1
|
Uddin R, Hopke PK, Van Impe J, Sannigrahi S, Salauddin M, Cummins E, Nag R. Source identification of heavy metals and metalloids in soil using open-source Tellus database and their impact on ecology and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175987. [PMID: 39244067 DOI: 10.1016/j.scitotenv.2024.175987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The presence of heavy metals and metalloids (metal(loid)s) in the food chain is a global problem, and thus, metal(loid)s are considered to be Potentially Toxic Elements (PTEs). Arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) are identified as prominent hazards related to human health risks throughout the food chain. This study aimed to carry out a source attribution for metal(loid)s in shallow topsoil of north-midlands, northwest, and border counties of the Republic of Ireland, followed by an assessment of the potential ecological and human health risks. The positive Matrix Factorization (PMF) was used for source characterization of PTEs, followed by the Monte Carlo simulation method, used for a probabilistic model to evaluate potential human health risks. The mean concentrations of prioritized metal(loid)s in the topsoil range in the order of Pb (28.83 mg kg-1) > As (7.81 mg kg-1) > Cd (0.51 mg kg-1) > Hg (0.11 mg kg-1) based on the open-source Tellus dataset. This research identified three primary sources of metal(loid) pollution: geogenic sources (36 %), mixed sources of historical mining and natural origin (33 %), and anthropogenic activities (31 %). The ecological risk assessment showed that Ireland's soil exhibits low-moderate pollution levels however, concerns remain for Cd and As levels. All metal(loid)s except Cd showed acceptable non-carcinogenic risk, while Cd and As accounted for high to moderate potential cancer risks. Potato consumption (if grown on land with elevated metal(loid) levels), Cd concentration in soil, and bioaccumulation factor of Cd in potatoes were the three most sensitive parameters. In conclusion, metal(loid)s in Ireland present low to moderate ecological and human health risks. It underscores the need for policies and remedial strategies to monitor metal(loid) levels in agricultural soil regularly and the production of crops with low bioaccumulation in regions with elevated metal(loid) levels.
Collapse
Affiliation(s)
- Rayhan Uddin
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Box 5708, Potsdam, NY 13699, USA.
| | - Jan Van Impe
- Department of Chemical Engineering, BioTeC + Chemical and Biochemical Process Technology and Control, KU Leuven, 9000 Gent, Belgium.
| | - Srikanta Sannigrahi
- UCD School of Geography, Newman Building, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Md Salauddin
- UCD School of Civil Engineering, Richview Newstead, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Enda Cummins
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| | - Rajat Nag
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
2
|
Yetişsin F, Ahneak E. Acetone O-(2-naphthylsulfonyl) oxime alleviates the toxic effects of cadmium in maize seedlings by increasing the phenolic substance content and antioxidant system activity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-12. [PMID: 39354853 DOI: 10.1080/15226514.2024.2406942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The absorption of cadmium by plants largely depends on cadmium contamination in the soil. The development of phytomining and phytoremediation methods to clean cadmium-contaminated ecosystems is an urgent issue that needs to be solved. Therefore, the role of exogenous O-(2-naphthylsulfonyl)oxime (ANSO) to maize seedlings under cadmium stress was tested. The results showed that when ANSO+cadmium application was compared to cadmium, the cadmium content increased by 7.8 times, while the abscisic acid content decreased. Under cadmium stress, ANSO application did not change the relative water content, but increased the chlorophyll content. While carotenoid content increased with cadmium application, it increased further with ANSO+cadmium application. As a result of the positive effects of ANSO application on the antioxidant system under cadmium stress, hydrogen peroxide content, lipid peroxidation and proline content decreased. ANSO application under cadmium stress increased the phenolic substance content. This study shows that exogenous ANSO makes significant contributions to the protection of maize seedlings despite being under cadmium stress. It also provides important references to the fact that despite stress, the cadmium chelation mechanisms of seedlings continue to work actively to accumulate cadmium in tissues, and it has deep implications for the remediation of cadmium-polluted soils.
Collapse
Affiliation(s)
- Fuat Yetişsin
- Department of Plant and Animal Production, Muş Alparslan University, Muş, Türkiye
| | - Esin Ahneak
- Department of Biology, Muş Alparslan University, Muş, Türkiye
| |
Collapse
|
3
|
Barłóg P, Hlisnikovský L, Łukowiak R, Kunzová E. Effect of long-term application of pig slurry and NPK fertilizers on trace metal content in the soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60004-60022. [PMID: 39365533 PMCID: PMC11519191 DOI: 10.1007/s11356-024-34993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
One of the goals of sustainable agricultural production is to avoid soil contamination by elements defined as trace metals (TMs). The aim of this study was to assess the long-term impact of the use of pig slurry (PS) and NPK mineral fertilizers on the soil content of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn). In a 9-year crop rotation, PS was used three times only before root crops. The same four levels of NPK doses (N0P0K0, N1P1K1, N3P2K2, N4P2K2) were applied to both plots with and without PS. Soil samples were collected in early spring from topsoil (0-0.3 m) and subsoil (0.3-0.6 m). Three forms of TMs were determined in the soil: pseudo-total (Aqua regia); bioavailable (Mehlich 3 method) and readily bioavailable (mobile) forms (1 M NH4NO3). The tested factors did not have a significant impact on the Cd, Cu and Pb content, regardless of the form analyzed and the soil depth. PS application significantly increased the content of bioavailable forms of Zn regardless of the year, and the content of pseudo-total Zn only in the sugar beet year, i.e. after manure application. Increasing NPK doses increased the content of mobile Zn in the topsoil, especially in PS plots. A tendency to accumulate mobile forms of Cd and Pb was also observed on NPK-fertilized plots. Thus, long-term application of high NPK doses may increase the risk of contamination of the food chain with these metals. The content of mobile Cd and Zn was positively related to the content of total nitrogen in the soil and negatively related to pH.
Collapse
Affiliation(s)
- Przemysław Barłóg
- Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland.
| | - Lukáš Hlisnikovský
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, CZ-161 01 Prague 6, Ruzyně, Czech Republic
| | - Remigiusz Łukowiak
- Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland
| | - Eva Kunzová
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, CZ-161 01 Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
4
|
Wiggenhauser M, Illmer D, Spiess E, Holzkämper A, Prasuhn V, Liebisch F. Cadmium, zinc, and copper leaching rates determined in large monolith lysimeters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171482. [PMID: 38471584 DOI: 10.1016/j.scitotenv.2024.171482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Soil mass balances are used to assess the risk of trace metals that are inadvertently applied with fertilizers into agroecosystems. The accuracy of such balances is limited by leaching rates, as they are difficult to measure. Here, we used monolith lysimeters to precisely determine Cd, Cu, and Zn leaching rates in 2021 and 2022. The large lysimeters (n = 12, 1 m diameter, 1.35 m depth) included one soil type (cambisol, weakly acidic) and distinct cropping systems with three experimental replicates. Stable isotope tracers were applied to determine the direct transfer of these trace metals from the soil surface into the seepage water. The annual leaching rates ranged from 0.04 to 0.30 for Cd, 2.65 to 11.7 for Cu, and 7.27 to 39.0 g (ha a)-1 for Zn. These leaching rates were up to four times higher in the year with several heavy rain periods compared to the dry year. Monthly resolved data revealed that distinct climatic conditions in combination with crop development have a strong impact on trace metal leaching rates. In contrast, fertilization strategy (e.g., conventional vs. organic) had a minor effect on leaching rates. Trace metal leaching rates were up to 10 times smaller than fertilizer inputs and had therefore a minor impact on soil mass balances. This was further confirmed with isotope source tracing that showed that only small fractions of Cd, Cu, and Zn were directly transferred from the soil surface to the leached seepage water within two years (< 0.07 %). A comparison with models that predict Cd leaching rates in the EU suggests that the models overestimate the Cd soil output with seepage water. Hence, monolith lysimeters can help to refine leaching models and thereby also soil mass balances that are used to assess the risk of trace metals inputs with fertilizers.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, CH-8315 Lindau, Switzerland.
