1
|
Goyal I, Agarwal M, Bamola S, Goswami G, Lakhani A. The role of chemical fractionation in risk assessment of toxic metals: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1098. [PMID: 37626242 DOI: 10.1007/s10661-023-11728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The identification of highly toxic metals like Cd, Ni, Pb, Cr, Co or Cu in ambient particulate matter (PM) has garnered a lot of interest recently. Exposure to toxic metals, including carcinogenic ones, at levels above recommended limits, can significantly affect human health. Prolonged exposure to even trace amounts of toxic or essential metals can also have negative health impacts. In order to assess significant risks, it is crucial to govern the concentrations of bioavailable/bio-accessible metals that are available in PM. Estimating the total metal concentrations in PM is only an approximation of metal toxicity. This review provides an overview of various procedures for extracting soluble toxic metals from PM and the importance of chemical fractionation in risk assessment. It is observed that the environmental risk indices such as bioavailability index (BI), contamination factor (CF) and risk assessment code (RAC) are specifically influenced by the concentration of these metals in a particular fraction. Additionally, there is compelling evidence that health risks assessed using total metal concentrations may be overestimated, therefore, the metal toxicity assessment is more accurate and more sensitive to the concentration of the bioavailable/bio-accessible fraction than the total metal concentrations. Hence, chemical fractionation of toxic metals can serve as an effective tool for developing environmental protection laws and improving air quality monitoring programs for public health.
Collapse
Affiliation(s)
- Isha Goyal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Muskan Agarwal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Simran Bamola
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Gunjan Goswami
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India.
| |
Collapse
|
2
|
Ahmad M, Manjantrarat T, Rattanawongsa W, Muensri P, Saenmuangchin R, Klamchuen A, Aueviriyavit S, Sukrak K, Kangwansupamonkon W, Panyametheekul S. Chemical Composition, Sources, and Health Risk Assessment of PM 2.5 and PM 10 in Urban Sites of Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14281. [PMID: 36361157 PMCID: PMC9656051 DOI: 10.3390/ijerph192114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Of late, air pollution in Asia has increased, particularly in built-up areas due to rapid industrialization and urbanization. The present study sets out to examine the impact that pollution can have on the health of people living in the inner city of Bangkok, Thailand. Consequently, in 2021, fine particulate matter (PM2.5) and coarse particulate matter (PM10) chemical composition and sources are evaluated at three locations in Bangkok. To identify the possible sources of such particulates, therefore, the principal component analysis (PCA) technique is duly carried out. As determined via PCA, the major sources of air pollution in Bangkok are local emission sources and sea salt. The most significant local sources of PM2.5 and PM10 in Bangkok include primary combustion, such as vehicle emissions, coal combustion, biomass burning, secondary aerosol formation, industrial emissions, and dust sources. Except for the hazard quotient (HQ) of Ni and Mn of PM2.5 for adults, the HQ values of As, Cd, Cr, Mn, and Ni of both PM2.5 and PM10 were below the safe level (HQ = 1) for adults and children. This indicates that exposure to these metals would have non-carcinogenic health effects. Except for the carcinogenic risk (HI) value of Cr of PM2.5 and PM10, which can cause cancer in adults, at Bangna and Din Daeng, the HI values of Cd, Ni, As, and Pb of PM2.5 and PM10 are below the limit set by the U.S. Environmental Protection Agency (U.S. EPA). Ni and Mn pose non-carcinogenic risks, whereas Cr poses carcinogenic risks to adults via inhalation, a serious threat to the residents of Bangkok.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Thanaphum Manjantrarat
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachiraya Rattanawongsa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Phitchaya Muensri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Rattaporn Saenmuangchin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wiyong Kangwansupamonkon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
- AFRS(T) The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand
| | - Sirima Panyametheekul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit: HAUS IAQ, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Air pollution in Delhi, India: It’s status and association with respiratory diseases. PLoS One 2022; 17:e0274444. [PMID: 36126064 PMCID: PMC9488831 DOI: 10.1371/journal.pone.0274444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The policymakers need research studies indicating the role of different pollutants with morbidity for polluted cities to install a strategic air quality management system. This study critically assessed the air pollution of Delhi for 2016–18 to found out the role of air pollutants in respiratory morbidity under the ICD-10, J00-J99. The critical assessment of Delhi air pollution was done using various approaches. The mean PM2.5 and PM10 concentrations during the measurement period exceeded both national and international standards by a wide margin. Time series charts indicated the interdependence of PM2.5 and PM10 and connection with hospital visits due to respiratory diseases. Violin plots showed that daily respiratory disease hospital visits increased during the winter and autumn seasons. The winter season was the worst from the city’s air pollution point of view, as revealed by frequency analyses. The single and multi-pollutant GAM models indicated that short-term exposure to PM10 and SO2 led to increased hospital visits due to respiratory diseases. Per 10 units increase in concentrations of PM10 brought the highest increase in hospital visits of 0.21% (RR: 1.00, 95% CI: 1.001, 1.002) at lag0-6 days. This study found the robust effect of SO2 persisted in Delhi from lag0 to lag4 days and lag01 to lag06 days for single and cumulative lag day effects, respectively. While every 10 μg m-3 increase of SO2 concentrations on the same day (lag0) led to 32.59% (RR: 1.33, 95% CI: 1.09, 1.61) rise of hospital visits, the cumulative concentration of lag0-1 led to 37.21% (RR: 1.37, 95% CI:1.11, 1.70) rise in hospital visits which further increased to even 83.33% (RR: 1.83, 95% CI:1.35, 2.49) rise at a lag0-6 cumulative concentration in Delhi. The role of SO2 in inducing respiratory diseases is worrying as India is now the largest anthropogenic SO2 emitter in the world.
