1
|
Gentile I, Vezzoli V, Martone S, Totaro MG, Bonomi M, Persani L, Marelli F. Short-Term Exposure to Benzo(a)Pyrene Causes Disruption of GnRH Network in Zebrafish Embryos. Int J Mol Sci 2023; 24:ijms24086913. [PMID: 37108076 PMCID: PMC10138490 DOI: 10.3390/ijms24086913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon, is considered a common endocrine disrupting chemical (EDC) with mutagenic and carcinogenic effects. In this work, we evaluated the effects of BaP on the hypothalamo-pituitary-gonadal axis (HPG) of zebrafish embryos. The embryos were treated with 5 and 50 nM BaP from 2.5 to 72 hours post-fertilization (hpf) and obtained data were compared with those from controls. We followed the entire development of gonadotropin releasing hormone (GnRH3) neurons that start to proliferate from the olfactory region at 36 hpf, migrate at 48 hpf and then reach the pre-optic area and the hypothalamus at 72 hpf. Interestingly, we observed a compromised neuronal architecture of the GnRH3 network after the administration of 5 and 50 nM BaP. Given the toxicity of this compound, we evaluated the expression of genes involved in antioxidant activity, oxidative DNA damage and apoptosis and we found an upregulation of these pathways. Consequently, we performed a TUNEL assay and we confirmed an increment of cell death in brain of embryos treated with BaP. In conclusion our data reveal that short-term exposure of zebrafish embryos to BaP affects GnRH3 development likely through a neurotoxic mechanism.
Collapse
Affiliation(s)
- Ilaria Gentile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Valeria Vezzoli
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Sara Martone
- IFOM-FIRC, Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Federica Marelli
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| |
Collapse
|
2
|
Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase, Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution, Risk Assessment, and Sources. TOXICS 2022; 10:toxics10070401. [PMID: 35878306 PMCID: PMC9324633 DOI: 10.3390/toxics10070401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023]
Abstract
The Sele River, located in the Campania Region (southern Italy), is one of the most important rivers and the second in the region by average water volume, behind the Volturno River. To understand the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Sele River, water sediment samples were collected from areas around the Sele plain at 10 sites in four seasons. In addition, the ecosystem health risk and the seasonal and spatial distribution of PAHs in samples of water and sediment were assessed. Contaminant discharges of PAHs into the sea were calculated at about 1807.9 kg/year. The concentration ranges of 16 PAHs in surface water (DP), suspended particulate matter (SPM), and sediment were 10.1–567.23 ng/L, 121.23–654.36 ng/L, and 331.75–871.96 ng/g, respectively. Isomeric ratio and principal component analyses indicated that the PAH concentrations in the water and sediment near the Sele River were influenced by industrial wastewater and vehicle emissions. The fugacity fraction approach was applied to determine the trends for the water-sediment exchange of 16 priority PAHs; the results indicated that fluxes, for the most part, were from the water into the sediment. The toxic equivalent concentration (TEQ) of carcinogenic PAHs ranged from 137.3 to 292.6 ngTEQ g−1, suggesting that the Sele River basin presents a definite carcinogenic risk.
Collapse
|
3
|
Rurale G, Gentile I, Carbonero C, Persani L, Marelli F. Short-Term Exposure Effects of the Environmental Endocrine Disruptor Benzo(a)Pyrene on Thyroid Axis Function in Zebrafish. Int J Mol Sci 2022; 23:ijms23105833. [PMID: 35628645 PMCID: PMC9148134 DOI: 10.3390/ijms23105833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Benzo(a)Pyrene (BaP) is one of the most widespread polycyclic aromatic hydrocarbons (PAHs) with endocrine disrupting properties and carcinogenic effects. In the present study, we tested the effect of BaP on thyroid development and function, using zebrafish as a model system. Zebrafish embryos were treated with 50 nM BaP from 2.5 to 72 h post fertilization (hpf) and compared to 1.2% DMSO controls. The expression profiles of markers of thyroid primordium specification, thyroid hormone (TH) synthesis, hypothalamus-pituitary-thyroid (HPT) axis, TH transport and metabolism, and TH action were analyzed in pools of treated and control embryos at different developmental stages. BaP treatment did not affect early markers of thyroid differentiation but resulted in a significant decrease of markers of TH synthesis (tg and nis) likely secondary to defective expression of the central stimulatory hormones of thyroid axis (trh, tshba) and of TH metabolism (dio2). Consequently, immunofluorescence of BaP treated larvae showed a low number of follicles immunoreactive to T4. In conclusion, our results revealed that the short-term exposure to BaP significantly affects thyroid function in zebrafish, but the primary toxic effects would be exerted at the hypothalamic-pituitary level thus creating a model of central hypothyroidism.
