1
|
Asadi Touranlou F, Tavakoly Sany SB, Ghayour Mobarhan M, Khanzadi S, Afshari A, Hashemi M. Health Risk Assessment of Exposure to Heavy Metals in Wheat Flour from Iran Markets: Application of Monte Carlo Simulation Approach. Biol Trace Elem Res 2025; 203:2284-2294. [PMID: 39083196 DOI: 10.1007/s12011-024-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 03/20/2025]
Abstract
The significance of flour in the Iranian diet underscores the need to ensure its safety from chemical pollutants. This study aimed to evaluate the potential health risks posed by certain heavy metals, such as Fe, Zn, Cu, Al, Co, Hg, Cr, Ni, Pb, and Cd, in wheat flour available in the Iranian market. A total of 248 flour samples were collected from 11 provinces in Iran during the winter of 2021. The health risks associated with heavy metals in children and adults were evaluated using USEPA health risk assessment guidance for superfund part A and Monte Carlo Simulation. The average concentration of Fe, Zn, Cu, Al, Co, Hg, Cr, Ni, Pb, and Cd, was equal to 30.62 ± 59.24, 4.94 ± 13.64, 1.24 ± 3.08, 2.85 ± 4.98, 0.03 ± 0.01, 0.12 ± 0.03, 1.42 ± 1, 0.23 ± 0.05, 1.71 ± 0.65, and 0.02 ± 0.004 mg/kg dry weight, respectively. Analysis of Fe, Cr, Al, Hg and Cr in all flour samples showed that the average concentration of these metals were greater than the standards levels set by the WHO/FAO. The results of the non-carcinogenic risks (HI) showed that the hazard index values (children: 0.969 ± 1.04, adult: 0.837 ± 0.905) of heavy metals through the consumption of flour to both study population were acceptable. The results of the carcinogenic risks (CR) based on Cd, and Pb concentration showed that the CR values from ingestion of flour to the children and adults population were 1.45 × 10-5 ± 5.08 × 10-5 and 1.26 × 10-5 ± 4.40 × 10-5, respectively. The results of Monte Carlo simulation showed that conventional deterministic health risk evaluation could overestimate risk outcomes. Likewise, Cr has 68.8% and 69.1% probability of non-carcinogenic risk to children and adult, respectively, and 80% and 79.8% probability of CR for adults and children respectively for Pb, suggesting that Cr and Pb is a priority control heavy metals. Therefore, it is recommended to continuously monitor the levels of heavy metals in wheat and its derived food products to ensure food safety.
Collapse
Affiliation(s)
- Fateme Asadi Touranlou
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety and Environment, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang L, Xue W, Sun H, Sun Q, Hu Y, Wu R, Du Y, Liu S, Zou G. Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178389. [PMID: 39787648 DOI: 10.1016/j.scitotenv.2025.178389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs. The results revealed that, compared with control or chemical fertilizer treatments, continuous application of CM raised the concentrations of cadmium (Cd), chromium (Cr), copper (Cu), and zinc (Zn) in topsoil by 29 %-38 %, 15 %-16 %,11 %-14 %, and 20 %-36 %, respectively; SSC increased the concentrations of Cd, Cr, Mercury (Hg), arsenic (As), Cu, and Zn by 18 %-26 %, 8 %-9 %, 310 %-329 %, 5 %-8 %, 17 %-21 %, and 19 %-35 %, respectively; and DWC elevated the concentrations of Cd, Cr, Hg, lead (Pb), and Zn by 20 %-28 %, 8 %-9 %, 118 %-118 %, 5 %-10 %, and 3 %-17 %. The HMs concentrations in wheat grain were almost unaffected by the application of the organic fertilizers except for Hg and Pb concentrations. However, the HMs concentrations in both soil and wheat grain remained far below the limits of regulation in China. The long-term application of organic fertilizers did not cause additional noncarcinogenic and carcinogenic risks associated with exposure to HMs. In conclusion, although the long-term application of various urban and rural organic fertilizers increased the concentrations of several HMs in the soil, it almost did not cause any additional adverse effects on wheat grain or increase the health risks.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wentao Xue
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hao Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qinping Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuncai Hu
- Precision Agriculture, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rong Wu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ying Du
- Precision Agriculture, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Shanjiang Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Zhu Z, Guo W, Cheng H, Zhao H, Wang J, Abdallah MF, Zhou X, Lei H, Tu W, Wang H, Yang J. Co-contamination and interactions of multiple mycotoxins and heavy metals in rice, maize, soybeans, and wheat flour marketed in Shanghai City. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134695. [PMID: 38815395 DOI: 10.1016/j.jhazmat.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Mycotoxins and heavy metals extensively contaminate grains and grain products, posing severe health risks. This work implements validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) methods to quantify the concentration of 12 mycotoxins and five heavy metals in rice, maize, soybeans, and wheat flour samples marketed in Shanghai. The mixed contamination characteristics were analyzed using correlation cluster analysis and co-contamination index, and the probabilities of all cross combinations of contaminations were analyzed using a self-designed JAVA language program. The results showed that grains and grain products were frequently contaminated with both mycotoxins and heavy metals, mostly with deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), ochratoxin A (OTA), aflatoxins, fumonisin B1 (FB1), fumonisin B2 (FB2), fumonisin B3 (FB3), arsenic (As), chromium (Cr) and cadmium (Cd). All the samples (100 %) were contaminated with two or more contaminants, and 77.3 % of the samples were co-contaminated with more than four contaminants. In cereals and cereal products, the following combinations were closely associated: (FB3 +3-ADON), (FB1 +As), (FB1 +FB2), (DON+FB1), (DON+Cd), (As+Cd), (DON+Cd+As), (FB1 +FB2 +As), and (DON+3-ADON+15-ADON). The results indicated that mycotoxins and heavy metals frequently co-occurred in Shanghai grains and grain products, and they provided primary data for safety assessments, early warnings, and regulatory measures on these contaminants to protect public health.