| | - David Illmer
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, CH-8315 Lindau, Switzerland
| | - Ernst Spiess
- Water Protection and Substance Flows, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Annelie Holzkämper
- Water Protection and Substance Flows, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland; University of Bern, Oeschger Centre for Climate Change Research, Hochschulstrasse 4, 3012 Bern, Switzerland
| | - Volker Prasuhn
- Water Protection and Substance Flows, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Frank Liebisch
- Water Protection and Substance Flows, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| |
Collapse
|
5
|
Rahimi M, Kamyab T, Rahimi G, Abadi ECA, Ebrahimi E, Naimi S. Modeling and identification of affective parameters on cadmium's durability and evaluating cadmium pollution indicators caused by using chemical fertilizers in long term. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8829-8850. [PMID: 36944748 DOI: 10.1007/s10653-023-01535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Soil contamination by anthropogenic heavy metals has become a global issue. This study aimed to investigate cadmium (Cd) concentration, mobility, and contamination indices of Cd in soils in the Hamadan province, west of Iran. To investigate the concentration of Cd in soil, one hundred soil samples from wheat farms and five samples from control lands were collected. Pollution indexes, including Cd mobility, enrichment factor, geoaccumulation index, contamination index, and availability ratio, were investigated. The structural equation model was also used to evaluate effective parameters on cadmium durability in soil. Results showed that mean values of available phosphorus (P) were 83.65, 129, and 65 (mg kg-1) in three land-use types rainfed, irrigated, and controlled, respectively. The mean values of Cd in different land-use types of rainfed, irrigated, and controlled were 0.15, 0.18, and 0.08 (mg kg-1), respectively. The results indicated that the amount of Cd in both forms (available and total) in ones that received fertilizer, especially P fertilizers, was higher than in the controlled one. Other pollution indexes revealed that the study area had been slightly contaminated due to anthropogenic activities. Lime, clay, lead, and OM were identified as affective parameters on cadmium durability. Finally, the results demonstrated that the mobility rate was high. Cd had a higher potential mobility in soil samples in the rain-fed and irrigated land than in the controlled land, and Cd had a low retention time.
Collapse
Affiliation(s)
- Meisam Rahimi
- Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
| | - Taraneh Kamyab
- Department of Engineering Technology and Construction Management, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ghasem Rahimi
- Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | | | - Eisa Ebrahimi
- Department of Soil Science, Faculty of Agriculture, Guilan University, Rasht, Iran.
| | - Salman Naimi
- Department of Soil Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
6
|
Mamut A, Huang J, Andom O, Zhang H, Zhang N, Zhou H, Lv Y, Li Z. Stability of exogenous Cadmium in different vineyard soils and its effect on grape seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165118. [PMID: 37364845 DOI: 10.1016/j.scitotenv.2023.165118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Cadmium (Cd) being potentially toxic heavy metal, has become increasingly serious to vineyard soil and grapes in recent years. Soil type is one of the main factors affecting the absorption of Cd in grapes. To investigate the stabilization characteristics and form changes of Cd in different types of vineyard soils, a 90-days incubation experiment was conducted after exogenous Cd addition to 12 vineyard soils from typical vineyards in China. The inhibition of exogenous Cd on grape seedlings was determined based on the pit-pot incubation experiment (200 kg soil per pot). The results demonstrate that Cd concentration in all the sampling sites did not exceed the national screening values (GB15618-2018; i.e., 0.3 mg/kg when pH was lower than 7.5, 0.6 mg/kg when pH was higher than 7.5);. Cd in Fluvo-aquic soil 2, Red soils1, 2, 3 and Grey-Cinnamon soil is dominated by acid-soluble fraction, but was mainly in residual fraction in the remain soils. Throughout the aging process, proportion of the acid-soluble fraction increased and then decreased, while proportion of the residual fraction decreased and then increased, after exogenous Cd was added. The mobility coefficients of Cd in Fluvo-aquic soil 2 and Red soil 1, 2 increased 2.5, 3 and 2 folds, after exogenous Cd addition, respectively. Compared with CK (control), the correlation between total Cd content and its different fractions was relatively weak in the Cdl (low concentration) and Cdh (high concentration) groups. Poor Cd stabilization and strong inhibition of seedling growth rate were observed in Brown soil 1, black soil, red soil 1 and cinnamomic soil. Fluvo-aquic soil 2, 3 and Brown soil 2 showed good Cd stability and small inhibition effect on grape seedlings. These results show that Cd stability in soils and inhibition rate of grape seedlings by Cd are strongly influenced by soil type.
Collapse
Affiliation(s)
- Ajigul Mamut
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jianquan Huang
- Institute of Forestry and Fruit Research, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Okbagaber Andom
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - He Zhang
- Institute of Forestry and Fruit Research, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Na Zhang
- Institute of Forestry and Fruit Research, Tianjin Academy of Agricultural Sciences, Tianjin 300384, PR China
| | - Hu Zhou
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yizhong Lv
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
7
|
Hasanaliyeva G, Sufar EK, Wang J, Rempelos L, Volakakis N, Iversen PO, Leifert C. Effects of Agricultural Intensification on Mediterranean Diets: A Narrative Review. Foods 2023; 12:3779. [PMID: 37893672 PMCID: PMC10606286 DOI: 10.3390/foods12203779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Mediterranean diets (MedDiets) are linked to substantial health benefits. However, there is also growing evidence that the intensification of food production over the last 60 years has resulted in nutritionally relevant changes in the composition of foods that may augment the health benefits of MedDiets. OBJECTIVE To synthesize, summarize, and critically evaluate the currently available evidence for changes in food composition resulting from agricultural intensification practices and their potential impact on the health benefits of MedDiets. METHODS We summarized/synthesized information from (i) systematic literature reviews/meta-analyses and more recently published articles on composition differences between conventional and organic foods, (ii) desk studies which compared food composition data from before and after agricultural intensification, (iii) recent retail and farm surveys and/or factorial field experiments that identified specific agronomic practices responsible for nutritionally relevant changes in food composition, and (iv) a recent systematic literature review and a small number of subsequently published observational and dietary intervention studies that investigated the potential health impacts of changes in food composition resulting from agricultural intensification. RESULTS AND DISCUSSION There has been growing evidence that the intensification of food production has resulted in (i) lower concentrations of nutritionally desirable compounds (e.g., phenolics, certain vitamins, mineral micronutrients including Se, Zn, and omega-3 fatty acids, α-tocopherol) and/or (ii) higher concentrations of nutritionally undesirable or toxic compounds (pesticide residues, cadmium, omega-6 fatty acids) in many of the foods (including wholegrain cereals, fruit and vegetables, olive oil, dairy products and meat from small ruminants, and fish) that are thought to contribute to the health benefits associated with MedDiets. The evidence for negative health impacts of consuming foods from intensified conventional production systems has also increased but is still limited and based primarily on evidence from observational studies. Limitations and gaps in the current evidence base are discussed. Conclusions: There is now substantial evidence that the intensification of agricultural food production has resulted in a decline in the nutritional quality of many of the foods that are recognized to contribute to the positive health impacts associated with adhering to traditional MedDiets. Further research is needed to quantify to what extent this decline augments the positive health impacts of adhering to a traditional MedDiet.
