1
|
Chen Y, Song R, Wang Y, Jiang C, Wang C, Yang Y, Zhang Z. Geographic heterogeneity of polycyclic aromatic hydrocarbons in Yangtze River sediments: Evidence from the longest river in Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125763. [PMID: 39880350 DOI: 10.1016/j.envpol.2025.125763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
This work is the first comprehensive survey of the Yangtze River, covering its origin to the estuary mouth. It focuses on the geographical and industrial factors influencing the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments, along with their contamination levels, sources, and ecological risks. The total concentrations of PAHs ranged from 2.14 to 796 (mean 179 ± 179) ng/g, which falls within the low-to-middle range compared to global levels. Four-ring PAHs were observed with the highest proportion (34.0%), followed by three-rings (24.7%), five-rings (16.0%), two-rings (16.6%), and six-rings (8.62%). PAH levels were significantly higher downstream of the confluences of the Yangtze mainstream and its major tributaries, as well as in areas with frequent industrial activity. Heavy metals (Zn, Pb, and Cd) and industry output values were positively correlated with PAHs concentrations, especially three-ring PAHs. The results of source analysis, based on molecular diagnostics and principal component analysis, identified coal, biomass, and petroleum combustion as the main sources of PAHs. Among these, industrial coal combustion and vehicle emissions were dominant, contributing 39% and 64% of the PAHs pollution in top and bottom sediments, respectively. The toxicity equivalence (TEQ) evaluation results showed that the total TEQ of ∑16PAHs (mean: 14 ng/g) was below the 600 ng/g TEQBaP standard established by the Canadian Council of Ministers of the Environment. BaP had the highest TEQBaP, followed by DahA and BbF. The risk assessment indicated that Nap and Pyr were the two congeners with the highest risk, accounting for 24-33% and 21-28% of the Risk Quotient for negligible concentration values (RQNCs) and maximum Permissible Concentration values (RQMPCs) of ∑16PAHs, respectively. Despite the overall low to moderate risks of PAHs in the region, the above-mentioned major compounds (e.g., BaP, DahA, BbF, Nap, and Pyr) should be of continued concern.
Collapse
Affiliation(s)
- Yulin Chen
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ranran Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chen Wang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Xie Y, Guo J, Fan Q, Huang S, Qi W, Cao X, Peng J, Chen Y, Chen M. High-density sampling reveals the occurrence, levels and transport flux of 15 polycyclic aromatic hydrocarbons derivatives (PAHs-d) along the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177907. [PMID: 39644634 DOI: 10.1016/j.scitotenv.2024.177907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons derivatives (PAHs-d) have higher toxicity levels compared to its parent polycyclic aromatic hydrocarbons (PPAHs). Their partitioning in different media and large-scale transport patterns in rivers remain largely unknown. This study investigated the occurrence of 15 PAHs-d and 19 PPAHs in water and suspended particulate matter (SPM) of the Yangtze River between 2019 and 2020. The range of Σ15PAHs-d concentrations was 20.54 to 2010.03 ng·L-1 in water and 0.62 to 29.80 μg·g-1 in SPM. The primary PAHs-d components were 2,6-dimethylnaphthalene, 2-methylnaphthalene, and anthraquinone. The range of Σ19PPAHs concentrations in water and SPM was 34.89 to 739.53 ng·L-1 and 0.37 to 204.62 μg·g-1, respectively. And low-ring PAHs-d and PPAHs were more prevalent in water than SPM. Partitioning behaviors indicated that PAHs-d and PPAHs were more readily partitioned into water and SPM during normal and dry periods, respectively. The concentrations of PAHs-d saw significant changes in their spatial distribution, which rose in water and reduced in SPM in downstream of the Three Gorges Dam. This is due to the dam's blocking effect on sediment transport. Positive matrix factorization source analysis revealed biomass combustion upstream and vehicle emissions downstream as primary sources, shaped by the evolving energy consumption patterns of urban areas situated around the Yangtze River. The annual fluxes of PAHs-d in water and SPM of the Yangtze River were 90.40 t·yr-1 and 11.95 t·yr-1, representing 88.3 % and 11.7 % of the overall PAHs-d fluxes, respectively. The total fluxes of PAHs-d and PPAHs in water and SPM tended to increase spatially along the river, with growth rates exceeding 76 and 24 times, respectively. Interception within the Three Gorges Reservoir area has resulted in the differences in the concentration and transport distribution of PAHs-d and PPAHs upstream and downstream, which play important roles in reducing PAHs-d and PPAHs entry into the sea. Future studies on PAHs-d in Yangtze River basin tributaries and estuaries are essential.