Collapse
Affiliation(s)
- Zuoyin Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Haisheng Cheng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hanke Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jie Wang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Belgium
| | - Xinli Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hulong Lei
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Weilong Tu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|
4
|
Yousaf N, Sardar MF, Ishfaq M, Yu B, Zhong Y, Zaman F, Zhang F, Zou C. Insights in to iron-based nanoparticles (hematite and magnetite) improving the maize growth (Zea mays L.) and iron nutrition with low environmental impacts. CHEMOSPHERE 2024; 362:142781. [PMID: 38972262 DOI: 10.1016/j.chemosphere.2024.142781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The possible potential application of Fe-NPs on Fe nutrition, heavy metals uptake and soil microbial community needs to be investigated. In the current research, a pot experiment was used to examine the implications of Fe-NPs (α-Fe2O3 and Fe3O4) on maize growth, Fe uptake and transportation, soil microbial community, and environmental risk. Fe3O4, α-Fe2O3, FeSO4 at a rate of 800 mg Fe kg-1 were applied in soils with four replications under a completely randomized design for a period of 60 days. Results showed that Fe uptake by maize roots were increased by 107-132% than control, with obvious variations across different treatments (Fe3O4> α-Fe2O3> FeSO4> control). Similarly, plant height, leaf surface area, and biomass were increased by 40-64%, 52-91% and 38-109% respectively, with lower values by FeSO4 application. The elevated level of chlorophyll contents and carotenoids and significant effects with control on antioxidant enzymes activities (i.e., catalase, and superoxide dismutase) suggested that application of Fe-NPs improved overall biochemical processes. The differential expression of important Fe transporters (i.e., ZmYS1 and ZmFER1) as compared to control indicated the plant strategic response for efficient uptake and distribution of Fe. Importantly, Fe-NPs reduced the heavy metals uptake (i.e., chromium, cadmium, arsenic, nickel, copper) by complex formation, and showed no toxicity to the soil microbial community. In summary, the application of Fe-NPs can be a promising approach for improving crop productivity and Fe nutrition without negatively affecting soil microbial community, and fostering sustainable agricultural production.
Collapse
Affiliation(s)
- Nauman Yousaf
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, China
| | - Baogang Yu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Faisal Zaman
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Chunqin Zou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
5
|
Ortiz-Oliveros HB, Mendoza-Guzmán MM, Zarazúa-Ortega G, Lara-Almazán N, Mestizo-Gutiérrez SL, González-Ruíz A. Evaluation of succulent plants Echeveria elegans as a biomonitor of heavy metals and radionuclides. ENVIRONMENTAL RESEARCH 2024; 251:118611. [PMID: 38452916 DOI: 10.1016/j.envres.2024.118611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
This work evaluates the use of Echeveria elegans as a biomonitor of metals and radionuclides, using semi-urban soils as a study area. The study area is exposed to various trace elements of concern for various social groups in nearby localities. The quantification of metals and radionuclides was performed by X-ray fluorescence spectrometry and gamma spectrometry, respectively. Cumulative frequency distribution curves, descriptive statistics, and multivariate analysis were used to estimate the local geochemical baseline and identify geochemical and anthropogenic patterns of metals and radionuclides from topsoil and E. elegans. The evaluation of contaminants and the contribution of possible exposure routes (topsoil and atmospheric deposition) was performed with the enrichment factor (EF) and the relative concentration factor (CFR). The results suggest that the plant does not present significant physical stress due to the environmental conditions to which it was exposed. Likewise, it can bioaccumulate heavy metals from natural and anthropogenic sources. The quantification of radionuclides in the plant is below the detection limits, indicating a low bioavailability and transfer factor. The CFR and EF results showed that the plant accumulates metals from the topsoil and atmospheric deposition. The bioaccumulation mechanism would be related to the functioning of Crassulaceae Acid Metabolism (CAM). In topsoil, the organic acids of the plant would modify the solubility of the metals present in an insoluble form in the soil, acting as ligands and, subsequently, following the transport route of these metabolites. In atmospheric deposition, the metals deposited in the leaves would be incorporated into the plant through the opening of the stomata because of the capture of CO2 (at night, day, or during environmental stress) by the CAM. Overall, the evidence showed that the succulent can be used as a biomonitor of heavy metals. However, additional studies are required to determine its usefulness as a radionuclide biomonitor.
Collapse
Affiliation(s)
- H B Ortiz-Oliveros
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico.
| | - M M Mendoza-Guzmán
- Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa, Veracruz, C.P. 91020, Mexico
| | - G Zarazúa-Ortega
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico
| | - N Lara-Almazán
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico
| | - S L Mestizo-Gutiérrez
- Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa, Veracruz, C.P. 91020, Mexico
| | - A González-Ruíz
- Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México, C.P. 52750, Mexico
| |
Collapse
|
6
|
Alipour E, Aghapour AA, Bahrami Asl F. Concentration, spatial distribution, and non-carcinogenic risk assessment of arsenic, cadmium, chromium, and lead in drinking water in rural areas of eight cities of West Azarbaijan province, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20222-20233. [PMID: 38369658 DOI: 10.1007/s11356-024-32433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Exposure to heavy metals through drinking water can cause significant adverse health effects. The aim of the present study was to investigate the concentration, spatial distribution, and assessment of non-carcinogenic risk attributed to exposure to arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in rural areas of eight cities of the West Azerbaijan province of Iran. Eighty-five water samples were taken from randomly selected drinking water wells in the rural areas, and the concentration of the heavy metals was measured by using standard methods. The concentration distribution maps were drawn, and the non-carcinogenic health risks for ingestion and dermal exposure pathways were calculated in four age groups (including infants, children, teenagers, and adults). According to the obtained results, arsenic is considered as the most worrying pollutant among the investigated heavy metals. The maximum measured concentration for arsenic was 371.9 μg/L, which is 37 times the maximum permissible limit. The results of the health risk assessment illustrate that exposure to heavy metals via dermal contact do not pose significant non-carcinogenic risks. However, the calculated non-carcinogenic risks for oral exposure to arsenic were very high and concerning. The highest hazard quotient for oral exposure to arsenic was related to rural of city G (82.64). It is recommended to take the necessary measures as soon as possible regarding the supply of safe drinking water in the studied areas.
Collapse
Affiliation(s)
- Elnaz Alipour
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Ahmad Aghapour
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Lv D, Liu Y, Ren L, Huo J, Zhao J, Lu R, Huang Y, Duan L. Assessment of atmospheric heavy metal pollution in Qinghai-Tibet Plateau: Using mosses as biomonitor. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132181. [PMID: 37536154 DOI: 10.1016/j.jhazmat.2023.132181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Atmospheric heavy metal (HM) pollution may pose a significant threat to the fragile ecosystem of Qinghai-Tibet Plateau (QTP). To investigate potential atmospheric HM pollution within the QTP region of China, mosses, along with other higher plants and soil, were collected from 33 sites for heavy metal measurement. The concentration ranges of Zn, Pb, Cd, and Cu in mosses were 6.07-69.9, 5.36-23.9, 0.60-1.05, and 14.4-50.5 mg·kg-1 (dry weight), respectively, significantly higher than those in other higher plants, except for Zn. The spatial distribution of relative concentrations (RCs; moss to top soil) of HMs varied considerably, indicating distinct differences in atmospheric Zn and Cu pollution levels between the northern and southern QTP. This study first reported that moderate regional atmospheric Cu pollution, primarily due to large-scale mining in recent years, had occurred, particularly in southern QTP. Pb also presented slight pollution due to anthropogenic activities. However, Cd showed almost no atmospheric pollution, while Zn concentrations were relatively high in southern QTP. Although less severe than atmospheric pollution levels in Chinese inland or coastal cities, the atmospheric pollution of Pb and Cu in QTP indicated by mosses were far more severe than global background areas, or even worse than most European cities.