Collapse
Affiliation(s)
- Gultekin Hasanaliyeva
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent University, Nottinghamshire NG25 0QF, UK
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
| | - Enas Khalid Sufar
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
| | - Juan Wang
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
- Department of Clinical Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Leonidas Rempelos
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN2 2LG, UK
| | - Nikolaos Volakakis
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (E.K.S.)
- Geokomi Plc, P.O. Box 21, GR70200 Sivas Festos, Greece
| | - Per Ole Iversen
- Department of Nutrition, IMB, University of Oslo, 0317 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
| | - Carlo Leifert
- Department of Nutrition, IMB, University of Oslo, 0317 Oslo, Norway
- SCU Plant Science, Southern Cross University, Military Rd., Lismore, NSW 2480, Australia
| |
Collapse
|
8
|
Cheng J, Zhang S, Yi Y, Qin Y, Chen ZH, Deng F, Zeng F. Hydrogen peroxide reduces root cadmium uptake but facilitates root-to-shoot cadmium translocation in rice through modulating cadmium transporters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107754. [PMID: 37236064 DOI: 10.1016/j.plaphy.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) contamination in agricultural soils has become a serious worldwide environmental problem threatening crop production and human health. Hydrogen peroxide (H2O2) is a critical second messenger in plant response to Cd exposure. However, its role in Cd accumulation in various organs of plants and the mechanistic basis of this regulation remains to be elucidated. In this study, we used electrophysiological and molecular approaches to understand how H2O2 regulates Cd uptake and translocation in rice plants. Our results showed that the pretreatment of H2O2 significantly reduced Cd uptake by rice roots, which was associated with the downregulation of OsNRAMP1 and OsNRAMP5. On the other hand, H2O2 promoted the root-to-shoot translocation of Cd, which might be attributed to the upregulation of OsHMA2 critical for Cd2+ phloem loading and the downregulation of OsHMA3 involved in the vacuolar compartmentalization of Cd2+, leading to the increased Cd accumulation in rice shoots. Furthermore, such regulatory effects of H2O2 on Cd uptake and translocation were notably amplified by the elevated level of exogenous calcium (Ca). Collectively, our results suggest that H2O2 can inhibit Cd uptake but increase root to shoot translocation through modulating the transcriptional levels of genes encoding Cd transporters, furthermore, application of Ca can amplify this effect. These findings will broaden our understanding of the regulatory mechanisms of Cd transport in rice plants and provide theoretical foundation for breeding rice for low Cd accumulation.
Collapse
Affiliation(s)
- Jianhui Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yun Yi
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yuan Qin
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhong-Hua Chen
- School of Science & Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Fenglin Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
9
|
Zhao P, Yu J, Zhang X, Ren Z, Li M, Han S. Trifolium repens and biochar addition affecting soil nutrients and bacteria community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33927-33941. [PMID: 36502483 DOI: 10.1007/s11356-022-24651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biochar has wide application prospects as a good soil conditioner, leguminous plants can fix nitrogen and improve soil available nutrients. However, it is not clear how adding biochar when planting leguminous plants affects soil bacterial community and soil available nutrients. This study investigates the effects of biochar addition on the content of ammonia nitrogen, Olsen-P, and available potassium in northeastern farmland soils under the plantation of Trifolium repens and then compared with the application of organic fertilizer. A 90-day incubation experiment was conducted to compare the changes in the structure and relative abundance of soil microflora under varied biochar additions. It was found that the addition of biochar could affect the structure of the microflora and the available nutrients in the soil. When compared with soil planted with T. repens without the addition of biochar, with the application of 3% biochar increased the content of ammonia nitrogen, Olsen-P, and available potassium in the soil by 31.71%, 21.40%, and 11.51%, respectively. High throughput sequencing revealed that the relative abundance of functional bacteria such as azotobacter, rhizobacteria, and phosphorus solubilizing bacteria in the soil increased with the addition of biochar. Furthermore, the effect was more obvious with the addition of organic fertilizers. The addition of biochar improved the microbial community structure and increased the relative abundance of functional bacteria and the content of available nutrients in the soil. This is expected to reduce the application of chemical fertilizers, thereby protecting the environment and conserving natural resources.
Collapse
Affiliation(s)
- Pingnan Zhao
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jie Yu
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xiaoyuan Zhang
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
10
|
Telloli C, Tagliavini S, Passarini F, Salvi S, Rizzo A. ICP-MS triple quadrupole as analytical technique to define trace and ultra-trace fingerprint of extra virgin olive oil. Food Chem 2023; 402:134247. [DOI: 10.1016/j.foodchem.2022.134247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
|
11
|
Ma J, Zia Ur Rehman M, Saleem MH, Adrees M, Rizwan M, Javed A, Rafique M, Qayyum MF, Ali S. Effect of phosphorus sources on growth and cadmium accumulation in wheat under different soil moisture levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119977. [PMID: 35987285 DOI: 10.1016/j.envpol.2022.119977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Both cadmium (Cd) toxicity and water limited stress in crop plants are serious concerns worldwide while little is known about the impact of various phosphorus (P) sources on Cd accumulation in cereals especially under water limited stress. A study was conducted to explore the efficiency of three frequently available P fertilizers on Cd accumulation in wheat under different soil moisture levels. Three different P sources including diammonium phosphate (DAP), single super phosphate (SSP), and nitrophos (NP) were applied in the soil with three levels (0, 50 and 100 mg/kg). The drought stress was applied to half treatments during the latter growth stages of wheat and plants were harvested at maturity. The results demonstrated that water-limited stress decreased the growth and yield of plants than respective treatments without water stress. P supply increased the growth of wheat irrespective of water-limited stress. The effect on growth and yield varied with the sources and levels of P and maximum effects was observed in DAP treatment (100 mg/kg). The P amendments enhanced the leaf photosynthesis and activities of SOD, POD, CAT and decreased the leaf oxidative burst. Water limited stress enhanced the Cd concentrations in shoots, roots, and grains whereas P amendments minimized the Cd concentrations and enhanced the P concentrations in these parts of plants. The results obtained demonstrated that P supply in the form of DAP might be effective in minimization of Cd in grains and can be used for safe cultivation of metal-contaminated soils.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing, 210098, China
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Javed
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, Haripur, 22630, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
12
|
Zhang X, Li Y, Wang G, Zhang H, Yu R, Li N, Zheng J, Yu Y. Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12912. [PMID: 36232210 PMCID: PMC9566700 DOI: 10.3390/ijerph191912912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The comprehensive quality assessment of farmland soil is critical for agricultural production and soil ecological protection. Currently, there is no systematic method for conducting a comprehensive quality assessment of farmland soil; subsequently, as the most developed economic area in China, the comprehensive quality assessment of farmland soil in the Yangtze River Delta is lacking. We chose the farmland soil of Suzhou city as the research object. The soil fertility index (SFI) and soil environment index (SEI) were calculated with the membership function and Nemerow index. Finally, the comprehensive assessment of soil quality was achieved with the TOPSIS model. The results showed that the average values of soil pH, SOM, TN, AHN, AP, and AK were 6.44 (slightly acidic), 28.17 g/kg (medium), 1.63 g/kg (rich), 118.16 mg/kg (medium), 38.31 mg/kg (rich), and 160.63 mg/kg (rich), respectively. For the concentrations of heavy metals, including Cr, Ni, Cu, Zn, Cd, and Pb, in 122 soil samples, the percentages exceeding the background values of Jiangsu province were 5.74%, 8.20%, 8.20%, 10.66%, 86.07%, and 84.43%, respectively. Cd and Pb were the main heavy metal pollutants on farmlands. The soil samples with SFI values below the medium level (SFI < 0.6) accounted for 44.26%, and samples with SEI values below the medium level (SEI < 0.6) accounted for 13.12%. The values of the soil quality index (SQI) ranged from 0.171 to 0.996, with an average SQI value of 0.586 (very poor-V), and approximately half of the farmland soil quality in Suzhou city needed to be further improved. In a word, this study provides a theoretical basis and scientific support for the quality assessment and rational utilization of farmland soil.