Collapse
|
4
|
Mbazima SJ. Health risk assessment of particulate matter 2.5 in an academic metallurgy workshop. INDOOR AIR 2022; 32:e13111. [PMID: 36168227 PMCID: PMC9825944 DOI: 10.1111/ina.13111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Exposure to indoor PM2.5 is associated with allergies, eye and skin irritation, lung cancer, and cardiopulmonary diseases. To control indoor PM2.5 and protect the health of occupants, exposure and health studies are necessary. In this study, exposure to PM2.5 released in an academic metallurgy workshop was assessed and a health risk assessment was conducted for male and female students and technicians. Polycarbonate membrane filters and an active pump operating at a flow rate of 2.5 L/min were used to collect PM2.5 from Monday to Friday for 3 months (August-October 2020) from 08:00-16:00. PM2.5 mass concentrations were obtained gravimetrically, and the Multiple-Path Particle Dosimetry model was used to predict the deposition, retention, and clearance of PM2.5 in the respiratory tract system. The risk of developing carcinogenic and non-carcinogenic effects among students and technicians was determined. The average PM2.5 mass concentration for August was 32.6 μg/m3 32.8 μg/m3 for September, and 32.2 μg/m3 for October. The head region accounted for the highest deposition fraction (49.02%), followed by the pulmonary (35.75%) and tracheobronchial regions (15.26%). Approximately 0.55 mg of PM2.5 was still retained in the alveolar region 7 days after exposure. The HQ for male and female students was <1 while that of male and female technicians was >1, suggesting that technicians are at risk of developing non-carcinogenic health effects compared with students. The results showed a risk of developing carcinogenic health effects among male and female technicians (>1 × 10-5 ); however, there was no excess cancer risk for students (<1 × 10-6 ). This study highlights the importance of exposure and health studies in academic micro-environments such as metallurgy workshops which are often less researched, and exposure is underestimated. The results also indicated the need to implement control measures to protect the health of the occupants and ensure that the workshop rules are adhered to.
Collapse
Affiliation(s)
- Setlamorago Jackson Mbazima
- School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of Environmental Sciences, College of Agriculture and Environmental SciencesUniversity of South AfricaJohannesburgSouth Africa
- Department of Toxicology and BiochemistryNational Institute for Occupational HealthDivision of the National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
5
|
Tian J, Hopke PK, Cai T, Fan Z, Yu Y, Zhao K, Zhang Y. Evaluation of impact of "2+26″ regional strategies on air quality improvement of different functional districts in Beijing based on a long-term field campaign. ENVIRONMENTAL RESEARCH 2022; 212:113452. [PMID: 35597294 DOI: 10.1016/j.envres.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Consecutive measurements of ambient fine particulate matter (PM2.5) from February 2016 to April 2018 have been performed at four representative sites of Beijing to evaluate the impact of "2 + 26" regional strategies implemented in 2017 for air quality improvement in non-heating period (2017NH) and heating period (2017H). The decrease of PM2.5 were significant both in 2017NH (20.2% on average) and 2017H (43.7% on average) compared to 2016NH and 2016H, respectively. Eight sources were resolved at each site from the PMF source apportionment including secondary nitrate, traffic, coal combustion, soil dust, road dust, sulfate, biomass/waste burning and industrial process. The results show that the reductions of industrial process, soil dust, and coal combustion were most effective among all sources at each site after the regional strategies implementation with the large reductions in potential source areas. The decrease of coal combustion in 2017NH were larger than 2017H at all sites while that of soil dust and industrial sources were the opposite. Insignificant reduction of coal combustion contribution at the suburban site in the heating period indicated that rural residential coal burning need further control. The industrial source control in the suburbs were least effective compared with other districts. Traffic was the largest contributer at each site and control of traffic emissions were more effective in 2017H than 2017NH. The local nature and increase of biomass/waste burning contributions emphasized the effect of fireworks and bio-fuel use in rural areas and incinerator emissions in urban districts. Secondary nitrate and sulfate were mainly impacted by the regional transport from southern adjacent areas and favorable meteorological conditions played an important part in the PM2.5 abatements of 2017H. Secondary nitrate became a more major role in the air pollution process because of the larger decrease of sulfate. Finally suggestions for future control are made in this study.
Collapse
Affiliation(s)
- Jingyu Tian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Tianqi Cai
- Institute of Electronic System Engineering, Beijing, 100854, China
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yue Yu
- Sino-Japan Friendship Centre for Environmental Protection, Beijing, 100029, China
| | - Kaining Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
6
|
Anand A, Yadav S, Phuleria HC. Chemical characteristics and oxidative potential of indoor and outdoor PM 2.5 in densely populated urban slums. ENVIRONMENTAL RESEARCH 2022; 212:113562. [PMID: 35623440 DOI: 10.1016/j.envres.2022.113562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A significant proportion of population in metropolitan cities in India live in slums which are highly dense and crowded informal housing settlements with poor environmental conditions including high exposure to air pollution. Recent studies report that toxicity is induced by oxidative processes, mediated by the water-soluble PM chemical components leading to reactive oxygen species production thereby causing inflammatory disorders. Hence, for the first time, this study assessed the chemical characteristics and oxidative potential (OP) of indoor and outdoor PM2.5 in two slums in Mumbai, India. Daily gravimetric PM2.5 was measured in ∼40 homes each in a low- and a high-traffic slum and analysed for 18 water-soluble elements and organic carbon (WSOC). Subsequently, OP was assessed through the Dithiothreitol (DTT) assay. Average WSOC was similar in indoor and outdoor environments while the water-soluble concentrations of total elements ranged 4.5-6.5 μg/m3 indoors and 6.4-19.2 μg/m3 outdoors, with S, Ca, K, Na and Zn being the most abundant elements. Spatial distributions of indoor concentrations were influenced by outdoor sources such as local traffic emissions for Cd, Fe, Al and Zn. The influence of outdoor-origin particles was enhanced in homes reporting high air exchange rates. OP was higher outdoors than indoors in both low-traffic slum (0.04-0.51 nmol min-1m-3 outdoors and 0.02-0.38 nmol min-1m-3 indoors) and high-traffic slum (0.03-1.06 nmol min-1m-3 outdoors and 0.04-0.77 nmol min-1m-3 indoors). Outdoor and indoor OP was also more influenced by outdoor road dust showing significant correlation with tracer elements Cu and Al (r ≥ 0.45; p < 0.05). Similar to OP, the non-carcinogenic health risk associated with indoor PM2.5 were also higher in high-traffic slum (Hazard Index, HI = 1.60) than in low-traffic slum (HI = 0.43). Overall, this study shows that the indoor PM2.5 and its chemical constituents in Mumbai slums are primarily of outdoor origin with higher toxicity and non-carcinogenic health risk in high-traffic slums.
