1
|
Asomaku SO. Quality assessment of groundwater sourced from nearby abandoned landfills from Industrial City in Nigeria: Water pollution indices approach. HYDRORESEARCH 2023. [DOI: 10.1016/j.hydres.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Abstract
Landfills have been considered the most convenient approach for dealing with waste from time immemorial, even though some have led to disasters of catastrophic proportions. Moreover, recent findings by the International Panel on Climate Change (IPCC) suggest that the decomposing fraction of landfill waste that generates greenhouse gases (GHGs) may not be adequately accounted for and could become a critical issue in our effort to restrict atmospheric temperature increases to 1.5 °C above pre-industrial levels. (According to the IPCC, the maximum atmospheric temperature rise is a factor of cumulative net CO2 emissions as well as net non-CO2 radiative forcing. These anthropogenic forcing agents include methane, nitrous oxide and other trace gases from landfill sites. In that sense, landfills can tip the balance from 1.5 towards 2 degrees of warming). This paper draws on data from a number of countries for review and is a timely reminder that society needs to develop a more environmentally and socially sensitive set of methods that could ultimately replace landfills. The paper first examines problems connected with landfills and evaluates alternatives such as incineration, biomass burning and mechanical biological treatment, which generally present their own problems. The paper then considers the range of materials conventionally dispatched to landfill, dealing with them in the context of a zero-waste philosophy. The conclusions propose more disciplined waste management to embrace collective accountability, wherein those who create the waste—chiefly, households and businesses—would be expected to deal with it responsibly. With attitudinal changes and education, supported by regulatory measures, it should be possible to reach the long-term objective of zero waste and the retirement of the traditional landfill.
Collapse
|
3
|
Soumahoro NS, Kouassi NLB, Yao KM, Kwa-Koffi EK, Kouassi AM, Trokourey A. Impact of municipal solid waste dumpsites on trace metal contamination levels in the surrounding area: a case study in West Africa, Abidjan, Cote d'Ivoire. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30425-30435. [PMID: 33891237 DOI: 10.1007/s11356-021-13987-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The impact of uncontrolled municipal dumping sites on metal contamination in the surrounding waters, sediments, and soils are of great concern in many developing countries. Total concentrations of trace metals Cd, Zn, Cu, Pb, Ni, and Co were measured in 33 sediments collected in the vicinity of the Akouedo dumpsite (Abidjan, Cote d'Ivoire) and in a baseline station. The Cu, Zn, Cd, and Pb concentrations in surface sediments around the dumpsite were at least three times higher than those at the reference station, suggesting that the Akouedo dumping site is a significant contamination source of these metals to the surrounding sediments. The extent of contamination affects sediment as deep as 100 cm. Sediment pH and total organic carbon content control the distribution of Cu, Zn, and Cd in subsurface sediments. Significant Cd, Zn, and Cu enrichments were measured at the dumpsite and its surrounding environment. Zn concentrations in the sediments might cause high ecological risks at 46% of the samples based on the sediment quality guidelines (SQGs). Single and sequential extraction results showed a low mobility rate of Cd, Cu, Pb, and Ni from sediments around the dumpsite. However, the results suggest that the high total metal concentrations in the dumpsite sediments have resulted in a significant metal load in the surrounding environment.
Collapse
Affiliation(s)
- Naminata Sangaré Soumahoro
- UFR des Sciences des Structures de la Matière et Technologies, Laboratoire de Constitution et Réaction de la Matière, Université Félix Houphouët Boigny d'Abidjan, B.P 582, Abidjan, 22, Côte d'Ivoire.
- Département Environnement, Centre de Recherches Océanologiques (CRO), 22 Rue des Pêcheurs, BP V18, Abidjan, Côte d'Ivoire.