Collapse
Affiliation(s)
- Yu Xie
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| | - Jiaxun Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qinya Fan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shier Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufeng Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| | - Min Chen
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100084, China
| |
Collapse
|
3
|
Li Q, Tian Y, Hao Y, Qu C, Tagun R, Iwata H, Guo J. Environmental DNA-based assessment of multitrophic biodiversity in a typical river located in the Loess Plateau, China: Influence of PAHs and suspended sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117568. [PMID: 39700766 DOI: 10.1016/j.ecoenv.2024.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution and high suspended sediment (SS) contents are significant anthropogenic and natural stressors that threaten aquatic biodiversity. However, the characteristics of multitrophic biological communities and their co-occurrence patterns in response to PAHs in sediment-laden rivers remain unclear. This study investigated the spatial distribution of species across three trophic levels, including algae, metazoan, and fish, in the Beiluo River on the Loess Plateau, China, using environmental DNA metabarcoding. Biodiversity was assessed in relation to 16 PAHs, SS, and environmental variables. The PAH in the dissolved phase ranged from 19.70 to 1613.30 ng/L dominated by low molecular weight (LMW) PAHs. Partial least squares path modeling (PLS-PM) revealed a negative correlation between PAH distribution and SS in the river. In terms of biodiversity, the richness and Shannon index of algae (Chlorophyta and Dinophyceae) were positively associated with acenaphthene (ACE) levels. Conversely, the Shannon index and richness of metazoans (Rotifera and Arthropoda) appeared to decline in response to Benzo[a]anthracene (BaA) and pyrene (PYR). Fishes (Cypriniformes and Clupeiformes) demonstrated greater tolerance to PAH contamination than algae and metazoans, and their reduced richness and Shannon index were linked to the high SS loads (> 0.45 μm). The co-occurrence patterns highlighted a stronger association connection between algae and metazoan communities than fish. This study provides valuable insights into how PAHs could reshape the structure of riverine multitrophic communities under conditions of elevated SS loads.
Collapse
Affiliation(s)
- Qian Li
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yulu Tian
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yongrong Hao
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Rungnapa Tagun
- Department of Biology, Chiang Mai Rajabhat University, Chiang Mai 50180, Thailand
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture 790-8577, Japan
| | - Jiahua Guo
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
4
|
Jin R, Li B, Wu Y, Li Y, Du X, Xia C, Zhao H, Liu M. Unpuzzling spatio-vertical and multi-media patterns of aniline accelerators/antioxidants in an urban estuary. WATER RESEARCH 2024; 266:122427. [PMID: 39276472 DOI: 10.1016/j.watres.2024.122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Aniline accelerators and antioxidants (AAs) are high-production-volume industrial additives that have recently attracted emerging concern given their ubiquity in environmental compartments and the associated (eco)toxic effects. Nonetheless, available information on the multi-media behavior of AAs and their transformation products (TPs) remains scarce. Therefore, we determined the residues of twenty-four AA(TP)s in paired dissolved phases (i.e., filtered water), suspended particulate matter (SPM), and sediment samples collected from the Yangtze River Estuary (YRE), a highly urbanized estuary in the East China. The median total concentrations of targeted compounds were 0.73 ng/g dw, 34.4 ng/L, and 39.6 ng/L in sediments, surface and bottom water, respectively. Diphenylamine (DPA) was the most abundant congener in SPM, while 1,3-diphenylguanidine (DPG) and dicyclohexylamine (DChA) dominated in the dissolved phases and sediments. Various anthropogenic emissions and (a)biotic degradation may collectively shape the matrix-specific accumulation patterns and spatial trends of these compounds across the YRE. However, the vertical patterns of AA(TP)s were obscure, probably due to the estuarine hydrodynamics and/or the modest sample size. The SPM fractions of AA(TP)s in water (Ф: 7.9-100%) and the sediment sorption coefficients (KOC: 0.01-6.56) both positively correlated with their hydrophobicity as indicated by the octanol-water partition coefficient (KOW). Moreover, risk quotients implied moderate to high aquatic toxicity posed by several AA(TP)s at certain YRE sites. The estimated total annual fluxes of our analytes transported via water and sediments towards the East China Sea were 5.90-365.5 tons and 4.23-1,100 kg, respectively. This work provides a systematic investigation of multi-media processes and ecological risks of AA(TP)s in a highly-urbanized estuary, contributing to holistic comprehension of these emerging contaminants in estuarine environments.
Collapse
Affiliation(s)
- Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Bao Li
- Changjiang River Estuary Bureau of Hydrological and Water Resources Survey, Ministry of Water Resources, Shanghai 200136, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Yue Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyu Du
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Heng Zhao
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai 200125, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
5
|
Li F, Wang P, Fan T, Zhang N, Zhao L, Zhong R, Sun G. Prioritization of the ecotoxicological hazard of PAHs towards aquatic species spanning three trophic levels using 2D-QSTR, read-across and machine learning-driven modelling approaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133410. [PMID: 38185092 DOI: 10.1016/j.jhazmat.2023.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a common group of environmental pollutants that endanger various aquatic organisms via various pathways. To better prioritize the ecotoxicological hazard of PAHs to aquatic environment, we used 2D descriptors-based quantitative structure-toxicity relationship (QSTR) to assess the toxicity of PAHs toward six aquatic model organisms spanning three trophic levels. According to strict OECD guideline, six easily interpretable, transferable and reproducible 2D-QSTR models were constructed with high robustness and reliability. A mechanistic interpretation unveiled the key structural factors primarily responsible for controlling the aquatic ecotoxicity of PAHs. Furthermore, quantitative read-across and different machine learning approaches were employed to validate and optimize the modelling approach. Importantly, the optimum QSTR models were further applied for predicting the ecotoxicity of hundreds of untested/unknown PAHs gathered from Pesticide Properties Database (PPDB). Especially, we provided a priority list in terms of the toxicity of unknown PAHs to six aquatic species, along with the corresponding mechanistic interpretation. In summary, the models can serve as valuable tools for aquatic risk assessment and prioritization of untested or completely new PAHs chemicals, providing essential guidance for formulating regulatory policies.