Collapse
Affiliation(s)
- Abhay Anand
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India
| | - Suman Yadav
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India; Interdisciplinary Programme in Climate Studies, IIT Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Świetlik R, Trojanowska M. Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review. TOXICS 2022; 10:toxics10030124. [PMID: 35324749 PMCID: PMC8948661 DOI: 10.3390/toxics10030124] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
In recent years, studies of heavy metal air pollution have increasingly gone beyond determining total concentrations of individual toxic metals. Chemical fractionation of potentially toxic elements in airborne particles is becoming an important part of these studies. This review covers the articles that have been published over the last three decades. Attention was paid to the issue of atmospheric aerosol sampling, sample pretreatment, sequential extraction schemes and conditions of individual extractions. Geochemical forms of metals occurring in the air in urban areas were considered in detail. Based on the data sets from chemical fractionation of particulate matter samples by three sequential extraction procedures (SEPs)—Fernández Espinosa, BCR and Chester’s—the compilation of the chemical distribution patterns of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was prepared. The human health risk posed by these toxic and/or carcinogenic elements via inhalation of atmospheric particles was estimated for two categories of polluted urban areas: the commonly encountered pollution level and the high pollution level.
Collapse
|
8
|
Rajput JS, Trivedi MK. Determination and assessment of elemental concentration in the atmospheric particulate matter: a comprehensive review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:243. [PMID: 35243563 DOI: 10.1007/s10661-022-09833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The elemental concentrations of atmospheric particulate matter (PM) have a detrimental effect on human health in which some elemental species have carcinogenic nature. In India, significant variations have found in the practices adapted from sampling to analysis for the determination and assessment of the elemental concentration in PM. Therefore, Indian studies (2011-2020) on the related domain are summarized to impart consistency in the field and laboratory practices. Further, a comparative analysis with other countries has also been mentioned in the relevant sections to evaluate its likeness with Indian studies. To prepare this study, literature has been procured from reputed journals. Subsequently, each step from sampling to analysis has thoroughly discussed with quality assurance and control (QA/QC) compliance. In addition, a framework has been proposed that showed field and laboratory analysis in an organized manner. Consequently, this study will provide benefit to novice researcher and improve their understanding about the related subject. Also, it will assist other peoples/bodies in framing the necessary decisions to carry out this study.
Collapse
|
9
|
Mishra A, Pervez S, Candeias C, Verma M, Bano S, Dugga P, Verma SR, Tamrakar A, Shafi S, Pervez YF, Gupta V. Bioaccessiblity features of particulate bound toxic elements: Review of extraction approaches, concentrations and health risks. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zajusz-Zubek E, Korban Z. The use of multi-criteria method in the process of threat assessment to the environment. Sci Rep 2021; 11:18296. [PMID: 34521953 PMCID: PMC8440600 DOI: 10.1038/s41598-021-97939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
Measurements of the content of trace elements, including toxic and carcinogenic metals, in various fractions of particulate matter PM are an important element of environmental monitoring and research involving their impact on human health. The article presents the measurement results of atmospheric composition of suspended dust (PM10), respirable fraction (PM2.5) and submicron particulate matter (PM1) collected with the Dekati PM10 cascade impactor. Samples were collected in the vicinity of four working power plants (from 28 May to 23 September 2014) and four coking plants (from 4 May to 28 August 2015) in Upper Silesia, Poland. The qualitative and quantitative analysis of the solutions: arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb) and selenium (Se) obtained for individual fractions was performed by inductively coupled plasma mass spectrometry, using the apparatus ICP-MS. The research results were used to determine a synthetic assessment of the threat to the anthropogenic environment and for the preparation of the ranking of the measured points.
Collapse
Affiliation(s)
- Elwira Zajusz-Zubek
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 22B Konarskiego St., 44-100, Gliwice, Poland.
| | - Zygmunt Korban
- Department of Safety Engineering, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 2 Akademicka St., 44-100, Gliwice, Poland
| |
Collapse
|
11
|
Dahmardeh Behrooz R, Kaskaoutis DG, Grivas G, Mihalopoulos N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. CHEMOSPHERE 2021; 262:127835. [PMID: 32763581 DOI: 10.1016/j.chemosphere.2020.127835] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/26/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the bioaccessibility and health risks related to heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb, Zn and metalloid As) in airborne dust samples (TSP and PM2.5) in Zabol, Iran during the summer dust period, when peak concentration levels of PM are typically observed. High bioaccessibilities of carcinogenic metals in PM2.5 (i.e. 53.3%, 48.6% and 47.6% for Ni, Cr and As, respectively) were calculated. The carcinogenic and non-carcinogenic health risks were assessed for three exposure pathways (inhalation, ingestion and dermal contact), separately for children and adults. Non-carcinogenic inhalation risks were very high (Hazard Index: HI > 1) both for children and adults, while the carcinogenic risks were above the upper acceptable threshold of 10-4 for adults and marginally close (5.0-8.4 × 10-5) for children. High carcinogenic risks (>10-4) were found for the ingestion pathway both for children and adults, while HI values > 1 (8.2) were estimated for children. Carcinogenic and non-carcinogenic risk estimates for dermal contact were also above the limits considered acceptable, except for the carcinogenic risk for children (7.6 × 10-5). Higher non-carcinogenic and carcinogenic risks (integrated for all elements) were associated with the inhalation pathway in adults and children with the exception of carcinogenic risk for children, where the ingestion route remains the most important, while As was linked with the highest risks for nearly all exposure pathways. A comparative evaluation shows that health risks related with toxic elements in airborne particles in Sistan are among the highest reported in the world.
Collapse
Affiliation(s)
- Reza Dahmardeh Behrooz
- Department of Environmental Science, Faculty of Natural Resources, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| |
Collapse
|
12
|
Mangal A, Satsangi A, Lakhani A, Kumari KM. Characterization of ambient PM 1 at a suburban site of Agra: chemical composition, sources, health risk and potential cytotoxicity. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:621-642. [PMID: 33094390 DOI: 10.1007/s10653-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted at a University campus of Agra to determine concentrations of crustal and trace elements in submicron mode (PM1) particles to reveal sources and detrimental effects of PM1-bound metals (Cr, Cd, Mn, Zn, As, Co, Pb, Cu and Ni) in samples collected in the foggy (1 December 2016-17 January 2017) and non-foggy periods (1 April 2016-30 June 2016). Samples were collected twice a week on preweighed quartz fibre filters (QM-A 47 mm) for 24 h using Envirotech APM 577 (flow rate 10 l min-1). Mass concentration of PM1 was 135.0 ± 28.2 and 54.0 ± 18.5 µg/m3 during foggy and non-foggy period, respectively; crustal and trace elements were 13 and 4% during foggy and 11 and 3% in the non-foggy period. Source identification by PCA (principal component analysis) suggested that biomass burning and coal combustion was the prominent sources in foggy period followed by resuspended soil dust, industrial and vehicular emission, whereas in non-foggy period resuspended soil dust was dominant followed by biomass burning and coal combustion, industrial and vehicular emissions. In both episodes, Mn has the highest Hq (hazard quotient) value and Cr has the highest IlcR (Incremental Lifetime Cancer Risk) value for both adults and children. In vitro cytotoxicity impact on macrophage (J774) cells was also tested using MTT assay which revealed decreasing cell viability with increasing particle mass.