| | - N'guessan Louis Berenger Kouassi
- UFR Sciences Biologiques, Département de Mathématiques Physique Chimie, Université Péléforo Gon Coulibaly de Korhogo, BP 1328, Korhogo, Côte d'Ivoire
| | - Koffi Marcellin Yao
- Département Environnement, Centre de Recherches Océanologiques (CRO), 22 Rue des Pêcheurs, BP V18, Abidjan, Côte d'Ivoire
| | - Edith Kouassi Kwa-Koffi
- UFR des Sciences des Structures de la Matière et Technologies, Laboratoire de Constitution et Réaction de la Matière, Université Félix Houphouët Boigny d'Abidjan, B.P 582, Abidjan, 22, Côte d'Ivoire
| | - Aka Marcel Kouassi
- Département Environnement, Centre de Recherches Océanologiques (CRO), 22 Rue des Pêcheurs, BP V18, Abidjan, Côte d'Ivoire
| | - Albert Trokourey
- UFR des Sciences des Structures de la Matière et Technologies, Laboratoire de Constitution et Réaction de la Matière, Université Félix Houphouët Boigny d'Abidjan, B.P 582, Abidjan, 22, Côte d'Ivoire
| |
Collapse
|
4
|
Knopek T, Dabrowska D. The Use of the Contamination Index and the LWPI Index to Assess the Quality of Groundwater in the Area of a Municipal Waste Landfill. TOXICS 2021; 9:toxics9030066. [PMID: 33803670 PMCID: PMC8002868 DOI: 10.3390/toxics9030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
Environmental degradation caused by the migration of pollutants from landfills is one of the biggest problems for urban areas. Systematic monitoring of groundwater in the vicinity of waste dumps allows for an assessment of the degree of risk to the soil and water environment. In this paper, spatiotemporal variation of groundwater pollution near a municipal landfill in Sosnowiec (southern Poland) was investigated. For this purpose, the monitoring results of five physicochemical indicators from 2014–2019 were used. This study presents an example of the application of the Landfill Water Pollution Index (LWPI) and the Cd Contamination Index. The obtained results indicated that the tested waters were negatively influenced by municipal landfills, especially in the southern part (piezometers P8 and P10). The values of the Contamination Index even reached a value equal of about 1400, while the values of the LWPI index reached 305. Significantly lower values of both indicators were obtained using the results of monitoring studies for other piezometers located upstream from the landfill but belonging to the observation network of a neighboring facility. The indices used permit a determination of the level of groundwater contamination from the described landfill and can be used in similar research areas.
Collapse
|
5
|
Przydatek G. Using advanced statistical tools to assess the impact of a small landfill site on the aquatic environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:71. [PMID: 33469715 PMCID: PMC7815553 DOI: 10.1007/s10661-021-08850-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/05/2021] [Indexed: 06/05/2023]
Abstract
The aim of the study was to assess the impact of a small municipal landfill on the aquatic environment over 9 years, using advanced statistical tools. The results of the study of surface, ground- and leachate waters from 2008 to 2016 were subjected to detailed statistical analysis based on 15 physicochemical indicators. Factor analysis accounted for the requirements of the WHO, the European Union and the nation of Poland using 8 statistical analytical methods. The analysis of leachate contamination from the landfill site with the use of advanced statistical tools revealed its interaction with groundwater. The assessment was based on increased and statistically significant values and correlations of temperature, Zn and N-NO3 between leachate and groundwater, factors demonstrating the negative impact of the landfill. In the case of Zn, there was also a correlation between the tested waters below the landfill. The increased PAH values in the examined surface and ground waters were not a consequence of waste disposal. However, the deterioration of the chemical state of groundwater in the vicinity of the landfill could result from a certain dysfunction of the facility's infrastructure after operating for more than 20 years.
Collapse
Affiliation(s)
- Grzegorz Przydatek
- Engineering Institute, State University of Applied Sciences in Nowy Sącz, Zamenhofa 1a street, 33-300, Nowy Sacz, Poland.
| |
Collapse
|
6
|
Kumari P, Maiti SK. Metal(loid) contamination in water, sediment, epilithic periphyton and fish in three interconnected ecosystems and health risk assessment through intake of fish cooked in Indian style. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41914-41927. [PMID: 32705555 DOI: 10.1007/s11356-020-10023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Samples of water, sediment and epilithic periphyton (EP) were collected from a lake (Dimna, DL), an intermediate canal (IC), and a river (Subarnarekha River, SR) to compare the pollution status of an urban ecosystem, and the concentrations of metal(loid) s were determined. Water characteristics were analysed by the water quality index (WQI). Sediment pollution was assessed using the ecological risk index (ERI). Accumulation of metal(loid) s in EP was determined by using bioaccumulation factor (BAF) and biota-sediment accumulation factor (BSAF). The result showed that the DL was least polluted (WQI = 30.39) and SR (WQI = 90.13) was the most polluted ecosystem. Sediment analysis revealed that Ni, Cr and Cd are the significant pollutants, especially in SR. The THQ value for fish dishes cooked in Indian style was found higher than that of raw fish, suggesting calculations considering the cooking process can provide better results. Health risk assessment shows that people inhabiting DL are vulnerable to Cr and Cu exposure, whereas people inhabiting IC and SR are susceptible to As and Co exposure due to the consumption of cooked fish. Moreover, for a developing country like India, it is important to upgrade the assessment methods and include regular monitoring of interconnecting ecosystems for the safeguard of human and ecological health.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India.
