1
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Predictive toxicology of chemical mixtures using proteome-wide thermal profiling and protein target properties. CHEMOSPHERE 2024; 364:143228. [PMID: 39233297 DOI: 10.1016/j.chemosphere.2024.143228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Our capability to predict the impact of exposure to chemical mixtures on environmental and human health is limited in comparison to the advances on the chemical characterization of the exposome. Current approaches, such as new approach methodologies, rely on the characterization of the chemicals and the available toxicological knowledge of individual compounds. In this study, we show a new methodological approach for the assessment of chemical mixtures based on a proteome-wide identification of the protein targets and revealing the relevance of new targets based on their role in the cellular function. We applied a proteome integral solubility alteration assay to identify 24 protein targets from a chemical mixture of 2,3,7,8-tetrachlorodibenzo-p-dioxin, alpha-endosulfan, and bisphenol A among the HepG2 soluble proteome, and validated the chemical mixture-target interaction orthogonally. To define the range of interactive capability of the new targets, the data from intrinsic properties of the targets were retrieved. Introducing the target properties as criteria for a multi-criteria decision-making analysis called the analytical hierarchy process, the prioritization of targets was based on their involvement in multiple pathways. This methodological approach that we present here opens a more realistic and achievable scenario to address the impact of complex and uncharacterized chemical mixtures in biological systems.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, 581 85, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Leioa, 489 40, Spain.
| |
Collapse
|
2
|
Allaouat S, Yli-Tuomi T, Tiittanen P, Kukkonen J, Kangas L, Mikkonen S, Tiia N, Jousilahti P, Siponen T, Zeller T, Lanki T. Long-term exposures to low concentrations of source-specific air pollution, road-traffic noise, and systemic inflammation and cardiovascular disease biomarkers. ENVIRONMENTAL RESEARCH 2024:119846. [PMID: 39187149 DOI: 10.1016/j.envres.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES Air pollution and traffic noise are detrimental to cardiovascular health. However, the effects of different sources of these exposures on cardiovascular biomarkers remain unclear. We explored the associations of long-term exposure to source-specific air pollution (vehicular exhausts and residential woodsmoke) at low concentrations and road-traffic noise with systemic inflammation and cardiovascular disease biomarkers. MATERIAL AND METHODS Modeled outdoor exposure to fine particulate matter (aerodynamic diameter ≤ 2.5 μm; PM2.5) from vehicular exhausts and residential woodsmoke, nitrogen dioxide (NO2) from road traffic, and road-traffic noise were linked to the home addresses of the participants (Finnish residents aged 25-74) in the FINRISK study 1997-2012. The participants were located in the cities of Helsinki, Vantaa, and the region of Turku, Finland. The outcomes were high-sensitivity C-reactive protein (CRP), a biomarker for systemic inflammation, and cardiovascular disease biomarkers N-terminal pro-B-type natriuretic peptide (NT-proBNP) and troponin I. We performed cross-sectional analyses with linear and additive models and adjusted for potential confounders. RESULTS We found no association between PM2.5 from vehicular exhausts (% CRP difference for 1 μg/m3 increase in PM2.5: -0.9, 95% confidence interval, CI: -7.2, 5.8), or from residential woodsmoke (% difference: -8.1, 95% CI: -21.7, 7.9) and CRP (N = 4147). Road-traffic noise > 70 dB tended to be positively associated with CRP (% CRP difference versus noise reference category of ≤ 45 decibels: 18.3, 95% CI: -0.5, 40.6), but the association lacked significance and robustness (N = 7142). Otherwise, we found no association between road-traffic noise and CRP, nor between NO2 from road traffic and NT-proBNP (N = 1907) or troponin I (N = 1951). CONCLUSION Long-term exposures to source-specific, fairly low-level air pollution from vehicular exhausts and residential woodsmoke, or road-traffic noise were not associated with systemic inflammation and cardiovascular disease biomarkers in this urban area.