Collapse
Affiliation(s)
- Ankita Mangal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - Aparna Satsangi
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - K Maharaj Kumari
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India.
| |
Collapse
|
13
|
Ahmadipour F, Esmaeili Sari A, Bahramifar N. Characterization, concentration and risk assessment of airborne particles using car engine air filter (case study: Tehran metropolis). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2649-2663. [PMID: 31098950 DOI: 10.1007/s10653-019-00319-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric elements released into the atmosphere can enter the human body through inhalation, ingestion and dermal contact and are then deposited in the body. Trace elements have potential risks to human health. For this purpose, the particulate matter accumulated by car air filters (CAFs) was studied. The morphology and distribution of particle size were examined using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The concentration of elements in CAFs and CAF-estimated air for 30 elements in Tehran, Iran, was analyzed in winter and summer, from February to July 2017. Samples were determined by inductively coupled mass plasma spectrometry. The most abundantly detected elements in both CAFs and air in both seasons were Ca, Mg, Na and Fe. The shape of the particles was mostly irregular and spherical. Most of the particles were between 0.5 and 1.0 µm. The carcinogenic risks of inhalation exposure to Cr and Co in winter and summer were higher than the acceptable level (< 1 × 10-4) for children and adults. The carcinogenic risks of As and Cr in both seasons were higher than 1 × 10-4 for children and adults via dermal contact. Also, the carcinogenic risks of Cr in both seasons of ingestion exposure were higher than 1.00E-04 for children and adults. The integrated noncarcinogenic risks of all trace elements were higher than the safe level (= 1) for children and adults in both seasons.
Collapse
Affiliation(s)
- Fatemeh Ahmadipour
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Abbas Esmaeili Sari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Nader Bahramifar
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| |
Collapse
|
14
|
Jena S, Perwez A, Singh G. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2731-2747. [PMID: 31161408 DOI: 10.1007/s10653-019-00329-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Samples of PM2.5 were collected on PTFE filters at 11 monitoring stations in Dhanbad, India, from March, 2014, to February, 2015, for the quantification of 10 PM2.5-bound trace elements by using ICP-OES, source apportionment by using principal component analysis and health risks posed by PM2.5-bound trace elements by using health risk assessment model developed by US EPA. The average annual PM2.5 concentration (149 ± 66 µg/m3) exceeded the national ambient air quality standards by factor of 3.7, US EPA national ambient air quality standards by factor of 10 and WHO air quality guidelines by factor of 15. The sum total of average annual concentration of all PM2.5-bound trace elements was found to be 3.206 µg/m3 with maximum concentrations of Fe (61%), Zn (21%) and Pb (11%). Coal mining, coal combustion, vehicular emission, tyre and brake wear and re-suspension of road dust were identified as dominant sources of PM2.5-bound trace elements from the results of correlation and chemometric analysis. The significantly high HQ values posed by PM2.5-bound Co and Ni and intensification of HI values (15.7, 10.8 and 8.54 in mining area, transportation routes and institutional area, respectively) for multielemental exposure indicate high potential of non-carcinogenic health risk associated with inhalation exposure. The carcinogenic health risk due to multielemental exposure in mining area (2.27 × 10-4) and transportation routes (1.57 × 10-4) for adults were significantly higher than threshold value indicating the vulnerability of adults toward inhalation-induced carcinogenic risk posed by PM2.5-bound trace elements.
Collapse
Affiliation(s)
- Sridevi Jena
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India.
| | - Atahar Perwez
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India
| | - Gurdeep Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
15
|
Liu P, Zhang Y, Wu T, Shen Z, Xu H. Acid-extractable heavy metals in PM 2.5 over Xi'an, China: seasonal distribution and meteorological influence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34357-34367. [PMID: 31493079 DOI: 10.1007/s11356-019-06366-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
To investigate the acid-extractable heavy metals in fine particulate matter (PM2.5) over Xi'an, China, 24-h PM2.5 samples were collected every 3 days from December 2015 through November 2016. The bioavailable fraction, termed here the bioavailability index (BI), of PM2.5-bound metal (As, Ba, Cd, Co, Cu, Mn, Ni, Pb, Ti, V, and Zn) and potential influencing factors, including relative humidity, temperature, air pressure, wind speed, visibility, PM2.5, and SO2 concentrations, were assessed in this study. The annual average PM2.5 concentration was 50.6 ± 35.6 μg m-3, 1.5 times higher than the Chinese national secondary standard. Zn, Ti, and As were the most abundant elements of those analyzed in the PM2.5 samples, accounting for 72.1% of total quantity. The seasonal variations and enrichment factor analysis of heavy metals revealed that coal combustion in winter was a crucial source of Pb, Co, Cu, and Zn; and dust resuspension in spring contributed considerable Mn, Ti, and V. The acid-extractable fractions of the measured metals varied. Pb, Cu, Mn, and Zn exhibited relatively high acid-extractable concentrations and BI values. Pb was mostly in the acid-extractable fraction in PM2.5, with a mean BI value of 66.7%, the highest in summer (69.8%) and lowest in winter (63.7%). Moreover, the BIs of PM2.5-bound heavy metals were inversely related to temperature and wind speed, whereas positively correlated with relative humidity, SO2, and PM2.5 concentration in this study. This study assessed the seasonal distribution and meteorological influence of acid-extractable heavy metals, providing a deeper understanding of atmospheric heavy metal pollution in Xi'an, China.
Collapse
Affiliation(s)
- Pingping Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yiling Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tiantian Wu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| |
Collapse
|
16
|
Zajusz-Zubek E, Mainka A, Kaczmarek K. Dendrograms, heat maps and principal component analysis - the practical use of statistical methods for source apportionment of trace elements in PM10. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 58:163-170. [PMID: 31559907 DOI: 10.1080/10934529.2019.1670026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/21/2019] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
Dendrogram (DE), heat map (HM) and principal component analysis (PCA) methods were used in order to identify possible emission sources of As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in ambient PM10 collected in the surroundings of working power plants. Each statistical tool resulted in slightly different clusters. The best approximation of possible emission sources was received by the use of statistical analysis of trace-element concentrations combined with characterization of the sampling sites. In the study, PCA was indicated as the most useful statistical tool for source apportionment of trace elements in PM10. Major sources identified by PCA included: (1) coal combustion, (2) soil and road-dust resuspension, (3) the use of pesticides and (4) waste incineration.