Collapse
Affiliation(s)
- Dongwei Lv
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yixuan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liang Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaxuan Huo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jin Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ruijie Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yongmei Huang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Kumar P, Singh RP. Assessment of Edaphic pollution indices and bioaccumulation of trace metals in Solanum lycopersicum, Spinacia oleracea and Triticum aestivum: an associated health risk evaluation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:588. [PMID: 37074470 DOI: 10.1007/s10661-023-11170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The present study investigates bioaccumulation factor (Bfc), Edaphic pollution indices and associated health risk assessment of trace metals (TMs) i.e., Cu, Fe, Zn, Mn and Co in the crops, agricultural soil (AgS), and irrigation water (IgW) collected from various peri-urban area of metropolitan city of India, Lucknow. Though the level of these TMs was within the permissible limits (PL) (FAO/WHO, 2011) in AgS and IgW however it was higher than PL in tomato, spinach and wheat cultivated in the fields. The bioaccumulation factor of Cu, Fe and Mn in edible parts of tomato, spinach and wheat was 8 to 25 times higher through the AgS and 10 to 300 times higher through the IgW in the tomato, spinach and wheat samples. The enrichment factor (Efc), contamination factor (Cfc), contamination degree (Cdg) and modified contamination degree (mCdg) values of Co, Cu, Mn, Fe and Zn ranged from low to high levels of contamination, whereas the geo-accumulation index reflected low contamination in agricultural soil. on the other hand, the metal pollution load index (Mpi) was found strongly contaminated in most of the study areas. Due to the consumption of these contaminated vegetables and cereal (VCs) by human consumers, the hazard quotient (HQ), total hazard quotient (THQ) and hazard index (HI) were found to be more than the requisite value of 1, which indicates a far-long health risk in this crowded city and its surrounding regions.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, U.P-226025, Lucknow, India
| | - Rana Pratap Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, U.P-226025, Lucknow, India.
| |
Collapse
|
9
|
Source apportionment and source-specific risk evaluation of potential toxic elements in oasis agricultural soils of Tarim River Basin. Sci Rep 2023; 13:2980. [PMID: 36806786 PMCID: PMC9941508 DOI: 10.1038/s41598-023-29911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
As rapidly developing area of intensive agriculture during the past half century, the oases in the source region of the Tarim River have encountered serious environmental challenges. Therefore, a comparative analysis of soil pollution characteristics and source-specific risks in different oases is an important measure to prevent and control soil pollution and provide guidance for extensive resource management in this area. In this study, the concentration of potential toxic elements (PTEs) was analyzed by collecting soil samples from the four oases in the source region of the Tarim River. The cumulative frequency curve method, pollution index method, positive matrix factorization (PMF) model, geographical detector method and health risk assessment model were used to analyze the pollution status and source-specific risk of potential toxic elements in different oases. The results showed that Cd was the most prominent PTE in the oasis agricultural soil in the source region of the Tarim River. Especially in Hotan Oasis, where 81.25% of the soil samples were moderately contaminated and 18.75% were highly contaminated with Cd. The PTEs in the Hotan Oasis corresponded to a moderate level of risk to the ecological environment, and the noncarcinogenic risk of soil PTEs in the four oases to local children exceeded the threshold (TH > 1), while the carcinogenic risk to local residents was acceptable (1E-06 < TCR < 1E-04). The research results suggested that the Hotan Oasis should be the key area for soil pollution control in the source region of the Tarim River, and agricultural activities and natural sources, industrial sources, and atmospheric dust fall are the priority sources that should be controlled in the Aksu Oasis, Kashgar Oasis and Yarkant River Oasis, respectively. The results of this study provide important decision-making support for the protection and management of regional agricultural soil and the environment.
Collapse
|
10
|
Pirhadi M, Alikord M, Tajdar-oranj B, Khaniki GJ, Nazmara S, Fathabad AE, Ghalhari MR, Sadighara P. Potential toxic elements (PTEs) concentration in wheat and flour products in Iran: A probabilistic risk assessment. Heliyon 2022; 8:e11803. [DOI: 10.1016/j.heliyon.2022.e11803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
11
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Collado-López S, Betanzos-Robledo L, Téllez-Rojo MM, Lamadrid-Figueroa H, Reyes M, Ríos C, Cantoral A. Heavy Metals in Unprocessed or Minimally Processed Foods Consumed by Humans Worldwide: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8651. [PMID: 35886506 PMCID: PMC9319294 DOI: 10.3390/ijerph19148651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
Heavy metals (HM) can be accumulated along the food chain; their presence in food is a global concern for human health because some of them are toxic even at low concentrations. Unprocessed or minimally processed foods are good sources of different nutrients, so their safety and quality composition should be guaranteed in the most natural form that is obtained for human consumption. The objective of this scoping review (ScR) is to summarize the existing evidence about the presence of HM content (arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and aluminum (Al)) in unprocessed or minimally processed foods for human consumption worldwide during the period of 2011-2020. As a second objective, we identified reported HM values in food with respect to Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) International Food Standards for Maximum Limits (MLs) for contaminants in food. This ScR was conducted in accordance with the Joanna Briggs Institute (JBI) methodology and PRISMA Extension for Scoping Reviews (PRISMA-ScR); advance searches were performed in PubMed, ScienceDirect and FAO AGRIS (Agricultural Science and Technology Information) databases by two reviewers who independently performed literature searches with specific eligibility criteria. We classified individual foods in food groups and subgroups according to the Global Individual Information Food Consumption Data Tool (FAO/WHO GIFT). We homologated all the reported HM units to parts per million (ppm) to determine the weighted mean HM concentration per country and food group/subgroup of the articles included. Then, we compared HM concentration findings with FAO/WHO MLs. Finally, we used a Geographic Information System (GIS) to present our findings. Using our search strategy, we included 152 articles. Asia was the continent with the highest number of publications (n = 79, 51.3%), with China being the country with the largest number of studies (n = 34). Fish and shellfish (n = 58), followed by vegetables (n = 39) and cereals (n = 38), were the food groups studied the most. Fish (n = 42), rice (n = 33), and leafy (n = 28) and fruiting vegetables (n = 29) were the most studied food subgroups. With respect to the HM of interest, Cd was the most analyzed, followed by Pb, As, Hg and Al. Finally, we found that many of the HM concentrations reported exceeded the FAO/OMS MLs established for Cd, Pb and As globally in all food groups, mainly in vegetables, followed by the roots and tubers, and cereals food groups. Our study highlights the presence of HM in the most natural forms of food around the world, in concentrations that, in fact, exceed the MLs, which affects food safety and could represent a human health risk. In countries with regulations on these topics, a monitoring system is recommended to evaluate and monitor compliance with national standards. For countries without a regulation system, it is recommended to adopt international guidelines, such as those of FAO, and implement a monitoring system that supervises national compliance. In both cases, the information must be disseminated to the population to create social awareness. This is especially important to protect the population from the consumption of internal production and for the international markets of the globalized world.