Collapse
Affiliation(s)
- Xiangling Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Genmei Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Huanchao Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ruisi Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiexiang Zheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Vidal AC, Moylan CA, Wilder J, Grant DJ, Murphy SK, Hoyo C. Racial disparities in liver cancer: Evidence for a role of environmental contaminants and the epigenome. Front Oncol 2022; 12:959852. [PMID: 36072796 PMCID: PMC9441658 DOI: 10.3389/fonc.2022.959852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
Liver cancer incidence has tripled since the early 1980s, making this disease one of the fastest rising types of cancer and the third leading cause of cancer-related deaths worldwide. In the US, incidence varies by geographic location and race, with the highest incidence in the southwestern and southeastern states and among racial minorities such as Hispanic and Black individuals. Prognosis is also poorer among these populations. The observed ethnic disparities do not fully reflect differences in the prevalence of risk factors, e.g., for cirrhosis that may progress to liver cancer or from genetic predisposition. Likely substantial contributors to risk are environmental factors, including chemical and non-chemical stressors; yet, the paucity of mechanistic insights impedes prevention efforts. Here, we review the current literature and evaluate challenges to reducing liver cancer disparities. We also discuss the hypothesis that epigenetic mediators may provide biomarkers for early detection to support interventions that reduce disparities.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Cynthia A. Moylan
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Julius Wilder
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Delores J. Grant
- Department of Biomedical and Biological Sciences, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Research, School of Medicine, Duke University, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Bibi I, Niazi NK, Shahid M, Ali F, Masood Ul Hasan I, Rahman MM, Younas F, Hussain MM, Mehmood T, Shaheen SM, Naidu R, Rinklebe J. Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119492. [PMID: 35597483 DOI: 10.1016/j.envpol.2022.119492] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Trace elements (TEs) contamination of agricultural soils requires suitable criteria for regulating their toxicity limits in soil and food crops, which depends on their potential ecological risk spanning regional to global scales. However, no comprehensive study is available that links TE concentrations in paddy soil with ecological and human health risks in less developed regions like Pakistan. Here we evaluated the data set to establish standard guidelines for defining the hazard levels of various potentially toxic TEs (such as As, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Se, Zn) in agricultural paddy soils of Punjab, Pakistan. In total, 100 topsoils (at 0-15 cm depth) and 204 rice plant (shoot and grain) samples were collected from five ecological zones of Punjab (Gujranwala, Hafizabad, Vehari, Mailsi, and Burewala), representing the major rice growing regions in Pakistan. The degree of contamination (Cd) and potential ecological risk index (PERI) established from ecological risk models were substantially higher in 100% and 97% of samples, respectively. The positive matrix factorization (PMF) model revealed that the elevated TEs concentration, notably Cd, As, Cr, Ni, and Pb, in the agricultural paddy soil was attributed to the anthropogenic activities and groundwater irrigation. Moreover, the concentration of these TEs in rice grains was higher than the FAO/WHO's safe limits. This study provided a baseline, albeit critical knowledge, on the impact of TE-allied ecological and human health risks in the paddy soil-rice system in Pakistan; and it opens new avenues for setting TEs guidelines in agro-ecological zones globally, especially in underdeveloped regions.
Collapse
Affiliation(s)
- Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia; Department of Agriculture and Fisheries, Mareeba, 4880, QLD, Australia.
| | - Israr Masood Ul Hasan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Fazila Younas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
15
|
Ali S, Bani Mfarrej MF, Hussain A, Akram NA, Rizwan M, Wang X, Maqbool A, Nafees M, Ali B. Zinc fortification and alleviation of cadmium stress by application of lysine chelated zinc on different varieties of wheat and rice in cadmium stressed soil. CHEMOSPHERE 2022; 295:133829. [PMID: 35120959 DOI: 10.1016/j.chemosphere.2022.133829] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Sustainable and cost-effective methods are required to increase the food production and decrease the toxic effects of heavy metals. Most of the agriculture land is contaminated with cadmium (Cd). The present study was designed to minimize the toxic effect of Cd stress (0, 10 and 20 mg kg1-) on tolerant and sensitive varieties of wheat (Punjab-2011; Sammar) and rice (Kisan Basmati; Chenab) under Zn-lysine (Zn-lys) application as foliar spray (0, 12.5 and 25 mM) and seed priming (0, 3 and 6 ppm). Remarkable decrease was observed in plant growth, physiology and biochemistry as well as increase in Cd uptake, roots to shoots and grains of both crops. Cd significantly reduced the root and shoot lengths, root and shoot dry weights, transpiration rate, photosynthetic rate, stomatal conductance and water use efficiency as well as chlorophyll contents associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA) and H2O2 and Cd uptake in different plant parts including grains of both crop varieties. The foliar application of Zn-lys (0, 12.5 and 25 mM) ameliorated the toxic effect of Cd on growth and physiology associated with decrease in EL, MDA and H2O2 and improved the activities of SOD, POD, CAT and APX enzymes with decreasing Cd uptake in tolerant varieties of wheat and rice as compared to seed priming. Furthermore, it has been investigated that the foliar application of Zn-lys is effective to improve quality of wheat and rice tolerant varieties (Punjab-2011 and Chenab) under Cd contamination soils.
