10-4, which would bring carcinogenic risks and should be paid attention to. It was noted that the toxic metal, Co in all size fractions was the most important contributor for noncarcinogenic risks and Cr mostly for carcinogenic risks via inhalation pathway for adults and children in local areas. However, Pb was the most important contributor for noncarcinogenic risk both for adults and children via ingestion pathway relative to Co and Cr for carcinogenic risks through hand-to-mouth ingestion. Those observations demonstrated the important role that the smaller particle fractionations in Pb-contaminated alkaline soil played in both bioaccessibility and the refinement of human health-risk assessments for the inhalation and ingestion pathway.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China.
| | - Yu Gao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Meng Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Yu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Ming Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Liyuan Peng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Ana He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China
| | - Yanhua Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Hongtao Yu
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| |
Collapse
|
24
|
Dzherayan TG, Ermolin MS, Vanifatova NG. Effectiveness of the Simultaneous Application of Capillary Zone Electrophoresis and Static Light Scattering in the Study of Volcanic Ash Nano- and Submicroparticles. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|