Collapse
Affiliation(s)
- Sonia Collado-López
- School of Public Health, National Institute of Public Health, Cuernavaca 62100, Mexico;
| | - Larissa Betanzos-Robledo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico; (L.B.-R.); (M.M.T.-R.)
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico; (L.B.-R.); (M.M.T.-R.)
| | - Héctor Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico;
| | - Moisés Reyes
- Economics Department and GEOLab-IBERO, Universidad Iberoamericana, Mexico City 01219, Mexico;
| | - Camilo Ríos
- Neurochemistry Department, National Institute of Neurology and Neurosurgery, México City 14269, Mexico;
| | - Alejandra Cantoral
- Health Department, Universidad Iberoamericana, México City 01219, Mexico
| |
Collapse
|
13
|
Yang L, Ren Q, Ge S, Jiao Z, Zhan W, Hou R, Ruan X, Pan Y, Wang Y. Metal(loid)s Spatial Distribution, Accumulation, and Potential Health Risk Assessment in Soil-Wheat Systems near a Pb/Zn Smelter in Henan Province, Central China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052527. [PMID: 35270219 PMCID: PMC8909631 DOI: 10.3390/ijerph19052527] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023]
Abstract
To understand the influence of Pb/Zn smelter on surrounding environment, 110 soil and 62 wheat grain samples (62 paired samples) were collected nearby a Pb/Zn smelter in Jiaozuo City, Henan Province, China. The content and spatial distribution of metal(loid)s in the soil-wheat system, and the potential health risk via consumption of wheat grains were determined. Results showed that the average content of Pb, Cd, As, Cu, Zn, and Ni in soil were 129.16, 4.28, 17.95, 20.43, 79.36, and 9.42 mg/kg, respectively. The content of Cd in almost all soil samples (99.1%) exceeded the national limitation of China (0.6 mg/kg). Spatial distribution analysis indicated that atmospheric deposition might be the main pollution source of Pb, Cd, As, and Zn in soil. In addition, the average content of Pb, Cd, As, Cu, Zn, and Ni in wheat grain were 0.62, 0.35, 0.10, 3.7, 35.77, and 0.15 mg/kg, respectively, with the average Pb and Cd content exceeding the national limitation of China. The average bioaccumulation factor of these metal(loid)s followed the following order: Zn (0.507) > Cu (0.239) > Cd (0.134) > Ni (0.024) > Pb (0.007) > As (0.006). Health risk assessment indicated that the average noncarcinogenic risk of children (6.78) was much higher than that of adults (2.83), and the carcinogenic risk of almost all wheat grain is higher than the acceptable range, with an average value of 2.43 × 10−2. These results indicated that humans who regularly consume these wheat grains might have a serious risk of noncarcinogenic and carcinogenic diseases.
Collapse
Affiliation(s)
- Ling Yang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (L.Y.); (X.R.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China; (Q.R.); (S.G.)
| | - Qiang Ren
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China; (Q.R.); (S.G.)
| | - Shiji Ge
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China; (Q.R.); (S.G.)
| | - Zhiqiang Jiao
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; (Z.J.); (R.H.)
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China;
| | - Runxiao Hou
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; (Z.J.); (R.H.)
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (L.Y.); (X.R.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China; (Q.R.); (S.G.)
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; (Z.J.); (R.H.)
| | - Yanfang Pan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (L.Y.); (X.R.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China; (Q.R.); (S.G.)
- Correspondence: (Y.P.); (Y.W.)
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; (L.Y.); (X.R.)
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China; (Q.R.); (S.G.)
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; (Z.J.); (R.H.)
- Correspondence: (Y.P.); (Y.W.)
| |
Collapse
|
14
|
Chen XX, Jiao JY, Cao WQ, Yu BG, Liu YM, Zou CQ. A sustainable phosphorus management in agriculture: Assessing trade-offs between human health risks and nutritional yield regarding heavy metals in maize grain. ENVIRONMENTAL RESEARCH 2022; 203:111792. [PMID: 34333009 DOI: 10.1016/j.envres.2021.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
High-quality products in sustainable agriculture require both limited health risks and sufficient dietary nutrients. Phosphorus (P) as a finite and non-renewable resource is widely used in agriculture, usually exerting influence on the accumulation of heavy metals (HMs) in soil and crops. The present research explores, for the first time, the combined effects of long-term P fertilizer and repeated zinc (Zn) application in field on the human health risks and nutritional yield regarding trace elements in maize grain. A field experiment was conducted using maize with six P application rates (0, 12.5, 25, 50, 100, and 200 kg P ha-1) and two Zn application rates (0 and 11.4 kg Zn ha-1). The results showed that the concentrations of Zn, copper (Cu), and lead (Pb) in the maize grain were significantly affected by P application and can be further affected by Zn application. The concentrations of chromium (Cr) and arsenic (As) showed opposite tendency as affected by P fertilizer rates while did not affected by additional Zn application. Zn application decreased the cadmium (Cd) concentration at high P levels and Pb concentration at low P levels, particularly. No HMs contamination or direct health risk was found in maize grain after receiving long-term P and repeated Zn fertilizer. The threshold hazard quotient of an individual and all investigated HMs in this study were acceptable for human digestion of maize grain. While the carcinogenic risk of Cr was non-negligible in case of maize was taken as one of daily staple food for local residents. Combination use of P (25 kg ha-1) and Zn fertilizer on maize enhanced its nutritional supply ability regarding Zn and Cu, and simultaneously mitigated potential human health risks associated with Cd and Pb.
Collapse
Affiliation(s)
- Xiu-Xiu Chen
- College of Resources and Environmental Science; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing, 100193, China
| | - Jia-Yu Jiao
- College of Resources and Environmental Science; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing, 100193, China
| | - Wen-Qing Cao
- College of Resources and Environmental Science; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing, 100193, China
| | - Bao-Gang Yu
- College of Resources and Environmental Science; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing, 100193, China
| | - Yu-Min Liu
- College of Resources and Environmental Science; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing, 100193, China
| | - Chun-Qin Zou
- College of Resources and Environmental Science; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Fan W, Zhou J, Zhou Y, Wang S, Du J, Chen Y, Zeng Y, Wei X. Heavy metal pollution and health risk assessment of agricultural land in the Southern Margin of Tarim Basin in Xinjiang, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:835-847. [PMID: 31736355 DOI: 10.1080/09603123.2019.1691157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The study aimed to analyze the level of heavy metal pollution in the agricultural lands in the southern margin of Tarim Basin, Xinjiang, and its risks to human health. A total of 1765 soil samples were collected from the Cele-Ruoqiang area. The contents of soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were analyzed using the pollution load index method. The results showed that soil was slightly contaminated with Hg and Cd; the multivariate statistical analysis indicated that Cr, Ni, As, Cu, Zn, and Cd were formed mostly by geochemical genesis, whereas Hg and Pb contents by the geological origin and human activities. The health risk assessment showed that there is no unacceptable non-carcinogenic health risk. As levels posed carcinogenic risk, however, they were within human tolerance. Thus, this study provides a scientific basis for local agricultural production safety and prevention and control of soil heavy metal pollution.