Collapse
Affiliation(s)
- Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Nudrat Aisha Akram
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Arosha Maqbool
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
16
|
Abstract
African oil palm (Elaeis guineensis) is grown on 17,000,000 hectares in Southeast Asia, producing oil and the by-product, palm kernel expeller (PKE), for export. Elaeis guineensis is typically produced on weathered acidic soils, with fertilisers and fungicides used to increase production. These amendments can contain elevated concentrations of trace elements (TEs), either as the active ingredient (e.g., Cu-based fungicides) or as contaminants, including F, Zn, As, Cd, Pb and U. TEs may accumulate in soil over time, and be taken up by plants, posing a food-chain transfer risk if allowed to exceed soil guideline values. We reviewed available literature on trace elements in soil, plant material, oil and PKE to evaluate the risk of TE accumulation due to phosphate fertiliser and Cu-fungicide use. TE concentrations of Cu, Zn, and Cd were reported to be up to 69, 107 and 5.2 mg kg−1, respectively, in E. guineensis plantation soils, while Cu and As were reported to be up to 28.9 and 3.05 mg kg−1, respectively, in PKE (>50% their permissible limits). Iron, a TE, has also been reported in PKE up to 6130 mg kg−1 (>10-fold the permissible limit). TE accumulation is an emerging issue for the palm oil industry, which, if unaddressed, will negatively affect the industry’s economic and environmental sustainability. There are critical knowledge gaps concerning TEs in palm oil systems, including a general lack of research from Southeast Asian environments and information concerning key contaminants (Fe, Cu, As and Cd) in soils, plants and PKE.
Collapse
|
17
|
Ma Y, Ankit, Tiwari J, Bauddh K. Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Front Microbiol 2022; 13:843415. [PMID: 35283821 PMCID: PMC8908265 DOI: 10.3389/fmicb.2022.843415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
Soil contamination by geogenic contaminants (GCs) represents an imperative environmental problem. Various soil remediation methods have been successfully employed to ameliorate the health risks associated with GCs. Phytoremediation is considered as an eco-friendly and economical approach to revegetate GC-contaminated soils. However, it is a very slow process, as plants take a considerable amount of time to gain biomass. Also, the process is limited only to the depth and surface area of the root. Inoculation of arbuscular mycorrhizal fungi (AMF) with remediating plants has been found to accelerate the phytoremediation process by enhancing plant biomass and their metal accumulation potential while improving the soil physicochemical and biological characteristics. Progress in the field application is hindered by a lack of understanding of complex interactions between host plant and AMF that contribute to metal detoxification/(im)mobilization/accumulation/translocation. Thus, this review is an attempt to reveal the underlying mechanisms of plant-AMF interactions in phytoremediation.
Collapse
Affiliation(s)
- Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Ankit
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| |
Collapse
|
18
|
Changes in Metal Distribution, Vegetative Growth, Reactive Oxygen and Nutrient Absorption of Tagetes patula under Soil Cadmium Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phytoremediation with hyperaccumulator plants has been recognized as a potential way for the clearing of cadmium (Cd)-contaminated soil. In this study, hyperaccumulator Tagetes patula was treated with seven concentrations of Cd, ranging from 0 to 300 mg kg−1. The Cd enrichment and nutrient contents in different organs during different growth phases were investigated. Under Cd concentrations ≤75 mg kg-1, the morphological growth of T. patula did not change significantly regardless of growth stage. However, when Cd concentration exceeded 150 mg kg−1, the morphological growth was remarkedly inhibited. The root/shoot ratio remained unchanged except for at 300 mg kg−1. In addition, Cd negatively influenced the flowering process at the concentration of 300 mg kg−1. Cd content increased significantly in Cd-treated plants. Nitrogen absorption was increased under Cd treatments, and phosphorus content was also increased under concentration ≤150 mg·kg−1. However, the potassium content in the flower was decreased under 300 mg kg−1. Furthermore, the contents of H2O2, O2− and malondialdehyde were increased during the seedling phase, especially when Cd concentration was ≥150 mg kg−1. In summary, T. patula showed a strong ability to tolerate Cd, and such ability might be explained by nutrient absorption and reactive oxygen clearness.
Collapse
|
19
|
Kumar PS, Gayathri R, Rathi BS. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. CHEMOSPHERE 2021; 285:131438. [PMID: 34252804 DOI: 10.1016/j.chemosphere.2021.131438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Water is a basic and significant asset for living beings. Water assets are progressively diminishing due to huge populace development, industrial activities, urbanization and rural exercises. Few heavy metals include zinc, copper, lead, nickel, cadmium and so forth can easily transfer into the water system either direct or indirect activities of electroplating, mining, tannery, painting, fertilizer industries and so forth. The different treatment techniques have been utilized to eliminate the heavy metals from aquatic system, which includes coagulation/flocculation, precipitation, membrane filtration, oxidation, flotation, ion exchange, photo catalysis and adsorption. The adsorption technique is a better option than other techniques because it can eliminate heavy metals even at lower metal ions concentration, simplicity and better regeneration behavior. Agricultural wastes are low-cost biosorbent and typically containing cellulose have the ability to absorb a variety of contaminants. It is important to note that almost all agro wastes are no longer used in their original form but are instead processed in a variety of techniques to improve the adsorption capacity of the substance. The wide range of adsorption capacities for agro waste materials were observed and almost more than 99% removal of toxic pollutants from aquatic systems were achieved using modified agro-waste materials. The present review aims at the water pollution due to heavy metals, as well as various heavy metal removal treatment procedures. The primary objectives of this research is to include an overview of adsorption and various agriculture based adsorbents and its comparison in heavy metal removal.
Collapse
Affiliation(s)
- P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Gayathri
- Tamilnadu Pollution Control Board, Guindy, Chennai, 600032, India
| | - B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| |
Collapse
|
20
|
Zhou S, Su S, Meng L, Liu X, Zhang H, Bi X. Potentially toxic trace element pollution in long-term fertilized agricultural soils in China: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147967. [PMID: 34323815 DOI: 10.1016/j.scitotenv.2021.147967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 05/23/2023]
Abstract
Fertilization results in potentially toxic trace element (PTTE) pollution in agricultural soils. However, it is unclear which factors determine the effect sizes of fertilization on PTTEs at the multiple spatial-temporal scale. This work synthesized 379 observations in 78 field sites (3-35 years) across China's main grain producing areas, and showed that long-term organic fertilization significantly enhanced total Cu, Zn and Cd by 25.7%, 18.9% and 66.6%, and soil available Cu, Zn and Cd by 60.5%, 155.3% and 83.6%, respectively; whereas long-term inorganic fertilization increased only available Cu, Zn and Cd by an average of 6.3%. Organic fertilizer (OF) type and application rate dominated the variation of PTTE concentrations, where approximately one-half of Cd pollution (42.6% of total Cd and 47% of available Cd) was observed. Furthermore, OFs containing Cd less than 1 mg kg-1 were recommended to be safely applied to agricultural soils. Soil type was main factor under long-term inorganic fertilization determining available PTTE variation, resulted in higher pollution risk in some soils such as Alfisols and Semi-hydromorphic soils, where we suggested the use of lower amounts of P fertilizers or the application of ones having small amounts of PTTEs. In short, long-term organic fertilization caused serious pollution of PTTEs especially Cd in Chinese croplands, and some strategies with a focus towards reducing the pollution risk must be developed, e.g., promoting straw return, forbidding Cd addition to feeds and feed additives, and improving carbon sequestration efficiency (CSE) of OFs and thus soil organic matter (SOM).