Collapse
Affiliation(s)
- Feifan Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
| | - Peng Wang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Sawarkar R, Shakeel A, Kumar T, Ansari SA, Agashe A, Singh L. Evaluation of plant species for air pollution tolerance and phytoremediation potential in proximity to a coal thermal power station: implications for smart green cities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7303-7322. [PMID: 37368173 DOI: 10.1007/s10653-023-01667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
In metropolitan areas, air pollution poses a significant threat, and it is crucial to carefully select plant species that can tolerate such conditions. This requires a scientific approach based on systematic evaluation before recommending them to executive bodies. This study aimed to determine the air pollution tolerance index (APTI), dust retention capacity, and phytoremediation ability of 10 plant species growing in and around a lignite-based coal thermal power station. The results showed that Ficus benghalensis L. had the highest APTI, followed by Mimusops elengi L., Ficus religiosa L., Azadirachta indica A. Juss., and Annona reticulata L. F. benghalensis also showed the highest pH of leaf extract, relative water content, total chlorophyll, and ascorbic acid content, as well as the highest dust capturing capacity. Among the ten plant species, F. benghalensis, M. elengi, F. religiosa, A. indica and F. racemosa were identified as a tolerant group that can be used for particulate matter suppression and heavy metal stabilization in and around thermal power plants. These findings can inform the selection of plants for effective green infrastructure in smart green cities, promoting the health and well-being of urban populations. This research is relevant to urban planners, policymakers, and environmentalists interested in sustainable urban development and air pollution mitigation.
Collapse
Affiliation(s)
- Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Tinku Kumar
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Ashish Agashe
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Zhao J, Song S, Zhang K, Li X, Zheng X, Wang Y, Ku G. An investigation into the disturbance effects of coal mining on groundwater and surface ecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7011-7031. [PMID: 37326776 DOI: 10.1007/s10653-023-01658-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Coal mining disturbs surface ecosystems in coal mining subsidence areas. Based on the groundwater-surface composite ecosystem analysis, we constructed an ecological disturbance evaluation index system (18 indices) in a coal mining subsidence area using the analytic hierarchy process (AHP). Taking the Nalinhe mining area in Wushen Banner, China, in 2018-2020 as an example, the weight, ecological disturbance grade and correlation of different indicators were determined by implementing fuzzy mathematics, weighting method, and correlation analysis method. The major conclusions of this review were: (i) After two years of mining, ecological disturbance was the highest in the study area (Grade III) and the lowest in the non-mining area (Grade I). (ii) Coal mining not only directly interfered with the environment, but also strengthened the connection of different ecological indicators, forming multiple ecological disturbance chains such as "mining intensity-mining thickness-buried depth/Mining thickness", "coal mining-surface subsidence-soil chemical factors", and "natural environment-soil physical factors". The disturbance chain that controls the ecological response factors in the region remains to be determined. However, the ecological response factors are the most important factor that hinders the restoration of the ecology in a coal mining subsidence area. (iii) The ecological disturbance in the coal mining subsidence area continued increasing over two years due to coal mining. The ecological disturbance by coal mining cannot be completely mitigated by relying on the self-repair capability of the environment. This study is of great significance for ecological restoration and governance of coal mining subsidence areas.
Collapse
Affiliation(s)
- Jiangang Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Shuang Song
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kai Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xiaonan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - XinHui Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Yajing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Gaoyani Ku
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
8
|
Jiang C, Li M, Li C, Huang W, Zheng L. Combining hydrochemistry and 13C analysis to reveal the sources and contributions of dissolved inorganic carbon in the groundwater of coal mining areas, in East China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7065-7080. [PMID: 37572235 DOI: 10.1007/s10653-023-01726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main water‒rock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resources and Geoscience, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Ming Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Wendi Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
9
|
Gopinathan P, Subramani T, Barbosa S, Yuvaraj D. Environmental impact and health risk assessment due to coal mining and utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6915-6922. [PMID: 37676435 DOI: 10.1007/s10653-023-01744-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- P Gopinathan
- CSIR-Central Institute of Mining and Fuel Research, Ministry of Science and Technology, Government of India, Dhanbad, Jharkhand, 828108, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - T Subramani
- Department of Mining Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600025, India.
- Department of Geology, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sofia Barbosa
- Earth Science Department, FCT-NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Divya Yuvaraj
- Department of Earth and Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|