Collapse
Affiliation(s)
- Giuditta Rurale
- Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy;
| | - Ilaria Gentile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (I.G.); (C.C.)
| | - Camilla Carbonero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (I.G.); (C.C.)
| | - Luca Persani
- Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy;
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy; (I.G.); (C.C.)
- Correspondence: (L.P.); (F.M.); Tel.: +39-02-61911-2432 (F.M.)
| | - Federica Marelli
- Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy;
- Correspondence: (L.P.); (F.M.); Tel.: +39-02-61911-2432 (F.M.)
| |
Collapse
|
4
|
Estimation of Polycyclic Aromatic Hydrocarbons Pollution in Mediterranean Sea from Volturno River, Southern Italy: Distribution, Risk Assessment and Loads. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041383. [PMID: 33546201 PMCID: PMC7913333 DOI: 10.3390/ijerph18041383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
This study reports the data on the contamination caused by polycyclic aromatic hydrocarbons (PAHs) drained from the Volturno River. The seasonal and spatial distribution of PAHs in water and sediment samples was assessed. The 16 PAHs were determined in the water dissolved phase (DP), suspended particulate matter (SPM), and sediments. A multidimensional statistical approach was used to identify three pollution composite indicators. Contaminant discharges of PAHs into the sea were calculated in about 3158.2 kg/year. Total concentrations of PAHs varied in ranges 434.8 to 872.1 ng g−1 and 256.7 to 1686.3 ng L−1 in sediment samples and in water (DP + SPM), respectively. The statistical results indicated that the PAHs mainly had a pyrolytic source. Considering the sediment quality guidelines (SQGs), the water environmental quality standards (USEPA EQS), and risk quotient (RQ), the Volturno River would be considered as an area in which the environmental integrity is possibly at risk.
Collapse
|
5
|
The Environmental Assessment of an Estuarine Transitional Environment, Southern Italy. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8090628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A multidisciplinary survey was carried out on the quality of water and sediments of the estuary of the Sele river, an important tributary of the Tyrrhenian Sea, to assess anthropogenic pressures and natural variability. Nine sediment sites were monitored and analyzed for granulometry, morphoscopy, benthic foraminifera and ostracod assemblages, heavy metals, and polycyclic aromatic hydrocarbons. Surface water was assayed for ionic composition and phytoplankton biomass. Total organic carbon (TOC) and total nitrogen (TN) in sediments were higher in the inner part of the estuary (IE), up to 12.7 and 0.7% because of anthropic influence. In waters, N-NH4, N-NO3, and Ptot. were high, with loads of Ptot in IE exceeding ~fourfold the limit. Here, it was also observed that the highest primary production was Chl-a, 95.70 µg/L, with cryptophytes, 37.6%, and diatoms, 33.8%, being the main phytoplanktonic groups. The hierarchical analysis split the estuary into two areas, with marked differences in anthropic pollution. Waters were classified as poor–bad level with respect to the content of nutrients. Sedimentological assay reveals littoral erosion and poor supply of river sandy sediments. The erosion environment is confirmed by the presence of meiobenthic recent marine forms intrusion inside the river. All these data reveal the fragility of the estuary and the need of urgent remediation actions.