Collapse
Affiliation(s)
- Sara Allaouat
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Tarja Yli-Tuomi
- Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pekka Tiittanen
- Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jaakko Kukkonen
- Finnish Meteorological Institute, Helsinki, Finland; Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, UK
| | - Leena Kangas
- Finnish Meteorological Institute, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ngandu Tiia
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pekka Jousilahti
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Taina Siponen
- Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Timo Lanki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health Finnish Institute for Health and Welfare, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Park M, Lee S, Lee H, Denna MCFJ, Jang J, Oh D, Bae MS, Jang KS, Park K. New health index derived from oxidative potential and cell toxicity of fine particulate matter to assess its potential health effect. Heliyon 2024; 10:e25310. [PMID: 38356560 PMCID: PMC10864913 DOI: 10.1016/j.heliyon.2024.e25310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Toxicological data and exposure levels of fine particulate matters (PM2.5) are necessary to better understand their health effects. Simultaneous measurements of PM2.5 oxidative potential (OP) and cell toxicity in urban areas (Beijing, China and Gwangju, Korea) reveal their dependence on chemical composition. Notably, acids (Polar), benzocarboxylic acids, and Pb were the chemical components that affected both OP and cell toxicity. OP varied more significantly among different locations and seasons (winter and summer) than cell toxicity. Using the measured OP, cell toxicity, and PM2.5 concentration, a health index was developed to better assess the potential health effects of PM2.5. The health index was related to the sources of PM2.5 derived from the measured chemical components. The contributions of secondary organic aerosols and dust to the proposed health index were more significant than their contributions to PM2.5 mass. The developed regression equation was used to predict the health effect of PM2.5 without further toxicity measurements. This new index could be a valuable health metric that provides information beyond just the PM2.5 concentration level.
Collapse
Affiliation(s)
- Minhan Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seunghye Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Haebum Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ma. Cristine Faye J. Denna
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jiho Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dahye Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
4
|
Niu X, Liu X, Zhang B, Zhang Q, Xu H, Zhang H, Sun J, Ho KF, Chuang HC, Shen Z, Cao J. Health benefits from substituting raw biomass fuels for charcoal and briquette fuels: In vitro toxicity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161332. [PMID: 36596416 DOI: 10.1016/j.scitotenv.2022.161332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
PM2.5 (particulate matters with diameter ≤ 2.5 μm) from biomass fuel combustion has been identified as a major cause of cardiopulmonary diseases. Briquette and charcoal are two representative processed fuels that exhibit different emission characteristics. This study compared three types of biomass fuels (maize straw, wheat straw, and wood branches) and their respective processed fuels in terms of their emission factors (EFs). The bioreactivity of human alveolar epithelial (A549) cells to exposure to various fuel-emitted PM2.5 was assessed. The EFs of lactic dehydrogenase (LDH) and interleukin-6 (IL-6) were calculated to compare actual cytotoxicity. The PM2.5 EFs of maize and wheat straw were higher than those of wood branches, and following the processes of briquetting and carbonization, the EFs of PM2.5 and chemical components were effectively reduced. Cell membrane damage and inflammatory responses were observed after A549 cell exposure to PM2.5 extracts. The expression of bioreactivity to briquettes and charcoals was lower than that to raw fuels. The EFs of LDH and IL-6 were also significantly reduced after briquetting and carbonization. This underscores the necessity of fuel treatment for reducing cytotoxicity. The crucial chemical components that contributed to cell oxidative and inflammatory responses were identified, including organic and elemental carbon, water-soluble ions (e.g., K+, Mg2+, and Ca2+), metals (e.g., Fe, Cr, and Ni), and high-molecular-weight PAHs. This study elucidated the similarities and differences of PM2.5 emissions and cytotoxicity of three types of biomass fuel and demonstrated the positive effects of fuel treatment on reducing adverse pulmonary effects.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
5
|