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
7
|
Najafi Saleh H, Valipoor S, Zarei A, Yousefi M, Baghal Asghari F, Mohammadi AA, Amiri F, Ghalehaskar S, Mousavi Khaneghah A. Assessment of groundwater quality around municipal solid waste landfill by using Water Quality Index for groundwater resources and multivariate statistical technique: a case study of the landfill site, Qaem Shahr City, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1305-1319. [PMID: 31564015 DOI: 10.1007/s10653-019-00417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/06/2019] [Indexed: 05/24/2023]
Abstract
Groundwater is a precious natural water resource which can be considered as an available and safe source of water for domestic uses. In some cities in northern Iran, groundwater is being polluted due to various human activities. In this regard, the located municipal solid waste landfills close to these areas without the requested controls regarding the landfill leachate and gas emission are among the major sources of environmental pollution, which are deteriorating groundwater quality around landfill sites. In this context, the current study was aimed to assess the quality of collected groundwater samples around a landfill site using the modified Water Quality Index for groundwater resources (WQIG). Also, the water quality map has been prepared by using WQIG in GIS environment. Therefore, thirty-three groundwater samples were collected and analyzed around 11 water wells close to the landfill site. Variety of physicochemical parameters including nitrate (NO3), fecal coliform, sodium absorption ratio (SAR), electrical conductivity, biological oxygen demand (BOD5), phosphate (PO4), total dissolved solids, dissolved oxygen, pH were assessed in groundwater samples based on recommended standard methods by American Public Health Association (APHA). Geostatistics analysis including Kriging, semi-variogram, and variogram methods also was used to evaluate the spatial variations in the variables and to provide the necessary data for further interpolation. According to the results of WQIG, most of the groundwater wells (98.85%) are polluted due to the existing of the landfill site in the investigated area. Generally speaking, based on the WQIG the water samples were defined as not suitable for drinking applications. Also, the high concentrations of nitrate and hardness in the downstream wells (W1-W11) of the landfill were demonstrated by the results of Kriging assay which can be correlated with the penetration of leachate into these wells. Considering the SAR results, all wells in the studied area are classified as (C3S1) that means the groundwater of this area is suitable for agricultural approaches. Moreover, the reduction in the water quality from the south to the north and northeast was demonstrated by the results of spatial dispersion. Evaluation of the changes in water quality near landfill sites showed that 2149.56 m2 of total area had a relatively poor potential for the region's groundwater recharge.
Collapse
Affiliation(s)
- Hossein Najafi Saleh
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sima Valipoor
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Asma Zarei
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Baghal Asghari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Fazzel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Sahar Ghalehaskar
- Instructor of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, Campinas, São Paulo, CEP: 13083-862, Brazil.