Collapse
Affiliation(s)
- Wei Fan
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi, China
| | - Jinlong Zhou
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi, China
| | - Yinzhu Zhou
- Centre for Hydrogeology and Environmental Geology, China Geological Survey, Baoding, China
| | - Songtao Wang
- No.2 Hydrogeology and Engineering Geology Party of Xinjiang Bureau of Geology and Mineral Resources Exploration and Development, Changji, China
| | - Jiangyan Du
- No.2 Hydrogeology and Engineering Geology Party of Xinjiang Bureau of Geology and Mineral Resources Exploration and Development, Changji, China
| | - Yunfei Chen
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi, China
| | - Yanyan Zeng
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi, China
| | - Xing Wei
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi, China
| |
Collapse
|
16
|
Ali Z, Mohammad A, Riaz Y, Shakeel A, Khan KY, Quraishi UM, Malik RN. Heavy metal phyto-accretion, biochemical responses and non-carcinogenic human health risks of genetically diverse wheat genotypes cultivated with sewage of municipal origin. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:619-631. [PMID: 33232176 DOI: 10.1080/15226514.2020.1847033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current study explored the effects of municipal sewage (MS) irrigation on heavy metal phyto-accretion, biochemical responses and human health risks of diverse wheat genotypes along with recycled municipal sewage (RMS). Mean concentrations of PO43-, NO3--N, chemical oxygen demand, biological oxygen demand, K, Co, Cu, Cd, Cr and Ni were found higher in MS than irrigation criteria. This led to significant increase in heavy metal contents in roots, stem and grains of MS irrigated wheat genotypes compared to RMS and control treatments. No adverse health risk effects for individual or multiple metals were recorded in RMS irrigated wheat genotypes on grounds of lowest heavy metal accumulation. Multivariate techniques i.e. principal component analyses (PCA) and hierarchical agglomerative cluster analyses (HACA) identified tolerant (inefficient metal accumulators) and sensitive (efficient metal accumulators) wheat genotypes in MS and RMS. Tolerant wheat genotypes showed lowest accumulation of heavy metals, efficient biochemical mechanisms to combat oxidative stress and lower health risks to adults/children. Cultivation of identified tolerant wheat genotypes is recommended in areas receiving municipal wastes to reduce human and environmental health risks. Moreover, genetic potential of identified tolerant wheat genotypes from MS and RMS can be utilized in breeding heavy metal tolerant wheat germplasm worldwide.
Collapse
Affiliation(s)
- Zeshan Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Institute of Bioremediation, Department of Plant and Environmental Protection, National Agricultural Research Center, Islamabad, Pakistan
- Plant Physiology Program, Crop Sciences Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ashiq Mohammad
- National Institute of Bioremediation, Department of Plant and Environmental Protection, National Agricultural Research Center, Islamabad, Pakistan
| | - Yousaf Riaz
- National Institute of Bioremediation, Department of Plant and Environmental Protection, National Agricultural Research Center, Islamabad, Pakistan
| | - Adnan Shakeel
- Climate, Energy and Water Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, China
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Khanam T, Eqani SAMAS, Zhang J, Wang H, Zhang Y, Yang J, Sadiq M, Rasheed H, Shen H. Urinary profiles of selected metals and arsenic and their exposure pathway analysis in four large floodplains of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139586. [PMID: 32526565 DOI: 10.1016/j.scitotenv.2020.139586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In context of fragile geological conditions and rapid urbanization, element exposure via dietary (food, water) and non-dietary (dust, soil) routes into human population at different land use settings is a major concern in the Indus floodplains (FPs) of Pakistan. In current study, several important trace elements including arsenic (As), chromium (Cr), manganese (Mn), cobalt (Co), cadmium (Cd), nickel (Ni), copper (Cu) and lead (Pb) were analyzed in the paired human urine, food, water and dust samples collected from main FPs of Pakistan. Daily intake estimation and regression analysis were used to evaluate the relationships between internal exposure, exposure routes of studied trace elements and different land use settings. High concentrations of urinary As, Cr, Cu, Mn, and Cd were detected in the general male population of the studied floodplains (FPs). Moreover, the levels (μg/L) of urinary As increased gradually from FP1 (12.8), FP2 (18), FP3 (61) to FP4 (71). Regression analysis showed that As contaminated water was correlated with elevated urinary As concentrations in FP3 and FP4, and water Cr and Mn was significantly associated with urinary Cr and Mn concentrations in FP2. Moreover, the associations of food Mn and urinary Mn were found in FP1. Over all, cumulative estimated daily intake (EDI) values from water, dust and food from all the flood plains showed that Mn had the highest values (6.6, 9.2, 14.4 μg/kg/day) followed by water As (1.98 μg/kg/day), dust Cu (1.5 μg/kg/day) and Pb (1.7 μg/kg/day). Studied floodplains were moderately to highly polluted in terms of studied trace elements (As, Cr, Cu, Mn, and Cd) contamination especially in FP3 and FP4. The results will contribute to improve the knowledge and information on current exposure of Pakistani male adults to the different contaminants.
Collapse
Affiliation(s)
- Tasawar Khanam
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102 Xiamen, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Yongli Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Jianbo Yang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Muhammad Sadiq
- Ecohealth and Toxicology Lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Hifza Rasheed
- National Water Quality Laboratory, Pakistan Council of Research in Water Resources, Islamabad, Pakistan
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102 Xiamen, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
18
|
Ravanbakhsh M, Zare Javid A, Hadi M, Jaafarzadeh Haghighi Fard N. Heavy metals risk assessment in fish species (Johnius Belangerii (C) and Cynoglossus Arel) in Musa Estuary, Persian Gulf. ENVIRONMENTAL RESEARCH 2020; 188:109560. [PMID: 32798936 DOI: 10.1016/j.envres.2020.109560] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 05/27/2023]
Abstract
In this study the possible health effects of consumption of benthopelagic (Johnius Belangerii (C); JB) and demersal (Cynoglossus Arel; CA) fishes were evaluated. These fish species living in the Musa estuary (the biggest estuary in the south of Iran and in the northern coastline of Persian Gulf) are likely to be polluted with Hg, V, Ni and Tl. The food frequency questionnaire (FFQ) was used to estimate fish intakes in the residents of Mahshahr city. Also, heavy metal concentrations were determined in fishes and compared with the maximum permissible levels (MPLs). The bioaccumulation factor (BAF) showed high bioaccumulation ability for Hg and Tl in both fish spices. The ratio of TDI/EDI showed the importance of the health hazard by both fish consumption. Also, Hg and Tl in fishes had a higher calculated target hazard quotient (THQ) than the limits. Regarding with the high possibility of serious health concerns associated with Hg and Tl contamination in the Musa estuary, it is suggested to do appropriate and urgent actions by the governors.