Collapse
Affiliation(s)
- Elwira Zajusz-Zubek
- Department of Air Protection, Silesian University of Technology, Gliwice, Poland
| | - Anna Mainka
- Department of Air Protection, Silesian University of Technology, Gliwice, Poland
| | - Konrad Kaczmarek
- Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
17
|
Sah D, Verma PK, Kandikonda MK, Lakhani A. Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19749-19762. [PMID: 31089995 DOI: 10.1007/s11356-019-05144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
In the present study, the distribution and chemical fractionation of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in PM2.5 collected at Sikandarpur in Agra from September 2015 to February 2016 were carried out to evaluate their mobility potential, environmental, and human health risk through inhalation. Sequential extraction procedure was applied to partition the heavy metals into four fractions (soluble and exchangeable fraction (F1); carbonates, oxides, and reducible fraction (F2); bound to organic matter, oxidizable, and sulphidic fraction (F3); and residual fraction (F4)) in PM2.5 samples. The metals in each fraction were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Daily PM2.5 concentration ranged between 13 and 238 μg m-3 during the study period. For more than 92% of the days, the mass concentrations were greater than the National Ambient Air Quality Standard (NAAQS) set at 60 μg m-3. The total mass concentration of the eight metals was 3.3 μg m-3 that accounted for 2.5% of the PM2.5 mass concentration and followed the order Fe > Zn > Cu > Mn > Pb > Ni > Cd > Cr in dominance. The carcinogenic metals (Cd, Cr, Ni, and Pb) comprised 10% of the total metal determined. Almost all the metals had the highest proportion in the residual fraction (F4) except Ni, which had the highest proportion in the reducible fraction (F2). Chemical fractionation and contamination factor (CF) showed that Pb and Ni are readily mobilized and more bioavailable. Risk assessment code (RAC) showed that Cd, Cu, Mn, Ni, Pb, and Zn had medium environmental risk, while Cr and Fe had low risk. When the bioavailable (F1 + F2) concentrations were applied to calculate non-carcinogenic and carcinogenic risk, the results showed that the value of hazard index (HI) for toxic metals was 1.7 for both children and adults through inhalation. The integrated carcinogenic risk was 1.8 × 10-6 for children and 7.3 × 10-6 for adults, with both values being higher than the precautionary criterion (1 × 10-6). Enrichment factor (EF) calculations showed that Cd, Pb, Zn, and Ni were enriched being contributed by anthropogenic activities carried out in the industrial sectors of the city.
Collapse
Affiliation(s)
- Dinesh Sah
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India
| | - Puneet Kumar Verma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India
| | - Maharaj Kumari Kandikonda
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra (UP), Agra, India.
| |
Collapse
|
18
|
Yadav S, Kumbhar N, Jan R, Roy R, Satsangi PG. Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1163-1186. [PMID: 30302579 DOI: 10.1007/s10653-018-0199-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson-Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.
Collapse
Affiliation(s)
- Suman Yadav
- Department of Chemistry, Savitribai Phule Pune University (Formerly Pune University), Pune, 411007, India
- IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Navanath Kumbhar
- Department of Chemistry, Savitribai Phule Pune University (Formerly Pune University), Pune, 411007, India
| | - Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly Pune University), Pune, 411007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly Pune University), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly Pune University), Pune, 411007, India.
| |
Collapse
|
19
|
Sah D, Verma PK, Kumari KM, Lakhani A. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1445-1458. [PMID: 30539333 DOI: 10.1007/s10653-018-0223-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m-3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m-3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL-1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL-1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10-6).
Collapse
Affiliation(s)
- Dinesh Sah
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India
| | - Puneet Kumar Verma
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India
| | - K Maharaj Kumari
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India
| | - Anita Lakhani
- Department of Chemistry, Dayalbagh Educational Institute, Agra, U.P., 282005, India.
| |
Collapse
|
20
|
Nocoń K, Rogula-Kozłowska W. Speciation of arsenic: a case study of PM1 in Zabrze. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0456-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
González LT, Longoria-Rodríguez FE, Sánchez-Domínguez M, Leyva-Porras C, Acuña-Askar K, Kharissov BI, Arizpe-Zapata A, Alfaro-Barbosa JM. Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J Environ Sci (China) 2018; 74:32-49. [PMID: 30340673 DOI: 10.1016/j.jes.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
During the winter period (January-March 2016), the total suspended particles (TSP) and particulate matter smaller than 2.5μm (PM2.5) were characterized by the application of various analytical techniques in four zones of the Metropolitan Area of Monterrey in Mexico. To evaluate the seasonal variation of some elements in the particulate matter, the results of this study were compared with those obtained during the summer season (July-September 2015). The speciation of the C1s signal by X-ray photoelectron spectroscopy revealed the contribution of aromatic and aliphatic hydrocarbons as the main components in both seasons. Conversely, carboxylic groups associated with biogenic emissions were detected only in winter. The percentages of SO42- ions were lower in winter, possibly caused by the decrease in the solar radiation, and relative humidity recorded. The results of the ICP analysis revealed that Fe, Zn and Cu were the most abundant metals in both TSP and PM2.5 in the two seasons. There were significant seasonal variations for concentrations of As, Ni and Zn in the urban area and for Fe, As, Cd, Ni and Zn in the industrial zone. This was attributed to the greater burning of fuels as well as to an increase in vehicular traffic, the effect of thermal inversion and changes in some meteorological parameters. The results of the sequential microanalysis by Raman spectroscopy and SEM/EDS allowed observation of deposits of carbonaceous material on the particles and to perform the speciation of particles rich in Fe and Pb, which helped infer their possible emission sources.