Collapse
Affiliation(s)
- Shiwei Zhou
- School of Agriculture, Ludong University, Yantai 264025, Shandong, China
| | - Shu Su
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ling Meng
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Xiao Liu
- School of Agriculture, Ludong University, Yantai 264025, Shandong, China
| | - Hongyuan Zhang
- School of Agriculture, Ludong University, Yantai 264025, Shandong, China
| | - Xiaoli Bi
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
21
|
LIU Y, WEN X, WANG D, LIAO X. Maternal exposure to trace cadmium affects gonadal differentiation and development in male offspring rats though a star pathway. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.24420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yan LIU
- North Sichuan Medical College, China
| | | | - Dan WANG
- North Sichuan Medical College, China
| | | |
Collapse
|
22
|
Rahimi M, Rahimi G, Ebrahimi E, Moradi S. Assessing the distribution of cadmium under different land-use types and its effect on human health in different gender and age groups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49258-49267. [PMID: 33932216 DOI: 10.1007/s11356-021-12881-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is one of the toxic elements entering the food chain in various ways, including chemical fertilizers. This study aimed to assess different amounts and forms of available Cd in soils under wheat cultivation affected by long-term use of phosphorus chemical fertilizers and also to study the rate of Cd intake by people with age and gender differences. To investigate the Cd status in wheat-cultivated lands, 105 soil samples and also 24 wheat samples were collected from three land uses of rainfed, irrigated, and control one. Phosphorus levels were also measured in soil samples to investigate the relationship between the amount of chemical fertilizer consumption and the amount of Cd. The mean values of available Cd were 0.15, 0.18, and 0.08 (mg/kg) under three land-use types of rainfed, irrigated, and control one, respectively, and the mean values of total Cd were also 1.9, 2.22, and 1.30 in the rainfed land, irrigated land, and control one, respectively. The results showed that the amount of available and total Cd in the irrigated and rainfed lands was higher than the amount of Cd in the control sample. According to the results of Cd fractionation, the highest amounts of Cd were in the residual, carbonate, organic, soluble, and exchangeable fractions, respectively. The amounts of Cd in the three parts of root, stem, and grain were 1.08, 0.65, 0.91 (mg/kg), respectively. Finally, the results showed that the rate of Cd entry into the children's body was higher than that of adults and the elderly.
Collapse
Affiliation(s)
- Meisam Rahimi
- Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamedan, I. R., Iran
| | - Ghasem Rahimi
- Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R., Iran
| | - Eisa Ebrahimi
- Department of Soil Science, Faculty of Agriculture, Guilan University, Rasht, I. R., Iran.
| | - Salahedin Moradi
- Department of Agriculture, Payame Noor University, PO. Box 19395-3697, Tehran, I. R., Iran
| |
Collapse
|
23
|
Fu Y, Li F, Guo S, Zhao M. Cadmium concentration and its typical input and output fluxes in agricultural soil downstream of a heavy metal sewage irrigation area. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125203. [PMID: 33517058 DOI: 10.1016/j.jhazmat.2021.125203] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal pollution of agricultural soils in sewage irrigation areas is a serious environmental issue. Many prior studies have demonstrated that soil around the irrigation area is polluted with heavy metals, even though they had not been irrigated by wastewater. In this study, a paddy field downstream of the Zhangshi Irrigation Area was selected as the study area. The Cd concentrations and their representative input and output fluxes to and from the topsoil were systematically studied. The results showed that 95.5% of soil samples exceeded the screening value of Cd concentration. The Cd input fluxes via irrigation water and atmospheric deposition, accounting for 56.95% and 42.53% of the total input flux, respectively, were the main sources of Cd in soil. Crop harvesting was the main output pathway, accounting for 89.63% of the total output flux. An estimation of the annual mass balance showed that Cd in the studied area was in a state of accumulation, and the annual increase in Cd concentration in topsoil would be 2.46 µg kg-1 if the observed fluxes remain. These results will provide a reference for the development of strategies to control and reduce heavy metal contamination and diffusion in agricultural soils around irrigation areas.
Collapse
Affiliation(s)
- Yuhao Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang 110016, China.
| | - Mingyang Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
24
|
Pons ML, Collin B, Doelsch E, Chaurand P, Fehlauer T, Levard C, Keller C, Rose J. X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116897. [PMID: 33774364 DOI: 10.1016/j.envpol.2021.116897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Collapse
Affiliation(s)
- Marie-Laure Pons
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France.
| | - Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et Risque, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Till Fehlauer
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Catherine Keller
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Jérôme Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| |
Collapse
|
25
|
Mehdizadeh L, Farsaraei S, Moghaddam M. Biochar application modified growth and physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124954. [PMID: 33422756 DOI: 10.1016/j.jhazmat.2020.124954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Biochar (BC) is prepared from waste organic material that can improve soil health in the contaminated area. Soil pollution with cadmium (Cd) is one of the worldwide problems. The present study aimed to evaluate the BC influence on some morphophysiological and biochemical characteristics, also Cd concentration of Ocimum ciliatum L. leaves under Cd stress as well as human risk assessment. Therefore, a pot factorial arrangement based on a completely randomized design was done which included three levels of BC (non-BC, 1%, and 2% of the pot soil) and three Cd levels (0, 20, and 40 mg/kg soil) with three replications. The results of the present study indicated that BC application improved morphological traits, photosynthetic pigments, relative water content (RWC), and catalase (CAT) activity of O. ciliatum under Cd stress and reduced total soluble sugars, total phenol, antioxidant activity, proline content, electrolyte leakage (EL), soluble protein content, ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) activities, and Cd concentration as well as target hazard quotient (THQ). In conclusion, based on the findings of this study, BC could be applied as an environmental friendly amendment in Cd-polluted soil to ameliorate the negative influences of Cd stress on O. ciliatum and reduces Cd levels and THQ in the plants due to the absorption properties of BC. This means that BC usage in contaminated soil helps to reduce pollutions and decreases the human risk assessment.
Collapse
Affiliation(s)
- Leila Mehdizadeh
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Sara Farsaraei
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohammad Moghaddam
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran.
| |
Collapse
|
26
|
Carne G, Leconte S, Sirot V, Breysse N, Badot PM, Bispo A, Deportes IZ, Dumat C, Rivière G, Crépet A. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143374. [PMID: 33213914 DOI: 10.1016/j.scitotenv.2020.143374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a ubiquitous and highly toxic contaminant that can cause serious adverse effects. The European Food Safety Authority (EFSA) and the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) have shown that the risk related to food contamination by cadmium cannot be ruled out in Europe and France. Fertilizing material is one of the main sources of cadmium contamination in the food chain on which regulators can play to reduce cadmium exposure in the population. The aim of this work was to develop a mass-balance approach integrating the various environmental sources of cadmium to estimate the effects of a decrease in cadmium concentrations in crop fertilizers on dietary exposure and on the health risk. This approach led to a predictive model that can be used as a decision-making tool. Representative and protective fertilization scenarios associated with controlled cadmium levels in mineral phosphate fertilizers were simulated and converted into cadmium fluxes. Cadmium inputs from industrial mineral phosphate fertilizers were then compared with cadmium brought by the application of manure, sewage sludge and farm anaerobic digest, at the levels typical of French agricultural practices. Regardless of the fertilizer and scenario used, a flux lower than 2 g Cd.ha-1.year-1 reduces both the accumulation in soils and the transfer of cadmium in the food chain. It corresponds to a cadmium content of 20 mg.kg P2O5-1 or less in mineral phosphate fertilizers. Modelling the transfer of cadmium from the soil to consumed food made it possible to propose cadmium limits in fertilizers applied in France. In a global context of ecological transition to promote human health, this research will help risk managers and public authorities in the regulatory decision-making process for the reduction of environmental cadmium contamination and human exposure.