Collapse
Affiliation(s)
- Maryam Ravanbakhsh
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 15794-61357, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
19
|
Chen XX, Liu YM, Zhao QY, Cao WQ, Chen XP, Zou CQ. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114348. [PMID: 32182536 DOI: 10.1016/j.envpol.2020.114348] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) fertilizer is widely used to increase wheat yield. However, it remains unclear whether prolonged intake of wheat grain that received long-term P application may promote human health risks by influencing heavy metal(loid)s (HMs) accumulation. A 10-year field experiment was conducted to evaluate the effects of continuous P application (0, 25, 50, 100, 200, and 400 kg P ha-1) on human health risks of HMs, including zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), and chromium (Cr), by ingesting wheat grain. The results showed that P application facilitated Zn, Pb, Cd, and As accumulation in the topsoil. The Zn, Cu, Pb, and Ni concentrations in grain were decreased, while Cd and As were increased by P application. All HMs concentrations of both soil and grain were in the ranges of corresponding safety thresholds at different P levels. The accumulation abilities of Zn, Cu, Pb, and Ni from soil and straw to grain were suppressed by P addition while of As was enhanced. There was no significant difference in the hazard index (HI) of the investigated HMs in all treatments except 25 kg ha-1. The threshold cancer risk (TCR) associated with As and Cd was enhanced, while that of Pb was alleviated as P application increased. Behaviors of Cr from soil to wheat and to humans were not affected by P application. Phosphorus application at a rate of 50 kg ha-1 decreased total non-cancer and cancer risks by 15% and 21%, respectively, for both children and adults, compared to the highest value. In conclusion, long-term optimal application of 50 kg P ha-1 to wheat did not result in additional adverse effects on the total non-carcinogenic or carcinogenic risk caused by the studied HMs to humans through the ingestion of wheat grain.
Collapse
Affiliation(s)
- Xiu-Xiu Chen
- College of Resources and Environmental Science; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing 100193, China
| | - Yu-Min Liu
- College of Resources and Environmental Science; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing 100193, China
| | - Qing-Yue Zhao
- College of Resources and Environmental Science; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing 100193, China
| | - Wen-Qing Cao
- College of Resources and Environmental Science; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing 100193, China
| | - Xin-Ping Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Chun-Qin Zou
- College of Resources and Environmental Science; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education; China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Huang R, Dong M, Mao P, Zhuang P, Paz-Ferreiro J, Li Y, Li Y, Hu X, Netherway P, Li Z. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137581. [PMID: 32163732 DOI: 10.1016/j.scitotenv.2020.137581] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
A phytoextraction experiment with five Cd hyperaccumulators (Amaranthus hypochondriacus, Celosia argentea, Solanum nigrum, Phytolacca acinosa and Sedum plumbizincicola) was conducted in two soils with different soil pH (5.93 and 7.43, respectively). Most accumulator plants grew better in the acidic soil, with 19.59-39.63% higher biomass than in the alkaline soil, except for S. plumbizincicola. The potential for a metal-contaminated soil to be cleaned up using phytoremediation is determined by the metal uptake capacity of hyperaccumulator, soil properties, and mutual fitness of plant-soil relationships. In the acidic soil, C. argentea and A. hypochondriacus extracted the highest amount of Cd (1.03 mg pot-1 and 0.92 mg pot-1, respectively). In the alkaline soil, S. plumbizincicola performed best, mainly as a result of high Cd accumulation in plant tissue (541.36 mg kg-1). Most plants achieved leaf Cd bioconcentration factor (BCF) of >10 in the acidic soil, compared to <4 in the alkaline soil. Soil Cd availability was chiefly responsible for such contrasting metal extraction capacity, with 5.02% fraction and 48.50% fraction of total Cd being available in the alkaline and acidic soil, respectively. In the alkaline soil, plants tended to increase rhizosphere soil available Cd mainly through excreting more low molecular weight organic acids, not through changing the soil pH. In the acidic soil, plants slightly decreased soil available Cd. Those species which have high Ca, Zn, Fe uptake capacity extract more Cd from soil, and a positive correlation was found between the concentrations of Cd and Ca, Zn, Fe in leaves. Soil available Ca2+, Mg2+, SO42-, Cl- did not play a key role in Cd uptake by plants. In summary, acidic soil was of higher potential to recover from Cd contamination by phytoextraction, while in the alkaline soil, S. plumbizincicola showed potential for Cd phytoextraction.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiliang Dong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ping Zhuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | - Yongxing Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yingwen Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiaoying Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Pacian Netherway
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458B, China.
| |
Collapse
|
21
|
Esilaba F, Moturi WN, Mokua M, Mwanyika T. Human Health Risk Assessment of Trace Metals in the Commonly Consumed Fish Species in Nakuru Town, Kenya. ENVIRONMENTAL HEALTH INSIGHTS 2020; 14:1178630220917128. [PMID: 32425543 PMCID: PMC7218337 DOI: 10.1177/1178630220917128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to determine daily intake of cadmium (Cd), copper (Cu), and lead (Pb) and to assess noncarcinogenic human health risk caused by these trace metals in the commonly consumed fish species (Oreochromis niloticus, Rastrineobola argentea, Lates niloticus, and Protopterus aethiopicus) in Nakuru town, Kenya. Trace metal determination in the composite samples of the commonly consumed fish species was done using flame atomic absorption spectrophotometer. Cd, Cu, and Pb content in the muscle tissues of the commonly consumed fish species ranged from 0.11 ± 0.045 to 1.11 ± 0.931 mg kg-1 for Cd, 0.48 ± 0.013 to 3.00 ± 0.009 mg kg-1 for Cu, and 3.42 ± 0.045 to 12.78 ± 0.108 mg kg-1 for Pb. Cu concentrations were within Food and Agriculture Organization (FAO) recommended limits for this trace metal in fish. In contrast, Cd and Pb had values above their respective permissible limits in fish. The assessment of human exposure to trace metals indicated that exposure doses of Cd and Cu were safe for fish consumers. Conversely, target hazard quotient (THQ) values of Pb suggested possible health risks for consumers of the commonly consumed fish species in Nakuru town, Kenya.