Collapse
Affiliation(s)
- Lucy T González
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Química Analítica Ambiental, Código Postal 64570, Monterrey, N.L., Mexico.
| | - Francisco E Longoria-Rodríguez
- Centro de Investigación en Materiales Avanzados SC, Unidad Monterrey, Alianza Norte 202, Código Postal 66628, Apodaca, Nuevo León, Mexico
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados SC, Unidad Monterrey, Alianza Norte 202, Código Postal 66628, Apodaca, Nuevo León, Mexico
| | - Cesar Leyva-Porras
- Centro de Investigación en Materiales Avanzados SC, Miguel de Cervantes # 120, Código Postal 31109 Chihuahua, Chih., Mexico
| | - Karim Acuña-Askar
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Laboratorio de Biorremediación Ambiental, Código Postal 64460, Monterrey, N.L., Mexico
| | - Boris I Kharissov
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Química Analítica Ambiental, Código Postal 64570, Monterrey, N.L., Mexico
| | - Alejandro Arizpe-Zapata
- Centro de Investigación en Materiales Avanzados SC, Unidad Monterrey, Alianza Norte 202, Código Postal 66628, Apodaca, Nuevo León, Mexico
| | - Juan M Alfaro-Barbosa
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Química Analítica Ambiental, Código Postal 64570, Monterrey, N.L., Mexico
| |
Collapse
|
22
|
Wang H, Qiao B, Zhang L, Yang F, Jiang X. Characteristics and sources of trace elements in PM 2.5 in two megacities in Sichuan Basin of southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1577-1586. [PMID: 30077406 DOI: 10.1016/j.envpol.2018.07.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
To characterize major trace elements in PM2.5 and associated sources in two megacities, Chengdu (CD) and Chongqing (CQ), in Sichuan Basin of southwest China, daily PM2.5 samples were collected at one urban site in each city from October 2014 to July 2015 and were analyzed for their contents of thirteen trace elements including four crustal elements (Al, Ca, Fe, and Ti), eight trace metals (K, Cr, Zn, Cu, Mn, Pb, Ni, and V), and As. Multiple approaches including correlation analysis, enrichment factor, principal component analysis, and conditional probability function (CPF) were applied to identify potential sources of these elements. Most of the measured trace elements in Sichuan Basin were found to have lower concentrations than in the other regions of China. K and Fe were the most abundant elements at CD with an annual mean concentrations of 720 ± 357 and 456 ± 248 ng m-3, accounting for 34.6% and 21.9% of the total analyzed trace elements, respectively. Ca presented the highest concentration among all of the elements at CQ with annual mean of 824 ± 633 ng m-3 (29.1% of the total). Crustal elements had the highest concentrations in spring while heavy metals had distinct seasonal variations typically with the highest concentrations in winter and the lowest in summer. Ti and Al were identified to be primarily from soil while most of the analyzed heavy metals (Cr, Mn, Cu, Zn, Pb, Ni) and As were from anthropogenic sources associated with coal combustion, industrial emission from glassmaking production and iron/steel manufacturing, and non-exhaust vehicle emission.
Collapse
Affiliation(s)
- Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Baoqing Qiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
23
|
Bhuyan P, Deka P, Prakash A, Balachandran S, Hoque RR. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:997-1010. [PMID: 29665640 DOI: 10.1016/j.envpol.2017.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Aerosol samples (as PM10, n = 250) were collected from three rural/remote receptor locations in the mid Brahmaputra plain region and were chemically characterized for metals (Al, Fe, Co, Cu, Cr, Cd, Mn, Ni, Pb), ions (Ca2+, Mg2+, Na+, K+, NH4+, F-, Cl-, NO3-, SO42-), and carbon. Vital ratios like NO3-/SO42-, EC/OC, K+/EC, K+/OC, enrichment factors and inter-species correlations were exploited to appreciate possible sources of aerosol. These empirical analyses pointed towards anthropogenic contributions of aerosol, particularly from biomass burning, vehicular emission, and road dust. The chemically characterized concentration data were subsequently fed into two receptor models viz. Principal Component Analysis-Multiple Linear Regression (PCA-MLR) and Chemical Mass Balance (CMB) for apportionment of sources of aerosol. The PCA-MLR estimates identified that the combustion sources together accounted for ∼42% of aerosol and the contribution of secondary formation to be 24%. Road and crustal dusts have been well apportioned by PCA-MLR, which together accounts for ∼26% of the aerosol. The CMB model estimates explained that the combustion sources taken together contributed ∼47% to the aerosol, which includes biomass burning (27%), vehicular emission (13%), coal (1%), kerosene (4%), and petroleum refining (2%). Other major sources that were apportioned were road dust (15%), crustal dust (26%), and construction dust (6%). There are inherent limitations in the source strength estimations because of uncertainty present in the source emission profiles that have been applied to the remote location of India. However, both the models (PCA-MLR and CMB) estimated the contribution of combustion sources to 42 and 47% respectively, which is comparable.
Collapse
Affiliation(s)
- Pranamika Bhuyan
- Department of Environmental Science, Tezpur University, Tezpur 784028, India
| | - Pratibha Deka
- Department of Environmental Science, Tezpur University, Tezpur 784028, India
| | - Amit Prakash
- Department of Environmental Science, Tezpur University, Tezpur 784028, India
| | - S Balachandran
- Department of Environmental Studies, Visva Bharati, Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, India; Department of Public Health Sciences, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
24
|
Jan R, Roy R, Yadav S, Satsangi PG. Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:255-270. [PMID: 27889850 DOI: 10.1007/s10653-016-9900-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The present study deals with the assessment of sequential extraction of particulate matter (PM)-bound metals and the potential health risks associated with them in a growing metropolitan city (Pune) of India. The average mass concentration of both PM2.5-10 and PM2.5 exceeded the National Ambient Air Quality Standards. Significant seasonal variation in mass concentration was found for both size fractions of PM with higher values in winter season and lower in monsoon. Chemical species of the studied trace metals in PM exhibited significant differences, due to difference in sources of pollution. Metals such as Cd, Pb, and Cr in both size fractions and Zn and Co in fine fraction were more efficiently extracted in mobile fractions showing their mobile nature while Ni and Fe showed reduced mobility. Fe showed the highest concentrations among all the analyzed elements in both coarse (PM2.5-10) and fine (PM2.5) PM, while Cd showed least concentration in both size fractions. PCA identified industrial emissions, vehicular activity, coal combustion, diesel exhaust, waste incineration, electronic waste processing, constructional activities, soil, and road dust as probable contributors responsible for the metallic fraction of PM. All the metals showed varying contamination in PM samples. The contamination was higher for fine particles than coarse ones. The average global contamination factor was found to be 27.0-34.3 in coarse and fine PM, respectively. The hazard quotient (HQ) estimated for Cd, Co, and Ni (both total and easily accessible concentrations) exceeded the safe level (HQ = 1), indicating that these metals would result in non-carcinogenic health effects to the exposed population. The HQ ranged from 9.1 × 10-5 for Cu (coarse) to 8.3 for Ni (fine) PM. The cancer risk for Cd, Ni, and Cr in both sized PM were much higher than the acceptable limits of USEPA.