Collapse
|
6
|
Li Z. A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113372. [PMID: 31672361 DOI: 10.1016/j.envpol.2019.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/28/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a weather-based multicomponent model was developed based on the unique biostructures and metabolic processes of mushrooms to evaluate their uptake of pesticides from soils, and the effects of temperature and relative humidity on the bioaccumulation of pesticides in mushrooms was comprehensively quantified. Additionally, a new pseudo-partition coefficient between mushrooms and soils was introduced to assess the impacts of different physiochemical properties on the pesticide uptake process. The results indicate that, in general, the pseudo-partition coefficient increases as the relative humidity increases for both the air and soil according to Fick's law of gas diffusion and the spatial competition of molecules, respectively. Meanwhile, the effect of temperature on the pesticide bioaccumulation process is more complex. For most pesticides (e.g., atrazine), the pseudo-partition coefficient that was computed from the transpiration component had a maximum value at a specific temperature due to the temperature dependency of the transpiration and biodegradation processes. For some pesticides (e.g., ethoprophos), the pseudo-partition coefficient of the air-deposition component had a maximum value at a certain temperature that was caused by the ratio of the soil-air internal transfer energy and degradation activation energy of the pesticide. It was also concluded that for relatively low-volatility pesticides, transpiration dominated the bioaccumulation process; this was mainly determined from the pesticide water solubility. For nonbiodegradable pesticides (e.g., lindane), the computed coefficient values were relatively low due to their insolubility in water, which inhibits bioaccumulation in mushrooms and is one of the main reasons for their long-term persistence in soils.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| |
Collapse
|
7
|
Thiombane M, Albanese S, Di Bonito M, Lima A, Zuzolo D, Rolandi R, Qi S, De Vivo B. Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:507-528. [PMID: 29981015 DOI: 10.1007/s10653-018-0147-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants. They have been identified as a type of carcinogenic substance and are relatively widespread in environment media such as air, water and soils, constituting a significant hazard for human health. In many parts of the world, PAHs are still found in high concentrations despite improved legislation and monitoring, and it is therefore vital defining their profiles, and assessing their potential sources. This study focused on a large region of the south of Italy, where concentration levels, profiles, possible sources and toxicity equivalent quantity (TEQ) level of sixteen PAHs were investigated. The survey included soils from five large regions of the south of Italy: 80 soil samples (0-20 cm top layer) from urban and rural locations were collected and analysed by gas chromatography-mass spectrometry. Total PAHs and individual molecular compounds from the US Environmental Protection Agency priority pollutants list were identified and measured. Results showed that 16 PAHs varied significantly in urban and rural areas, and different regions presented discordant characteristics. Urban areas presented concentrations ranging from 7.62 to 755 ng g-1 (mean = 84.85 ng g-1), whilst rural areas presented ranges from 1.87 to 11,353 ng g-1 (mean = 333 ng g-1). Large urban areas, such as Rome, Naples and Palermo, exhibited high PAHs total concentration, but high values were also found in rural areas of Campania region. Different PAHs molecular ratios were used as diagnostic fingerprinting for source identification: LWMPAHs/HWMPAHs, Fluo/(Fluo + Pyr), BaA/(BaA + Chr), Ant/(Ant + Phe) and IcdP/(IcdP + BghiP). These ratios indicated that PAHs sources in the study area were mainly of pyrogenic origin, i.e. mostly related to biomass combustion and vehicular emission. On the other hand, values in Sicilian soils seemed to indicate a petrogenic origin, possibly linked to emissions from crude oil combustion and refineries present in the region. Finally, results allowed to calculate the toxicity equivalent quantity (TEQBAP) levels for the various locations sampled, highlighting that the highest values were found in the Campania region, with 661 and 54.20 ng g-1, in rural and urban areas, respectively. These findings, which could be linked to the presence of a large solid waste incinerator plant, but also to well-documented illegal waste disposal and burning, suggest that exposure to PAH may be posing an increased risk to human health in some of the studied areas.
Collapse
Affiliation(s)
- Matar Thiombane
- Department of Earth, Environment and Resources Sciences (DiSTAR), University of Naples "Federico II", Complesso Universitario di Monte Sant' Angelo, Via Cintia snc, 80126, Naples, Italy.