Lizano-Fallas V, Carrasco del Amor A, Cristobal S. Prediction of Molecular Initiating Events for Adverse Outcome Pathways Using High-Throughput Identification of Chemical Targets. TOXICS 2023; 11:189. [PMID: 36851063 PMCID: PMC9965981 DOI: 10.3390/toxics11020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The impact of exposure to multiple chemicals raises concerns for human and environmental health. The adverse outcome pathway method offers a framework to support mechanism-based assessment in environmental health starting by describing which mechanisms are triggered upon interaction with different stressors. The identification of the molecular initiating event and the molecular interaction between a chemical and a protein target is still a challenge for the development of adverse outcome pathways. The cellular response to chemical exposure studied with omics could not directly identify the protein targets. However, recent mass spectrometry-based methods are offering a proteome-wide identification of protein targets interacting with s but unrevealing a molecular initiating event from a set of targets is still dependent on available knowledge. Here, we directly coupled the target identification findings from the proteome integral solubility alteration assay with an analytical hierarchy process for the prediction of a prioritized molecular initiating event. We demonstrate the applicability of this combination of methodologies with a test compound (TCDD), and it could be further studied and integrated into AOPs. From the eight protein targets identified by the proteome integral solubility alteration assay after analyzing 2824 human hepatic proteins, the analytical hierarchy process can select the most suitable protein for an AOP. Our combined method solves the missing links between high-throughput target identification and prediction of the molecular initiating event. We anticipate its utility to decipher new molecular initiating events and support more sustainable methodologies to gain time and resources in chemical assessment.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Ana Carrasco del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
- Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country (UPV/EHU), 489 40 Leioa, Spain
| |
Collapse
|
6
|
Lee YS, Kim YK, Choi E, Jo H, Hyun H, Yi SM, Kim JY. Health risk assessment and source apportionment of PM 2.5-bound toxic elements in the industrial city of Siheung, Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66591-66604. [PMID: 35507225 PMCID: PMC9066139 DOI: 10.1007/s11356-022-20462-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/22/2022] [Indexed: 05/19/2023]
Abstract
The emission sources and their health risks of fine particulate matter (PM2.5) in Siheung, Republic of Korea, were investigated as a middle-sized industrial city. To identify the PM2.5 sources with error estimation, a positive matrix factorization model was conducted using daily mean speciated data from November 16, 2019, to October 2, 2020 (95 samples, 22 chemical species). As a result, 10 sources were identified: secondary nitrate (24.3%), secondary sulfate (18.8%), traffic (18.8%), combustion for heating (12.6%), biomass burning (11.8%), coal combustion (3.6%), heavy oil industry (1.8%), smelting industry (4.0%), sea salts (2.7%), and soil (1.7%). Based on the source apportionment results, health risks by inhalation of PM2.5 were assessed for each source using the concentration of toxic elements portioned. The estimated cumulative carcinogenic health risks from the coal combustion, heavy oil industry, and traffic sources exceeded the benchmark, 1E-06. Similarly, carcinogenic health risks from exposure to As and Cr exceeded 1E-05 and 1E-06, respectively, needing a risk reduction plan. The non-carcinogenic risk was smaller than the hazard index of one, implying low potential for adverse health effects. The probable locations of sources with relatively higher carcinogenic risks were tracked. In this study, health risk assessment was performed on the elements for which mass concentration and toxicity information were available; however, future research needs to reflect the toxicity of organic compounds, elemental carbon, and PM2.5 itself.
Collapse
Affiliation(s)
- Young Su Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Young Kwon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Division of Policy Research, Green Technology Center, Seoul, 04554, Republic of Korea
| | - Eunhwa Choi
- Institute of Construction and Environmental Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyeri Jo
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyeseung Hyun
- College of Environmental Design, University of California, Berkeley, Berkeley, CA, USA
| | - Seung-Muk Yi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Xu W, Wang S, Jiang L, Sun X, Wang N, Liu X, Yao X, Qiu T, Zhang C, Li J, Deng H, Yang G. The influence of PM 2.5 exposure on kidney diseases. Hum Exp Toxicol 2022; 41:9603271211069982. [PMID: 35174736 DOI: 10.1177/09603271211069982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The harm of air pollution to public health has become a research hotspot, especially atmospheric fine-particulate matter (PM2.5). In recent years, epidemiological investigations have confirmed that PM2.5 is closely related to chronic kidney disease and membranous nephropathy Basic research has demonstrated that PM2.5 has an impact on the normal function of the kidneys through accumulation in the kidney, endothelial dysfunction, abnormal renin-angiotensin system, and immune complex deposition. Moreover, the mechanism of PM2.5 damage to the kidney involves inflammation, oxidative stress, apoptosis, DNA damage, and autophagy. In this review, we summarized the latest developments in the effects of PM2.5 on kidney disease in human and animal studies, so as to provide new ideas for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Tianming Qiu