Collapse
Affiliation(s)
- Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India
| | - Suman Yadav
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411 007, India.
| |
Collapse
|
25
|
Sah D, Verma PK, Kumari KM, Lakhani A. Chemical partitioning of fine particle-bound As, Cd, Cr, Ni, Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal Toxicol 2017; 29:483-493. [PMID: 29192522 DOI: 10.1080/08958378.2017.1406563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bioavailability and human health risks of As, Pb, Ni, Co, Cr and Cd in fine particulate matter (PM2.5) at an urban site on a National highway in Agra, India were investigated. Inductively coupled plasma-optical emission spectrometer was used for metal analysis in sequentially extracted samples to ascertain the highly mobile, reducible, bioavailable and immobile fractions of the metals. Cancer risk resulting from inhalation, dermal and ingestion exposure to each metal in these fractions was calculated according to US EPA models. The average mass concentration of PM2.5 was 87.16 ± 62.51 μg/m3. Cr, Ni and Pb were the most abundant metals. The results showed that Pb and Cr were higher in the mobile fraction. Cd and Co had high bioavailability. Ingestion is the major exposure pathway for all heavy metals except Cr to infants, children and adults followed by inhalation and dermal contact. The cumulative risk for Cr(VI) due to dermal and inhalation routes exceed the maximum acceptable limit for children of age 1-7 years, 8-15 years and adults when total concentration is considered, but the estimated risks are within the acceptable limit when the bioavailable, water soluble and mobile fraction are taken into account. Hence the study shows that children and adults living in the vicinity of this site are more susceptible, hence more attention should be paid to protect them from pollution hazards. The study indicates the importance of metal speciation in assessing associated human health risks.
Collapse
Affiliation(s)
- Dinesh Sah
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| | - Puneet Kumar Verma
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| | - K Maharaj Kumari
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| | - Anita Lakhani
- a Department of Chemistry , Dayalbagh Educational Institute , Agra , India
| |
Collapse
|
26
|
Zajusz-Zubek E, Radko T, Mainka A. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:389. [PMID: 28699118 PMCID: PMC5506208 DOI: 10.1007/s10661-017-6117-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI < 1). It has been estimated that due to the inhalation exposure to carcinogenic elements, i.e., As, Cd, Co, Cr, Ni and Pb, contained in the most mobile fractions (F1 + F2) of PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.
Collapse
Affiliation(s)
- Elwira Zajusz-Zubek
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Tomasz Radko
- Institute for Chemical Processing of Coal, 1 Zamkowa St., 41-803 Zabrze, Poland
| | - Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| |
Collapse
|
27
|
Etchie TO, Sivanesan S, Adewuyi GO, Krishnamurthi K, Rao PS, Etchie AT, Pillarisetti A, Arora NK, Smith KR. The health burden and economic costs averted by ambient PM 2.5 pollution reductions in Nagpur, India. ENVIRONMENT INTERNATIONAL 2017; 102:145-156. [PMID: 28291535 DOI: 10.1016/j.envint.2017.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 05/13/2023]
Abstract
National estimates of the health and economic burdens of exposure to ambient fine particulate matter (PM2.5) in India reveal substantial impacts. This information, often lacking at the local level, can justify and drive mitigation interventions. Here, we assess the health and economic gains resulting from attainment of WHO guidelines for PM2.5 concentrations - including interim target 2 (IT-2), interim target 3 (IT-3), and the WHO air quality guideline (AQG) - in Nagpur district to inform policy decision making for mitigation. We conducted a detailed assessment of concentrations of PM2.5 in 9 areas, covering urban, peri-urban and rural environments, from February 2013 to June 2014. We used a combination of hazard and survival analyses based on the life table method to calculate attributed annual number of premature deaths and disability-adjusted life years (DALYs) for five health outcomes linked to PM2.5 exposure: acute lower respiratory infection for children <5years, ischemic heart disease, chronic obstructive pulmonary disease, stroke and lung cancer in adults ≥25years. We used GBD 2013 data on deaths and DALYs for these diseases. We calculated averted deaths, DALYs and economic loss resulting from planned reductions in average PM2.5 concentration from current level to IT-2, IT-3 and AQG by the years 2023, 2033 and 2043, respectively. The economic cost for premature mortality was estimated as the product of attributed deaths and value of statistical life for India, while morbidity was assumed to be 10% of the mortality cost. The annual average PM2.5 concentration in Nagpur district is 34±17μgm-3 and results in 3.3 (95% confidence interval [CI]: 2.6, 4.2) thousand premature deaths and 91 (95% CI: 68, 116) thousand DALYs in 2013 with economic loss of USD 2.2 (95% CI: 1.7, 2.8) billion in that year. It is estimated that interventions that achieve IT-2, IT-3 and AQG by 2023, 2033 and 2043, would avert, respectively, 15, 30 and 36%, of the attributed health and economic loss in those years, translating into an impressively large health and economic gain. To achieve this, we recommend an exposure-integrated source reduction approach.
Collapse
Affiliation(s)
- Tunde O Etchie
- The International Clinical Epidemiology Network (INCLEN) Trust, New Delhi, India
| | - Saravanadevi Sivanesan
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | - Kannan Krishnamurthi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | - Padma S Rao
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | - Ajay Pillarisetti
- School of Public Health, University of California, Berkeley, California, USA
| | - Narendra K Arora
- The International Clinical Epidemiology Network (INCLEN) Trust, New Delhi, India.
| | - Kirk R Smith
- School of Public Health, University of California, Berkeley, California, USA.
| |
Collapse
|
28
|
Singh N, Murari V, Kumar M, Barman SC, Banerjee T. Fine particulates over South Asia: Review and meta-analysis of PM 2.5 source apportionment through receptor model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:121-136. [PMID: 28063711 DOI: 10.1016/j.envpol.2016.12.071] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Fine particulates (PM2.5) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM2.5>100 μgm-3, n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found single dominating source over southern part while over Bangladesh, both vehicular, biomass burning and industrial sources were significant.