Collapse
Affiliation(s)
- Felly Esilaba
- Department of Environmental Science, Egerton University, Egerton, Kenya
| | | | - Millicent Mokua
- Department of Environmental Science, Egerton University, Egerton, Kenya
| | | |
Collapse
|
22
|
Liu YM, Liu DY, Zhang W, Chen XX, Zhao QY, Chen XP, Zou CQ. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113581. [PMID: 31753641 DOI: 10.1016/j.envpol.2019.113581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Soil application of Zn fertilizer is an effective approach to improve yield and Zn accumulation in wheat grain. However, it remains unclear whether repeated Zn application can result in high accumulation of heavy metals (HMs) in soils and grains and thus represents a potential risk for human consumption. This study aimed to evaluate the health risk assessment of HMs in a wheat production system which had continuously received 8 years of Zn application at varying rates (0, 2.3, 5.7, 11.4, 22.7, 34.1 kg Zn ha-1). The results showed that Zn application significantly increased the soil total Zn concentration without affecting concentrations of As, Pb, Cd, Cu and Cr. Across Zn rates, Zn application increased grain concentrations of Zn, Pb and Cd by 75%, 51% and 14%, respectively, and reduced grain As concentration by 14%. The human health risk assessment revealed that the threshold hazard quotients for the individual HM were below 1, independent of Zn rates. The hazard index (HI) values at Zn rates of 11.4, 22.7 and 34.1 kg Zn ha-1 were significantly greater than that at null Zn treatment. Furthermore, exposures to As, Cu and Zn accounted for 97% of HI at all Zn rates. Analysis of the threshold cancer risk with Pb and As showed that ingestion of wheat grain even from highest Zn application rate wouldn't bring the lifetime carcinogenic risk. In contrast, long-term Zn application significantly reduced the carcinogenic risk of As by 9.7-26.5%. In conclusion, repeated soil applications of Zn at optimal rate (5.7 kg Zn ha-1) didn't cause health risk for Zn, Cu, Cd, Pb, Cr, and As, while improving productivity and grain Zn concentration of wheat to meet human recruitment. Our study highlights the importance of appropriate Zn fertilizer management in improving grain quality while reducing HMs risks from human consumption.
Collapse
Affiliation(s)
- Yu-Min Liu
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Dun-Yi Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Wei Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiu-Xiu Chen
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Qing-Yue Zhao
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Xin-Ping Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Chun-Qin Zou
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Yang W, Wang D, Wang M, Zhou F, Huang J, Xue M, Dinh QT, Liang D. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:428. [PMID: 31187274 DOI: 10.1007/s10661-019-7534-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
As a staple food for people worldwide, wheat is one of the major exposure pathways for heavy metals (HMs). Therefore, the safety of the wheat grain directly affects food security and human health. Long-term agricultural activities are sources of heavy metal pollution in farmland ecosystems. This study assessed the pollution situation of HMs in wheat grain from the major wheat-cultivation areas of Baoji, a typical agricultural area in Shaanxi, to assess the dietary health risks caused by consuming wheat grains and to prevent food pollution. The results showed that the mean grain concentration of Cr, Ni, Cu, Zn, Cd and Pb were 0.11, 0.09, 4.41, 26.79, 0.01 and 0.03 mg/kg, respectively. These values were all remarkably lower than the tolerance limits of the Chinese food hygiene standard (GB2762-2017). According to the metal pollution index (MPI) analysis, wheat grain consumption poses no direct threat to human health. The health risk assessment showed that there was a noncarcinogenic risk to adults and children for wheat consumed in the study area. In the study area, no carcinogenic risk was manifested. Principal component analysis (PCA) indicated that the source of Ni was different from that of the other tested HMs and was mainly from industry, where as the others were mainly derived from agricultural activities. Therefore, more attention should be paid to Cu and Zn input through agricultural activities in fields to further prevent the accumulation of these HMs in wheat grains and their related human health risks.
Collapse
Affiliation(s)
- Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Hussain R, Luo K, Liang H, Hong X. Impact of the coal mining-contaminated soil on the food safety in Shaanxi, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1521-1544. [PMID: 30600450 DOI: 10.1007/s10653-018-0233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The study aimed to investigate the impacts of coal mining-contaminated soil on the locally grown food crops and humans health. For the active investigation and assessment, the study collected 175 samples including contaminated and control soil and various types of food crops (corn, wheat, mixed food (egg, pork meat, potato, pepper)) from Shaanxi Province. All these samples were analyzed through ICP-MS and ICP-OES. Results show that in Weibei soil, the average concentration (mg kg-1) of Cr (194 ± 94), Cu (27 ± 13), Cd (0.6 ± 0.3), Ni (83 ± 35), Be (1.98 ± 0.8), Rb (115 ± 68), Li (74 ± 78), Sr (148.5 ± 67), and Zn (3056 ± 2380) was higher than that of the Chinese soil standard (CSS) and upper continental crust (UCC) (P < 0.01-0.05). In Langao soil, the average concentration (mg kg-1) of Cr (99.5 ± 48), Cu (77 ± 32), Ni (113 ± 37), Pb (45 ± 19.8), Cd (2.9 ± 1.7), Co (13.9 ± 2.4), Mo (28.7 ± 16), Be (2.98 ± 0.5), Li (81.8 ± 9.7), V (430 ± 166), Zn (255 ± 105), and Ba (1347 ± 445) was higher than that of the CSS and UCC. However, in Binxian Jurassic all the toxic trace elements (TTE) were higher than the CSS and UCC. In Langao contaminated vegetable, Na, Cd, Tl, In, Mo, Li, U, Bi, and Th may cause very high risk, whereas Al, Mn, P, Fe, Ca, Cr, Ni, Pb, Co, Cs, Rb, and Ba may cause considerable risk. However, the average daily intake (ADI) of Al, Mn, P, Fe, Cd, Mo, and Ba was higher than the No Observable Adverse Effect Level (NOAEL). However, the non-carcinogenic risk of Al, Mn, P, Fe, Cr, Cu, Ni, Pb, Cd, Co, Tl, Mo, Li, V, Ba, and Th was higher than acceptable level (HQ = 1). In Binxian wheat, Al, Tl, Cs, Bi, and Th may cause very high risk, and Ti, Na, K, Fe, Ca, Cr, Ni, Cd, Pb, Sr, Bi, and U may cause considerable risk. However, ADI of Al, Mn, P, Ti, Fe, Cu, Ni, Pb, Mo, Ba, and U for both adults and children was higher than the NOAEL. In Weibei, the wheat crops are prone to considerable-to-moderate elemental risk. The non-carcinogenic risk of Al, Mn, P, Fe, Cr, Cu, Pb, Co, Tl, Mo, Li, Zn, and Th was higher than the acceptable level. In countryside adults and children, ADI was lower than the NOAEL except Al, P, and Zn. The study concluded that human activities of coal mining release a high amount of TTE to the soil. Majority of arable land, grain food and vegetable were contaminated through TTE, which may cause high risks to human's health and the environment.