Collapse
Affiliation(s)
- G Carne
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France.
| | - S Leconte
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - V Sirot
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - N Breysse
- ANSES, Regulated Products Assessment Department, 14 rue Pierre et Marie Curie, F-94701, Maisons-Alfort Cedex, France
| | - P-M Badot
- UMR 6249, Chrono-Environment, University of Franche-Comté/CNRS, 16, route de Gray, 25000 Besançon, France
| | - A Bispo
- INRAE, Orléans US1106 INFOSOL, 2163 avenue de la Pomme de Pin, CS 40001 Ardon, 45075 Orleans cedex 2, France
| | - I Z Deportes
- ADEME - Service Mobilisation et valorisation des Déchets, 20 avenue du Grésillé, 49004 Angers cedex 01, France
| | - C Dumat
- CERTOP, CNRS, UT2J, UPS, 5 Allée Antonio Machado, 31000 Toulouse, France
| | - G Rivière
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - A Crépet
- ANSES, Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| |
Collapse
|
27
|
Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111887. [PMID: 33450535 DOI: 10.1016/j.ecoenv.2020.111887] [Citation(s) in RCA: 477] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ma Wenjun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
28
|
Swain KK, Bhand S. A colorimetric paper-based ATONP-ALP nanobiosensor for selective detection of Cd 2+ ions in clams and mussels. Anal Bioanal Chem 2021; 413:1715-1727. [PMID: 33564927 DOI: 10.1007/s00216-020-03140-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023]
Abstract
A colorimetric paper-based enzyme-coupled antimony tin oxide nanoparticle (ATONP) nanobiosensor for selective detection of Cd2+ ions in clams and mussels is presented. Alkaline phosphatase (ALP) was immobilized on ATONPs via 16-phosphonohexadecanoic acid (16-PHA) to develop ATONP-ALP nanobiosensor. The biosensor was characterized using XPS, Raman spectroscopy, SEM, and EDX. ATONP-ALP nanobiosensor exhibited high selectivity towards detection of Cd2+ ion with a LOD 0.006 μg L-1 and linear range of detection 0.005-1 μg L-1. The developed biosensor was further integrated into a low-cost paper-based format. A visual color change was obtained for Cd2+ ion in the range 0.1-10 μg L-1. The developed biosensor was successfully demonstrated for the analysis of Cd2+ ions in clams with recoveries 101-104%. The ATONP-ALP nanobiosensor was validated using mussel tissue (BCR-668) and the conventional ICP-OES and ICP-MS techniques.
Collapse
Affiliation(s)
- Krishna Kumari Swain
- Biosensor Lab, Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, Mormugao, Goa, 403726, India
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, Mormugao, Goa, 403726, India.
| |
Collapse
|
29
|
Mousavi SA, Dalir N, Rahnemaie R, Schulin R. Phosphate and methionine affect cadmium uptake in valerian (Valeriana officinalis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:466-474. [PMID: 33262015 DOI: 10.1016/j.plaphy.2020.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of exogenous methionine (Met) and different phosphate (PO4) concentrations on Cd uptake and translocation in Valeriana officinalis L. Seedlings were grown in nutrient solutions with three different concentrations of phosphate (900, 1200, and 1500 μM) for two weeks, then exposed for 4 days to 10 μM Cd, either in presence or absence of 400 μM methionine. The Met treatment decreased root Cd accumulation by up to 40%, while it enhanced Cd uptake into the shoots by 50%. In absence of Met, shoot Cd uptake was not affected by the level of phosphate application, although root Cd contents increased. The latter effect was entirely due to increased apoplastic Cd binding. In presence of Met, the Cd accumulation of both plant parts showed trends to increase with increasing phosphate level. In contrast to the treatments without Met, however, the phosphate effect on root Cd was due to increased symplastic root Cd allocation. The results suggest that the effects of Met on Cd uptake were due to the formation of mobile Cd-Met complexes, reducing phosphate-promoted Cd-retention in the apoplast and enhancing Cd transfer into the root symplast. Irrespective of the treatment, shoot Cd accumulation showed a close linear relationship to shoot mass, suggesting that convective transport with the transpirational water stream was the rate-governing uptake process. The results indicate that methionine supplementation could reduce Cd accumulation in valerian roots, which are the parts of this plant harvested for medicinal purposes, in Cd-contaminated soil, while phosphate would enhance it.
Collapse
Affiliation(s)
| | - Neda Dalir
- Department of Soil Science, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran.
| | - Rasoul Rahnemaie
- Department of Soil Science, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | - Rainer Schulin
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| |
Collapse
|
30
|
Emanuil N, Akram MS, Ali S, El-Esawi MA, Iqbal M, Alyemeni MN. Peptone-Induced Physio-Biochemical Modulations Reduce Cadmium Toxicity and Accumulation in Spinach ( Spinacia oleracea L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121806. [PMID: 33352672 PMCID: PMC7765890 DOI: 10.3390/plants9121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/08/2023]
Abstract
The accumulation of cadmium (Cd) in edible plant parts and fertile lands is a worldwide problem. It negatively influences the growth and productivity of leafy vegetables (e.g., spinach, Spinacia oleracea L.), which have a high tendency to radially accumulate Cd. The present study investigated the influences of peptone application on the growth, biomass, chlorophyll content, gas exchange parameters, antioxidant enzymes activity, and Cd content of spinach plants grown under Cd stress. Cd toxicity negatively affected spinach growth, biomass, chlorophyll content, and gas exchange attributes. However, it increased malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), proline accumulation, ascorbic acid content, Cd content, and activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in spinach plants. The exogenous foliar application of peptone increased the growth, biomass, chlorophyll content, proline accumulation, and gas exchange attributes of spinach plants. Furthermore, the application of peptone decreased Cd uptake and levels of MDA, H2O2, and EL in spinach by increasing the activity of antioxidant enzymes. This enhancement in plant growth and photosynthesis might be due to the lower level of Cd accumulation, which in turn decreased the negative impacts of oxidative stress in plant tissues. Taken together, the findings of the study revealed that peptone is a promising plant growth regulator that represents an efficient approach for the phytoremediation of Cd-polluted soils and enhancement of spinach growth, yield, and tolerance under a Cd-dominant environment.
Collapse
Affiliation(s)
- Naila Emanuil
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (N.E.); (M.I.)
| | - Muhammad Sohail Akram
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (N.E.); (M.I.)
- Correspondence: (M.S.A.); (S.A.)
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- Correspondence: (M.S.A.); (S.A.)