Collapse
Affiliation(s)
- Nandita Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Vishnu Murari
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Manish Kumar
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - S C Barman
- Environmental Monitoring Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Tirthankar Banerjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
29
|
Yan Z, Wang J, Li J, Jiang N, Zhang R, Yang W, Yao W, Wu W. Oxidative stress and endocytosis are involved in upregulation of interleukin-8 expression in airway cells exposed to PM2.5. ENVIRONMENTAL TOXICOLOGY 2016; 31:1869-1878. [PMID: 26303504 DOI: 10.1002/tox.22188] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Inhaled PM2.5 (particulate matter with an aerodynamic diameter of 2.5 μm or less) can induce lung inflammation through released inflammatory mediators from airway cells, such as interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α). However, the mechanisms underlying PM2.5-induced IL-8 gene expression have not been fully characterized. BEAS-2B cells (a human bronchial epithelial cell line) and THP-1 cells (a human macrophage-like cell line) were used as the in vitro models to investigate the underlying mechanism in this study. IL-8 expression was increased in the cells treated with PM2.5 in a dose-dependent manner. The water-soluble and insoluble fractions of PM2.5 suspension were both shown to induce IL-8 expression. PM2.5 exposure could obviously induce ROS (reactive oxygen species) generation, indicative of oxidative stress. Pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) potently inhibited PM2.5-induced IL-8 expression. Employment of the transition metal chelators including TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) or DFO (desferrioxamine) inhibited IL-8 expression induced by PM2.5 by over 20% in BEAS-2B cells, but had minimal effect in THP-1 cells. Pretreatment with the endocytosis inhibitor CytD markedly blocked IL-8 expression induced by PM2.5 in both BEAS-2B and THP-1 cells. In summary, exposure to PM2.5 induced IL-8 gene expression through oxidative stress induction and endocytosis in airway cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1869-1878, 2016.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jia Wang
- Department of Chemistry, Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Juan Li
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Nan Jiang
- Department of Chemistry, Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiqin Zhang
- Department of Chemistry, Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Weichao Yang
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Industrial Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Yadav S, Jan R, Roy R, Satsangi PG. Role of metals in free radical generation and genotoxicity induced by airborne particulate matter (PM 2.5) from Pune (India). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23854-23866. [PMID: 27628702 DOI: 10.1007/s11356-016-7494-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
In the present study, metal-facilitated free radical generation in particulate matter (PM) and its association with deoxyribonucleic acid (DNA) damage were studied. The examined data showed that the concentration of fine PM in Pune exhibited seasonal variations. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to examine the metal composition, which showed the presence of metals such as Cu, Zn, Mn, Fe, Co, Cr, Pb, Cd, and Ni. Fe metal was present in the highest concentrations in both the seasons, followed by Zn. The scanning electron microscopy-energy-dispersive spectrometer (SEM-EDS) results also demonstrated that the fine PM particles deposited in summer samples were less than those of winter samples, suggesting that the PM load in winter was higher as compared to that in summer. Elemental mapping of these particles substantiates deposition of metals as Fe, Zn, etc. on particles. The electron paramagnetic species (EPR) technique was utilized for free radical detection, and plasmid DNA assay was utilized to study the genotoxicity of ambient fine PM. Obtained g values show the presence of radicals in PM samples of Pune. PM contains the C-centered radical with a vicinal oxygen atom (g = 2.003). In addition to this, the g value for Fe was also observed. Therefore, we intend that the radicals related with fine PM comprise metal-mediated radicals and produce DNA damage. The plasmid DNA assay results indicated that the TM50 values (toxic mass of PM causing 50 % of plasmid DNA damage) of PM exhibited seasonal variations with higher TM50 values for summer and lower TM50 values during winter.
Collapse
Affiliation(s)
- Suman Yadav
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411 007, India
| | - Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411 007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411 007, India
| | | |
Collapse
|
31
|
Ogundele LT, Owoade OK, Olise FS, Hopke PK. Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:574. [PMID: 27645143 DOI: 10.1007/s10661-016-5585-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/07/2016] [Indexed: 05/22/2023]
Abstract
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5-10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m(3) for PM2.5 and 331.36, 190.01, and 184.60 μg/m(3) for PM2.5-10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5-10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5-10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.
Collapse
Affiliation(s)
- Lasun T Ogundele
- Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Oyediran K Owoade
- Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Felix S Olise
- Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria.
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699-5808, USA
| |
Collapse
|
32
|
Pant P, Guttikunda SK, Peltier RE. Exposure to particulate matter in India: A synthesis of findings and future directions. ENVIRONMENTAL RESEARCH 2016; 147:480-496. [PMID: 26974362 DOI: 10.1016/j.envres.2016.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail.
Collapse
Affiliation(s)
- Pallavi Pant
- Department of Environmental Health Sciences, University of Massachusetts, Amherst MA 01003, USA
| | - Sarath K Guttikunda
- Institute of Climate Studies, Indian Institute of Technology, Bombay, Mumbai, India; Division of Atmospheric Sciences, Desert Research Institute, 225 Raggio Parkway, Reno, NV 89512, USA
| | - Richard E Peltier
- Department of Environmental Health Sciences, University of Massachusetts, Amherst MA 01003, USA.
| |
Collapse
|
33
|
Particle Bound Metals at Major Intersections in an Urban Location and Source Identification Through Use of Metal Markers. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2016. [DOI: 10.1007/s40010-016-0268-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Li Y, Zhang Z, Liu H, Zhou H, Fan Z, Lin M, Wu D, Xia B. Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:353-362. [PMID: 26048341 DOI: 10.1007/s10653-015-9722-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m(-3) during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m(-3) in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.
Collapse
Affiliation(s)
- Youping Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| | - Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Huifang Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Hong Zhou
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Zhongyu Fan
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Mang Lin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dalei Wu
- Center for Environmental Economics and Policy Research, Guangdong Academy of Social Science, Guangzhou, 510610, China
| | - Beicheng Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13085-103. [PMID: 26501310 PMCID: PMC4627018 DOI: 10.3390/ijerph121013085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 11/26/2022]
Abstract
This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.
Collapse
|
36
|
Mainka A, Zajusz-Zubek E, Kaczmarek K. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7990-8008. [PMID: 26184269 PMCID: PMC4515705 DOI: 10.3390/ijerph120707990] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
Abstract
Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children’s health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children’s exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%).
Collapse
Affiliation(s)
- Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., Gliwice 44-100, Poland.
| | - Elwira Zajusz-Zubek
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., Gliwice 44-100, Poland.
| | - Konrad Kaczmarek
- Institute of Mathematics, Silesian University of Technology, 23 Kaszubska St., Gliwice 44-100, Poland.
| |
Collapse
|