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Jing Li
- Department of Pathology, 36674Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Fushimi A, Nakajima D, Furuyama A, Suzuki G, Ito T, Sato K, Fujitani Y, Kondo Y, Yoshino A, Ramasamy S, Schauer JJ, Fu P, Takahashi Y, Saitoh K, Saito S, Takami A. Source contributions to multiple toxic potentials of atmospheric organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145614. [PMID: 33592460 DOI: 10.1016/j.scitotenv.2021.145614] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 05/16/2023]
Abstract
Fine particulate matter (PM2.5) in the atmosphere is of high priority for air quality management efforts to address adverse health effects in human. We believe that emission control policies, which are traditionally guided by source contributions to PM mass, should also consider source contributions to PM health effects or toxicity. In this study, we estimated source contributions to the toxic potentials of organic aerosols (OA) as measured by a series of chemical and in-vitro biological assays and chemical mass balance model. We selected secondary organic aerosols (SOA), vehicles, biomass open burning, and cooking as possible important OA sources. Fine particulate matter samples from these sources and parallel atmospheric samples from diverse locations and seasons in East Asia were collected for the study. The source and atmospheric samples were analyzed for chemical compositions and toxic potentials, i.e. oxidative potential, inflammatory potential, aryl hydrocarbon receptor (AhR) agonist activity, and DNA-damage, were measured. The toxic potentials per organic carbon (OC) differed greatly among source and ambient particulate samples. The source contributions to oxidative and inflammatory potentials were dominated by naphthalene-derived SOA (NapSOA), followed by open burning and vehicle exhaust. The AhR activity was dominated by open burning, followed by vehicle exhaust and NapSOA. The DNA damage was dominated by vehicle exhaust, followed by open burning. Cooking and biogenic SOA had smaller contributions to all the toxic potentials. Regarding atmospheric OA, urban and roadside samples showed stronger toxic potentials per OC. The toxic potentials of remote samples in summer were consistently very weak, suggesting that atmospheric aging over a long time decreased the toxicity. The toxic potentials of the samples from the forest and the experimentally generated biogenic SOA were low, suggesting that toxicity of biogenic primary and secondary particles is relatively low.
Collapse
Affiliation(s)
- Akihiro Fushimi
- National Institute for Environmental Studies, Tsukuba, Japan.
| | | | - Akiko Furuyama
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Go Suzuki
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiro Ito
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Kei Sato
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Yoshinori Kondo
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Ayako Yoshino
- National Institute for Environmental Studies, Tsukuba, Japan
| | | | - James J Schauer
- Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | | | - Katsumi Saitoh
- National Institute for Environmental Studies, Tsukuba, Japan; Environmental Science Analysis and Research Laboratory, Iwate, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, Koto-ku, Tokyo, Japan
| | - Akinori Takami
- National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
9
|
Development of a Novel Integrated CCSD-ITARA-MARCOS Decision-Making Approach for Stackers Selection in a Logistics System. MATHEMATICS 2020. [DOI: 10.3390/math8101672] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main goal of this paper is to propose a Multiple-Criteria Decision-Making (MCDM) approach that will facilitate decision-making in the field of logistics—i.e., in the selection of the optimal equipment for performing a logistics activity. For defining the objective weights of the criteria, the correlation coefficient and the standard deviation (CCSD method) are applied. Furthermore, for determining the semi-objective weights of the considered criteria, the indifference threshold-based attribute ratio analysis method (ITARA) is used. In this way, by combining these two methods, the weights of the criteria are determined with a higher degree of reliability. For the final ranking of the alternatives, the measurement of alternatives and ranking according to the compromise solution method (MARCOS) is utilized. For demonstrating the applicability of the proposed approach, an illustrative case study pointing to the selection of the best manual stacker for a small warehouse is performed. The final results are compared with the ones obtained using the other proved MCDM methods that confirmed the reliability and stability of the proposed approach. The proposed integrated approach shows itself as a suitable technique for applying in the process of logistics equipment selection, because it defines the most influential criteria and the optimal choice with regard to all of them in a relatively easy and comprehensive way. Additionally, conceiving the determination of the criteria with the combination of objective and semi-objective methods enables defining the objective weights concerning the attitudes of the involved decision-makers, which finally leads to more reliable results.
Collapse
|