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Muhammad Iqbal
- Department of Botany, Government College University, Faisalabad 38000, Pakistan; (N.E.); (M.I.)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh l1451, Saudi Arabia;
| |
Collapse
|
31
|
Gonzalez-Nahm S, Nihlani K, S. House J, L. Maguire R, G. Skinner H, Hoyo C. Associations between Maternal Cadmium Exposure with Risk of Preterm Birth and Low after Birth Weight Effect of Mediterranean Diet Adherence on Affected Prenatal Outcomes. TOXICS 2020; 8:toxics8040090. [PMID: 33092103 PMCID: PMC7712046 DOI: 10.3390/toxics8040090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Prenatal cadmium exposure at non-occupational levels has been associated with poor birth outcomes. The intake of essential metals, such as iron and selenium, may mitigate cadmium exposure effects. However, at high levels, these metals can be toxic. The role of dietary patterns rich in these metals is less studied. We used a linear and logistic regression in a cohort of 185 mother-infant pairs to assess if a Mediterranean diet pattern during pregnancy modified the associations between prenatal cadmium exposure and (1) birth weight and (2) preterm birth. We found that increased cadmium exposure during pregnancy was associated with lower birth weight (β = -210.4; 95% CI: -332.0, -88.8; p = 0.008) and preterm birth (OR = 0.11; 95% CI: 0.01, 0.72; p = 0.04); however, these associations were comparable in offspring born to women reporting high adherence to a Mediterranean diet (β = -274.95; 95% CI: -701.17, 151.26; p = 0.20) and those with low adherence (β = -64.76; 95% CI: -359.90, 230.37; p = 0.66). While the small sample size limits inference, our findings suggest that adherence to a Mediterranean dietary pattern may not mitigate cadmium exposure effects. Given the multiple organs targeted by cadmium and its slow excretion rate, larger studies are required to clarify these findings.
Collapse
Affiliation(s)
- Sarah Gonzalez-Nahm
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Correspondence:
| | - Kiran Nihlani
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - John S. House
- National Institute of Environmental Health Sciences, Durham, NC 27709, USA;
| | - Rachel L. Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; (R.L.M.); (H.G.S.); (C.H.)
| | - Harlyn G. Skinner
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; (R.L.M.); (H.G.S.); (C.H.)
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; (R.L.M.); (H.G.S.); (C.H.)
| |
Collapse
|
32
|
|
33
|
Dharma-Wardana MWC. Letter to the Editor re: Jayasinghe and Zhu (2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137529. [PMID: 32169309 DOI: 10.1016/j.scitotenv.2020.137529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
|
34
|
Ma C, Huang J, Wang Y, Wang L, Zhang H, Ran Z, McCutcheon JR. Membrane fouling control by Ca 2+ during coagulation-ultrafiltration process for algal-rich water treatment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:809-818. [PMID: 30993498 DOI: 10.1007/s10653-019-00291-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation-membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation-membrane process for algal-rich water treatment.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd. Unit 3222, Storrs, CT, 06269-3222, USA
- Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China
| | - Jingyun Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yulan Wang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Zhilin Ran
- Institute of Innovational Education Research, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - Jeffrey R McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd. Unit 3222, Storrs, CT, 06269-3222, USA
| |
Collapse
|
35
|
Li H, Yang Z, Dai M, Diao X, Dai S, Fang T, Dong X. Input of Cd from agriculture phosphate fertilizer application in China during 2006-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134149. [PMID: 31783450 DOI: 10.1016/j.scitotenv.2019.134149] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Phosphate fertilizer applications are an important source of soil Cd in China. However, the input of Cd from phosphate fertilizer has always been neglected in China because of its low content. In this paper, we calculated the Cd input from phosphate fertilizer in China during 2006-2016. According to the data, the total phosphate fertilizer consumption and agriculture application rate tended to decrease after 2014. In 2016, the phosphate fertilizer application rate ranged from 12.14 to 99.38 kg/ha with a mean value of 42.70 kg/ha, and excessive fertilizer application occurred in Xinjiang, Henan, and Hubei Provinces. The Cd content in phosphate fertilizer was 0.75 mg/kg based on 1222 samples. The national Cd input from phosphate fertilizer was estimated to be 10.52 tons in 2016, with DAP/MAP being the largest contributor, accounting for 83.31% of the total input. These findings demonstrate the necessity of performing assessments to regulate the utilization of phosphate fertilizer in China, especially in Henan and Xinjiang Provinces.
Collapse
Affiliation(s)
- Hui Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230026, Anhui, China.
| | - Zhiliang Yang
- College of Engineering, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Mingwei Dai
- School of Resources and Environment, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Xinyue Diao
- School of Resources and Environment, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Shunli Dai
- College of Engineering, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Ting Fang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
| | - Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
36
|
Liao Z, Chen Y, Ma J, Islam MS, Weng L, Li Y. Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152805. [PMID: 31390808 PMCID: PMC6695759 DOI: 10.3390/ijerph16152805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
The intense management practices in greenhouse production may lead to heavy metal (HM) accumulations in soils. To determine the accumulation characteristics of HM and to evaluate possible HM sources in greenhouse soils, thirty typical greenhouse soil samples were collected in Shouguang District, Shandong Province, China. The results indicate that the Cd, Cu, and Zn concentrations are, respectively, 164.8%, 78.6%, and 123.9% higher than their background values. In the study area, Cd exhibits certain characteristics, such as wide variations in the proportion of its exchangeable form and the highest mobility factor and geo-accumulation index, which are indicative of its high bioavailability and environmental risk. In addition, there is a significant positive correlation between pairs of Cd, P, soil organic carbon, and cultivation age. Combined with principal component analysis, the results indicate the clear effects that agricultural activities have on Cd, Cu, and Zn accumulation. However, Cr, Ni, and Pb have a significant correlation with soil Fe and Al (hydr)-oxides, which indicates that these metals mainly originate from parent materials. This research indicated that long-term intensive fertilization (especially the application of chemical fertilizers and livestock manure) leads to Cd, Cu, and Zn accumulation in greenhouse soils in Shouguang. And the time required to reach the maximum permeable limit in agricultural soils for Cd, Cu, and Zn is 23, 51, and 42 years, respectively, based on their current increasing rates.
Collapse
Affiliation(s)
- Zhongbin Liao
- Agro-Environmental Protection Institute/Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yali Chen
- Agro-Environmental Protection Institute/Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jie Ma
- Agro-Environmental Protection Institute/Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Md Shafiqul Islam
- Agro-Environmental Protection Institute/Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute/Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute/Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
37
|
Thongchai A, Meeinkuirt W, Taeprayoon P, Pichtel J. Soil amendments for cadmium phytostabilization by five marigold cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8737-8747. [PMID: 30712201 DOI: 10.1007/s11356-019-04233-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In recent years, ornamental plants have come under investigation as phytoremediation agents. In addition to reducing contaminant concentrations in soil, such plants support local economies by serving social (e.g., religious) and decorative purposes. Greenhouse studies investigated the phytostabilization potential of soil cadmium (Cd) by five cultivars of marigold (Tagetes erecta), a common ornamental flower in Asia. The effects of organic (cattle manure and pig manure) and inorganic (leonardite and Osmocote®) amendments in supporting plant growth and enhancing Cd uptake were also examined. Marigold cultivars Babuda and Sunshine grown in soil supplemented with pig manure produced the greatest biomass and experienced greatest Cd accumulation and flower production. In all treatments, plant parts accumulated Cd in the following order: root > shoot ≈ flower. Furthermore, Babuda and Sunshine cultivars had a high phytostabilization potential as evidenced by translocation factors < 1 and bioconcentration factors > 1 for roots. It is proposed that Babuda and Sunshine marigold cultivars be applied toward Cd phytostabilization while enhancing local economies as an ornamental species.
Collapse
Affiliation(s)
- Alapha Thongchai
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | | | | | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN, 47306, USA
| |
Collapse
|