| |
Collapse
|
8
|
Tenodi S, Krčmar D, Agbaba J, Zrnić K, Radenović M, Ubavin D, Dalmacija B. Assessment of the environmental impact of sanitary and unsanitary parts of a municipal solid waste landfill. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110019. [PMID: 31929060 DOI: 10.1016/j.jenvman.2019.110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Only seven regional MSWLF in Serbia are considered sanitary, while about 3500 landfills operate without proper pollution control. This paper presents a unique opportunity to evaluate the impact of a closed landfill, and a new sanitary landfill, which are located next to each other. The following methodologies for the landfill impact assessment were applied, based on data from 2012 to 2017: Landfill water pollution index (LWPI) and Nemerow index (PIGW) for groundwater, and the geo-accumulation (Igeo) and ecological risk (ERi) indices and several PAH ratios for soil. The performance of the leachate control system was evaluated using two adapted pollution indices: LPI and the Nemerow index (PIL). According to the obtained LWPI and PIGW values, the quality of groundwater at the new landfill is improving (LWPI = 1.05-2.62; PIGW = 0.52-1.29), while no significant changes were observed for the old landfill (LWPI = 3.06-5.13; PIGW = 2.03-4.78). High concentrations of ammonia nitrogen (1.01-22.74 mg/l), Fe (0.76-57.11 mg/l), Ni (5.80-230.09 μg/l), Pb (4.2-202.4 μg/l) and ∑PAH16 (150.93-189.55 ng/l) show the strong influence of the landfill on the groundwater quality at the old landfill, indicating the need for additional remediation action. High concentrations of Ni (21.9-133.0 mg/kg) and Cr (8.5-277.0 mg/kg) in the analyzed soil compared to other studies, as well as moderate Igeo values (IgeoNi = 0.36-1.88; IgeoCr = -1.20-1.52), raise concern and suggest the need for further monitoring. The high ERi (158.6-295.0) and Igeo values (0.91-2.30) of Hg show significant potential ecological risk. LPI and PIL values for early methanogenic phase leachate demonstrates the need to improve the leachate treatment system. The monitoring data and applied pollution indices indicate that Cr and As should be added to the EU Watch List of emerging substances, at least regarding EU potential candidate countries.
Collapse
Affiliation(s)
- Slaven Tenodi
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Dejan Krčmar
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia.
| | - Jasmina Agbaba
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Kristiana Zrnić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Mira Radenović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Dejan Ubavin
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia
| | - Božo Dalmacija
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| |
Collapse
|
9
|
Pan C, Ng KTW, Richter A. An integrated multivariate statistical approach for the evaluation of spatial variations in groundwater quality near an unlined landfill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5724-5737. [PMID: 30612362 DOI: 10.1007/s11356-018-3967-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/10/2018] [Indexed: 05/20/2023]
Abstract
Groundwater is a major resource for water supply in Canada, and 43 of 68 Saskatchewan municipalities rely on groundwater or combined groundwater and surface water sources. The Regina landfill is built on top of the Condie aquifer, without an engineered liner. Missing data and inconsistent sampling make a traditional groundwater assessment difficult. An integrated statistical approach using principle component analysis, correlation analysis, ion plots, and multiple linear regression is used to study groundwater contamination at the Regina landfill. Geological locations of the water samples were explicitly considered. The abundance of cations in the groundwater was Ca2+ > Mg2+ > Na+ > K+ > Mn2+; and for anions SO42- > HCO3- > Cl-. Correlation analysis and ion plots pointed to gypsum and halite dissolution being the main factors affecting groundwater chemistry. Principal component analysis yielded three principal components, responsible for 80.7% of the total variance. For all monitoring well groups, the sodium absorption ratio was generally less than one. The variation in the ratio from monitoring well groups suggests possible groundwater contamination from landfill operation. Wilcox diagrams indicate groundwater near the landfill is unsuitable for irrigation. A two-step multiple linear regression was used to develop a model for total hardness prediction.
Collapse
Affiliation(s)
- Conglian Pan
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada.
| | - Amy Richter
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
10
|
Wu Q, Liu Z, Liang J, Kuo DTF, Chen S, Hu X, Deng M, Zhang H, Lu Y. Assessing pollution and risk of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants in China's top coal-producing region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:102. [PMID: 30685817 DOI: 10.1007/s10661-019-7225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Managing and disposing of sewage sludge have been a severe environmental challenge around the world. China produces hundreds of million tons of sewage sludge annually, and a better understanding of the extent and risk of the associated pollution is of critical importance for implementing environmentally safe regulations and practices. The present study examined the quantity, composition, source, and risk of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge from 18 wastewater treatment plants (WWTPs) in Shaanxi, one of China's top coal-producing provinces. The total concentrations of 16 PAHs varied from 778 to 3264 ng/g dry weight, which is below the upper safety limit (5000 ng/g dry weight) set for the disposal of sludge from municipal wastewater treatment plants for agricultural use in China. However, the concentration of individual PAH compound exceeded the acceptable level prescribed by the Netherland Soil Standard. Three-ring PAHs were the most abundant constituent (50% of total PAHs on average), followed by four-ring PAHs averaging 25%. Relative to sludge PAHs in the same region a decade ago, the total concentrations decreased by more than 27% and the composition shifted to a more pronounced dominance by low molecular weight compounds. This compositional shift suggests higher contributions of petrogenic sources, which may reflect China's increasing consumption of petroleum products over the past decade. The flux of sludge PAHs from each WWTP was positively correlated with the corresponding city's GDP and population, and the total flux amounted to over 100 kg each year for WWTPs in the Xi'an city. The mean toxicity equivalent quantity (TEQ) value was more than twice higher than the value recommended by the Netherlands Soil Standard, and seven carcinogenic PAHs were the primary contributor (i.e., 89-99%) of the TEQ. Collectively, our findings demonstrate that sewage sludge PAHs in Shaanxi constitute a significant source of environmental pollution and toxicity, which cautions against the direct discharge and reuse of sewage sludge and further highlights challenges in managing and disposing of the vast quantities of sewage sludge in China.