| | - Stefano Albanese
- Department of Earth, Environment and Resources Sciences (DiSTAR), University of Naples "Federico II", Complesso Universitario di Monte Sant' Angelo, Via Cintia snc, 80126, Naples, Italy
| | - Marcello Di Bonito
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, UK
| | - Annamaria Lima
- Department of Earth, Environment and Resources Sciences (DiSTAR), University of Naples "Federico II", Complesso Universitario di Monte Sant' Angelo, Via Cintia snc, 80126, Naples, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Via dei Mulini 59/A, 82100, Benevento, Italy
| | - Roberto Rolandi
- Department of Earth, Environment and Resources Sciences (DiSTAR), University of Naples "Federico II", Complesso Universitario di Monte Sant' Angelo, Via Cintia snc, 80126, Naples, Italy
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, People's Republic of China
| | - Benedetto De Vivo
- Pegaso University, Piazza Trieste e Trento 48, 80132, Naples, Italy
- Dip. Ambiente e Territorio, Benecon Scarl, Via S. Maria di Costantinopoli 104, 80138, Naples, Italy
| |
Collapse
|
8
|
Qu C, Albanese S, Lima A, Li J, Doherty AL, Qi S, De Vivo B. Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1497-1506. [PMID: 28964601 DOI: 10.1016/j.envpol.2017.08.100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
A systematic grid sampling method and geostatistics were employed to investigate the spatial distribution, inventory, and potential ecological and human health risks of the residues of hexachlorobenzene (HCB) and chlorinated cyclodiene pesticides in soils of the Campanian Plain, Italy, and explore their relationship with the soils properties. The geometric mean (Gmean) concentrations of HCB and cyclodiene compounds followed the order CHLs (heptachlor, heptachlor epoxide, trans-chlordane, and cis-chlordane) > DRINs (aldrin, dieldrin, and endrin) > SULPHs (α-endosulfan, β-endosulfan, and endosulfan sulfate) > HCB. The residual levels of most cyclodienes in agricultural soils were generally higher than those of corresponding counterparts in the other land uses. Significant differences in the concentration of HCB and cyclodienes in the soils across the region are observed, and the Acerra-Marigliano conurbation (AMC) and Sarno River Basin (SRB) areas exhibit particularly high residual concentrations. Some legacy cyclodienes in the Campanian Plain may be attributed to a secondary distribution. The Gmean inventory of HCB, SULPHs, CHLs, and DRINs in the soil is estimated to be 0.081, 0.41, 0.36, and 0.41 metric tons, respectively. The non-cancer and cancer risks of HCB and cyclodienes for exposed populations are deemed essentially negligible, however, endosulfan poses significant ecological risks to some terrestrial species.
Collapse
Affiliation(s)
- Chengkai Qu
- Department of Earth Sciences, Environment and Resources (DiSTAR), University of Naples Federico II, Naples 80125, Italy; State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Stefano Albanese
- Department of Earth Sciences, Environment and Resources (DiSTAR), University of Naples Federico II, Naples 80125, Italy.
| | - Annamaria Lima
- Department of Earth Sciences, Environment and Resources (DiSTAR), University of Naples Federico II, Naples 80125, Italy
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Benedetto De Vivo
- Department of Earth Sciences, Environment and Resources (DiSTAR), University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
9
|
Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. CHEMOSPHERE 2017; 173:359-367. [PMID: 28126570 DOI: 10.1016/j.chemosphere.2017.01.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Although the use of organochlorine pesticides (OPs) is restricted or banned in most countries, they continue posing environmental and health concerns, so it is imperative to develop methods for removing them from the environment. This work is aimed to investigate the simultaneous removal of three OPs (lindane, chlordane and methoxychlor) from diverse types of systems by employing a native Streptomyces consortium. In liquid systems, a satisfactory microbial growth was observed accompanied by removal of lindane (40.4%), methoxychlor (99.5%) and chlordane (99.8%). In sterile soil microcosms, the consortium was able to grow without significant differences in the different textured soils (clay silty loam, sandy and loam), both contaminated or not contaminated with the OPs-mixture. The Streptomyces consortium was able to remove all the OPs in sterile soil microcosm (removal order: clay silty loam > loam > sandy). So, clay silty loam soil (CSLS) was selected for next assays. In non-sterile CSLS microcosms, chlordane removal was only about 5%, nonetheless, higher rates was observed for lindane (11%) and methoxychlor (20%). In CSLS slurries, the consortium exhibited similar growth levels, in the presence of or in the absence of the OPs-mixture. Not all pesticides were removed in the same way; the order of pesticide dissipation was: methoxychlor (26%)>lindane (12.5%)>chlordane (10%). The outlines of microbial growth and pesticides removal provide information about using actinobacteria consortium as strategies for bioremediation of OPs-mixture in diverse soil systems. Texture of soils and assay conditions (sterility, slurry formulation) were determining factors influencing the removal of each pesticide of the mixture.