Collapse
Affiliation(s)
- Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Zhineng Liu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Junyan Liang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dave T F Kuo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Shejun Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaodong Hu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mingjun Deng
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haozhi Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - YueHan Lu
- Department of Geological Sciences, University of Alabama, 201 7th. Ave., Tuscaloosa, AL, 35487, USA.
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Xili, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
11
|
Slavinskienė G, Jurevičius A, Arustienė J. Evolution of inorganic pollutants from landfills in shallow aquifers of different hydrogeological systems in Lithuania. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33709-33723. [PMID: 30276692 DOI: 10.1007/s11356-018-3334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
This study examines the patterns of evolution in inorganic macrocomponent speciation and the saturation state of the landfill leachate-polluted groundwater of three closed unlined landfills that are located in different hydrogeological systems (open, semi-open and closed) but are similar in both their volumes of landfill waste and the hazard levels of their landfill pollutants. Multivariate statistical analysis and geochemical modelling were conducted. The results showed that as the intensity of landfill pollution dispersion in groundwater along the flow path decreased, hydrochemical and hydrodynamic processes occurred with different intensities in open, semi-open and closed hydrogeological systems. In the open hydrogeological system, the processes of sulphate reduction, iron oxidation and chloride dilution and dispersion were up to 10-30% more intensive than those in the semi-open and closed hydrogeological systems. In the semi-open and closed hydrogeological systems, the processes of calcium, magnesium and iron carbonate equilibrium shifting towards carbonate precipitation were up to 15-40% more intensive than those in the open hydrogeological system. The results obtained in this research may be used to predict the dispersion of pollution in the groundwater of landfills located in similar hydrogeological systems and to facilitate the selection of prevention measures to limit pollution dispersion in groundwater.
Collapse
Affiliation(s)
| | - Arūnas Jurevičius
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Jurga Arustienė
- Lithuanian Geological Survey, S. Konarskio St. 35, LT-03123, Vilnius, Lithuania
| |
Collapse
|
12
|
Stefania GA, Zanotti C, Bonomi T, Fumagalli L, Rotiroti M. Determination of trigger levels for groundwater quality in landfills located in historically human-impacted areas. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:400-406. [PMID: 29409698 DOI: 10.1016/j.wasman.2018.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 06/07/2023]
Abstract
Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH4-N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH4-N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH4-N, respectively).
Collapse
Affiliation(s)
- Gennaro A Stefania
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy.
| | - Chiara Zanotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy
| | - Letizia Fumagalli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan, Italy
| |
Collapse
|
13
|
Krčmar D, Tenodi S, Grba N, Kerkez D, Watson M, Rončević S, Dalmacija B. Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1341-1354. [PMID: 29751439 DOI: 10.1016/j.scitotenv.2017.09.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 06/08/2023]
Abstract
Most regional municipal solid waste landfills in Serbia are operated without control of landfill leachate and gas or with no regard for implementation of national and European legislation. For the first time in Serbia, groundwater and soil at a landfill were subject to systematic annual monitoring according to national, European legislation and adopted methodologies. Characterisation of the groundwater and soil samples from the landfill included ten metals (Fe, Mn, As, Zn, Cd, Pb, Ni, Cr, Cu and Hg), 16 EPA PAHs, nutrients and certain physicochemical parameters, in order to assess the risks such poorly controlled landfills pose to the environment. This impact assessment was performed using specially adapted pollution indices: LWPI, the Single factor pollution index and the Nemerow index for groundwater, and geo-accumulation index, ecological risk factor and selected rations of PAHs for soil. The data analysis included multivariate statistical methods (factor analysis of principal component analysis (PCA/FA)) in order to assess the extent of the contaminants detected in the groundwater and soil samples. The pollution indices (LWPI: 3.56-8.89; Nemerow index: 2.02-3.78) indicate the quality of the groundwater at the landfill is degrading over time, with PAH16, TOC, Cr, Cu, Pb and Zn as the substances of greatest concern. Heavy metals Hg (Igeo≤3.14), Pb (Igeo≤2.22), Cr (Igeo≤3.31) and Cu (Igeo≤2.16) represent the worst soil contamination. Hg has moderate (52.9) to very high (530.0) potential ecological risk, demonstrating the long-term potential effects of bioaccumulation and biomagnification. The results of this work indicate that Cr and Cu should possibly be added to the EU Watch List of emerging substances. This proposition is substantiated by relevant state and alike environmental information from nations in the region. This study demonstrates the need to develop a model for prioritization of landfill closure and remediation based on environmental risk assessment.
Collapse
Affiliation(s)
- Dejan Krčmar
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Slaven Tenodi
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Nenad Grba
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Djurdja Kerkez
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia.
| | - Malcolm Watson
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Srdjan Rončević
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| | - Božo Dalmacija
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia
| |
Collapse
|
14
|
Rana R, Ganguly R, Gupta AK. Indexing method for assessment of pollution potential of leachate from non-engineered landfill sites and its effect on ground water quality. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 190:46. [PMID: 29280082 DOI: 10.1007/s10661-017-6417-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Dumping of solid waste in a non-engineered landfill site often leads to contamination of ground water due to leachate percolation into ground water. The present paper assesses the pollution potential of leachate generated from three non-engineered landfill sites located in the Tricity region (one each in cities of Chandigarh, Mohali and Panchkula) of Northern India and its possible effects of contamination of groundwater. Analysis of physico-chemical properties of leachate from all the three landfill sites and the surrounding groundwater samples from five different downwind distances from each of the landfill sites were collected and tested to determine the leachate pollution index (LPI) and the water quality index (WQI). The Leachate Pollution Index values of 26.1, 27 and 27.8 respectively for landfill sites of Chandigarh (CHD), Mohali (MOH) and Panchkula (PKL) cities showed that the leachate generated are contaminated. The average pH values of the leachate samples over the sampling period (9.2 for CHD, 8.97 for MOH and 8.9 for PKL) show an alkaline nature indicating that all the three landfill sites could be classified as mature to old stage. The WQI calculated over the different downwind distances from the contamination sites showed that the quality of the groundwater improved with an increase in the downwind distance. Principal component analysis (PCA) carried out established major components mainly from natural and anthropogenic sources with cumulative variance of 88% for Chandigarh, 87.1% for Mohali and 87.8% for Panchkula. Hierarchical cluster analysis (HCA) identifies three distinct cluster types for the groundwater samples. These clusters corresponds to a relatively low pollution, moderate pollution and high pollution regions. It is suggested that all the three non-engineered landfill sites be converted to engineered landfill sites to prevent groundwater contamination and also new sites be considered for construction of these engineered landfill sites as the present dumpsites are nearing the end of their lifespan capacity.