Collapse
Affiliation(s)
- María S Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Universidad del Norte Santo Tomás de Aquino, 9 de Julio 165, 4000, Tucumán, Argentina
| | - Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - María J Amoroso
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Universidad del Norte Santo Tomás de Aquino, 9 de Julio 165, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Universidad del Norte Santo Tomás de Aquino, 9 de Julio 165, 4000, Tucumán, Argentina.
| |
Collapse
|
10
|
Qu C, Albanese S, Chen W, Lima A, Doherty AL, Piccolo A, Arienzo M, Qi S, De Vivo B. The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:500-511. [PMID: 27376995 DOI: 10.1016/j.envpol.2016.05.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 05/16/2023]
Abstract
The distribution, inventory, and potential risk of organochlorine pesticides (OCPs), including Hexachlorocyclohexanes (HCHs) and Dichlorodiphenyltrichloroethanes (DDTs), and their correlation with soil properties and anthropogenic factors were investigated in soils of the Campanian Plain. The total concentrations of HCHs and DDTs ranged from 0.03 to 17.3 ng/g (geometric mean: GM = 0.05 ng/g), and 0.08-1231 ng/g (GM = 14.4 ng/g), respectively. In general, the concentration of OCPs in farmland and orchards was higher than on land used for non-agricultural purposes. There are significant differences in the concentration of OCPs in the soils across the region, more specifically, the Acerra-Marigliano conurbation (AMC) and Sarno River Basin (SRB) are recognized as severely OCP-contaminated areas. The recent application of technical HCHs and DDTs in large quantities appears unlikely in light of the ratio of α-HCH/β-HCH and p,p'-DDT/p,p'-DDE, and the prohibition of the use of these chemicals in Italy nearly forty years ago. The clear correlation between the concentration of DDTs and organic carbon suggests a typical secondary distribution pattern. The mass inventory of OCPs in soils of the Campanian Plain is estimated to have a GM of 17.3 metric tons. There is no clear evidence linking the impact of geographical distribution of OCPs on the incidence of cancer, and the 95% confidence interval of total incremental lifetime cancer risk (TILCR) data falls below the internationally accepted benchmark value of 1 × 10(-5).
Collapse
Affiliation(s)
- Chengkai Qu
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli "Federico II", Via Mezzocannone 8, 80134 Napoli, Italy; State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Stefano Albanese
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli "Federico II", Via Mezzocannone 8, 80134 Napoli, Italy
| | - Wei Chen
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire LA1 4YQ, UK
| | - Annamaria Lima
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli "Federico II", Via Mezzocannone 8, 80134 Napoli, Italy
| | - Angela L Doherty
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli "Federico II", Via Mezzocannone 8, 80134 Napoli, Italy
| | - Alessandro Piccolo
- Dipartimento di Agraria, Università di Napoli "Federico II", Via Università 100, 80055 Portici, Italy
| | - Michele Arienzo
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli "Federico II", Via Mezzocannone 8, 80134 Napoli, Italy
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Benedetto De Vivo
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli "Federico II", Via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
11
|
Shi B, Wu Q, Ouyang H, Liu X, Zhang J, Zuo W. Distribution and source apportionment of polycyclic aromatic hydrocarbons in the surface soil of Baise, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:232. [PMID: 25850993 DOI: 10.1007/s10661-015-4465-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
To estimate the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the soils of Baise, in southwest China, soil sampling sites were selected from industry, traffic, rubbish, gas station, residential, and suburban areas for analysis of PAHs. The average concentrations of ∑16PAHs in the present study varied significantly, depending on the sampling location, and ranged from 16.8 to 6,437.0 μg/kg (dry weight basis), with a mean value of 565.8 μg/kg. PAH concentrations decreased significantly along the industry-traffic-rubbish-gas station-residential-suburban transect. The PAH profiles in the surface soil of the different areas imply that either source proximity to the sampling sites, or transport and deposition effects influenced PAH distributions. Two diagnostic ratios were selected and used to apportion PAH sources in the surface soil, and bivariate plots show general trends of covariation. Principal component analysis and multivariate linear regression were used to determine the primary sources and their contributions of PAHs to the soils. The model showed that factors 1 (coal and wood combustion) and 2 (petroleum combustion) contributed over 52.1 and 32.5% of the total source of soil PAHs, respectively. The remaining 15.4% came from evaporative and uncombusted petroleum.
Collapse
Affiliation(s)
- Bingfang Shi
- Department of Chemistry and Life Sciences, Baise University, 21 2nd Zhongshan Road, Baise City, Guangxi, 533000, China,
| | | | | | | | | | | |
Collapse
|