Collapse
Affiliation(s)
- Rishi Rana
- Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat, District, Solan, Himachal Pradesh, 173234, India
| | - Rajiv Ganguly
- Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat, District, Solan, Himachal Pradesh, 173234, India.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat, District, Solan, Himachal Pradesh, 173234, India
| |
Collapse
|
15
|
Ling C, Zhang Q. Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:140. [PMID: 28258339 DOI: 10.1007/s10661-017-5832-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
As a primary disposal mean of municipal solid waste in China, the landfill has been recognized as one of the major threats to the surrounding surface water and groundwater environment due to the emission of leachate. The aim of this study was to determine the impact of leachate on the surface water and groundwater environment of the region of the Chang'an landfill, which is located in Sichuan province, China. The surface water and groundwater were sampled for hydrochemical analysis. Three electrical resistivity tomography profiles were conducted to evaluate the impact of leachate on the groundwater environment, and several laboratory tests were carried out to build the relationship between the soil bulk resistivity and the void fluid resistivity. The results showed that a seasonal creek named Longfeng creek, which crosses the landfill site, was contaminated by the leachate. The concentrations of COD, BOD5, and chlorides (Cl) of surface water samples increased by 12.3-105.7 times. The groundwater quality in the surface loose sediments along the valley deteriorated obviously from the landfill to 500 m downstream area. The laboratory tests of soil samples indicated that the resistivity value of 13 Ωm is a critical value whether the groundwater in the loose sediments is polluted. The groundwater at the site adjacent to the spillway in the landfill was partially contaminated by the emission of leachate. The groundwater contamination zones at 580 m downstream of the landfill were recognized at the shallow zones from 60 m left bank to 30 m right bank of Longfeng creek. The improved understanding of groundwater contamination around the landfill is beneficial for the landfill operation and groundwater environment remediation.
Collapse
Affiliation(s)
- Chengpeng Ling
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, People's Republic of China
- Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, People's Republic of China.
- Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, People's Republic of China.
| |
Collapse
|
16
|
Li J, Wang C, Du L, Lv Z, Li X, Hu X, Niu Z, Zhang Y. Did municipal solid waste landfill have obvious influence on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air: A case study in East China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 62:169-176. [PMID: 28223077 DOI: 10.1016/j.wasman.2017.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Municipal solid waste (MSW) landfill was a main way to disposal of MSW and almost 95% of MSW was disposed by landfills in the world. In order to understand the influence of MSW landfill on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in surrounding atmosphere, 42 ambient air samples were collected and analyzed from surrounding sites, background site, upwind site and downwind site of a MSW landfill in East China. The results of present study were summarized as follows. (1) The total concentrations of PCDD/Fs (∑PCDD/Fs) in ambient air from surrounding sites, background site, upwind site and downwind site were 2.215±1.004, 2.058±0.458, 2.617±1.092 and 1.822±0.566pgNm-3, respectively. (2) The toxic equivalent concentrations (TEQ) of PCDD/Fs in ambient air from surrounding sites, background site, upwind site and downwind site were 0.103±0.017, 0.096±0.015, 0.120±0.024 and 0.108±0.014pg I-TEQNm-3, respectively. (3) The congener profiles, ∑PCDD/Fs and TEQ between background atmosphere and surrounding atmosphere of landfill did not show statistically significant difference. (4) The ∑PCDD/Fs and TEQ in ambient air of downwind site were not higher than that of upwind site, suggesting that studied landfill did not have obvious influence on PCDD/Fs in ambient air from downwind site. (5) The 95th percentile carcinogenic risk (CR) of PCDD/Fs in ambient air from surrounding sites, background site, upwind site and downwind site were 8.03×10-9, 7.57×10-9, 9.69×10-9 and 8.15×10-9, respectively, which were much lower than the threshold value of CR (10-6), suggesting that studied landfill did not influence the CR of PCDD/Fs in surrounding atmosphere and negligible cancer risk occurred. (6) The non-carcinogenic risk (non-CR) analysis indicated that landfill did not have influence on the non-CR of PCDD/Fs in surrounding atmosphere and no obvious non-carcinogenic effects developed.
Collapse
Affiliation(s)
- Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lei Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiwei Lv
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaonan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuepeng Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Ammonium Concentration and Migration in Groundwater in the Vicinity of Waste Management Site Located in the Neighborhood of Protected Areas of Warsaw, Poland. SUSTAINABILITY 2016. [DOI: 10.3390/su8121253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Talalaj IA, Biedka P. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24601-24613. [PMID: 27640059 PMCID: PMC5124057 DOI: 10.1007/s11356-016-7622-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 09/07/2016] [Indexed: 05/08/2023]
Abstract
The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.
Collapse
Affiliation(s)
- Izabela A Talalaj
- Department of Environmental Engineering Systems, Bialystok University of Technology, Wiejska 45A Street, 15-351, Bialystok, Poland.
| | - Pawel Biedka
- Department of Environmental Engineering Systems, Bialystok University of Technology, Wiejska 45A Street, 15-351, Bialystok, Poland
| |
Collapse
|