Collapse
Affiliation(s)
- Rahib Hussain
- Institute of Geographic Sciences and Natural Resources Research, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 10080, China
| | - Kunli Luo
- Institute of Geographic Sciences and Natural Resources Research, Beijing, 100101, China.
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, 100083, China
| | - Xiuping Hong
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, 100083, China
| |
Collapse
|
25
|
Tudi M, Phung DT, Ruan HD, Yang LS, Guo HJ, Connell D, Sadler R, Chu C. Difference of trace element exposed routes and their health risks between agriculture and pastoral areas in Bay County Xinjiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14073-14086. [PMID: 30850985 DOI: 10.1007/s11356-019-04606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The concentration level related to toxicities of trace elements in drinking water, rice, wheat flour, and their associated negative impacts on human health have become an emergent issue in China. Because Xinjiang is the largest province in China with the majority of arable pasture land available for cultivation, it is important to analyze the concentrations of trace elements in relation to their toxicities in water, rice, and wheat flour and to investigate the health risk differences between agricultural and pastoral areas in Bay County, Xinjiang. The study results showed that (1) metal concentrations from drinking water, rice, and wheat flour were within the permissible limits; (2) concentration levels of trace elements and their total risk from drinking water and rice were higher in the agricultural areas than those in the pastoral areas, whereas concentration levels of trace elements and their total risk from wheat flour were higher in the pastoral areas than those in the agricultural areas; (3) the concentration level of the trace elements in rice were higher than in the wheat flour, but the risk from the wheat flour was higher than the risk from rice; (4) total non-cancer risk from the flour (HIf) in both areas exceeded the respective safe reference doses; (5) total cancer risk from the wheat flour, rice, and water exceeded the safety limit (1 × 10-4); (6) for the exposed population, arsenic was suggested as the most evident pollutant leading to carcinogenic concerns regarding the water, rice, and wheat flour; (7) the risk index from the wheat flour made up the highest percentage both in the total cancer risk and the non-cancer risk, followed by rice and then water; and (8) the human health risk was attributed to influence from the local environment in the agriculture areas, while it was attributed to the external environment in the pastoral areas. Graphical abstract.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China
- Centre for Environment and Population Health, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dung Tri Phung
- Centre for Environment and Population Health, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
| | - Huada Daniel Ruan
- Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai, Guangdong Province, China
| | - Lin-Sheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hai-Jun Guo
- Centre for Environment and Population Health, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
| | - Ross Sadler
- Centre for Environment and Population Health, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
| | - Cordia Chu
- Centre for Environment and Population Health, Griffith University, 170 Kessel Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
26
|
Zhu D, Wei Y, Zhao Y, Wang Q, Han J. Heavy Metal Pollution and Ecological Risk Assessment of the Agriculture Soil in Xunyang Mining Area, Shaanxi Province, Northwestern China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:178-184. [PMID: 29947911 DOI: 10.1007/s00128-018-2374-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Mining is considered to be one of the most significant sources of environmental pollution with regard to heavy metals. Mineral mining causes large quantities of mercury, cadmium, and other elements to be released into the environment and naturally poses a serious threat to environment. This paper will analyze the pollution status of agricultural soil caused by the mining of heavy metals in various mining areas in the Xunyang County in the Shaanxi Province of China, an area in famous for its resource mining. Equally, it will look at the potential ecological risk assessment process that is used to analyze the ecological risks of mining heavy metals in agricultural soil located in the surrounding areas. Based on the soil investigation, As pose a moderate ecological risk on the Au mining area. In addition, the Hg metals pose a significantly high potential ecological risk and Cd metals pose a considerable potential ecological risk on the Hg mining area. In the Pb-Zn mining area, a significantly high potential ecological risk was mainly posed by Cd. These results suggest that many heavy metals pose a high potential ecological risk on the agricultural soil in these three mining areas in the Xunyang County, and may cause elevated heavy metal contents in crops, eventually jeopardizing the health of local residents who consume food grown in polluted soil.
Collapse
Affiliation(s)
- Daiwen Zhu
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Shaanxi Key Laboratory of Land Consolidation, Xi'an City, Shaanxi, China
| | - Yang Wei
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Shaanxi Key Laboratory of Land Consolidation, Xi'an City, Shaanxi, China
| | - Yonghua Zhao
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Shaanxi Key Laboratory of Land Consolidation, Xi'an City, Shaanxi, China
| | - Qilong Wang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Shaanxi Key Laboratory of Land Consolidation, Xi'an City, Shaanxi, China
| | - Jichang Han
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Shaanxi Key Laboratory of Land Consolidation, Xi'an City, Shaanxi, China.
| |
Collapse
|
27
|
Chen L, Zhou S, Shi Y, Wang C, Li B, Li Y, Wu S. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:141-149. [PMID: 28964989 DOI: 10.1016/j.scitotenv.2017.09.230] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 05/20/2023]
Abstract
Environmental pollution by heavy metals resulting from rapid economic development is a major concern. Soil, water, wheat, and rice samples were collected from the Lihe River Watershed in the Taihu Region (east China). In this study area, many types of industrial plants, including ceramics factories, plants working with refractory materials, and chemical plants are densely distributed and cause serious heavy metal pollution. In addition, well-developed transportation and agricultural activities are also important sources of heavy metals. Thus, the concentrations of selected heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in the samples were analyzed to evaluate their potential integral risk (IR) to the health of the local population. Accordingly, the spatial distribution pattern of the IR values was determined in the study. The soil in the study area showed heavy Cd pollution, whereas the pollution by other elements was relatively slight. When the proportions of grain samples in which the concentrations exceeded the tolerance limits were examined, the grains were primarily contaminated with Pb, Ni, Cd, and Zn; and less contaminated with Cu and Cr. The drinking water of the local inhabitants was safe. The average IR value was 3.53 for adults and 3.91 for children, indicating that both adults and children may experience adverse health effects. The spatial distribution pattern of the IR values among the exposed populations in the study area showed high values in the eastern and middle parts, with maximum values >5, and low values in the western part, with minimum values <2. This is consistent with the distributions of the industries and the population. The study may provide a basis for comparison to other regions both in China and worldwide.
Collapse
Affiliation(s)
- Lian Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China
| | - Shenglu Zhou
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China.
| | - Yaxing Shi
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China
| | - Chunhui Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China
| | - Baojie Li
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China
| | - Yan Li
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China
| | - Shaohua Wu
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
28
|
Fallahzadeh RA, Ghaneian MT, Miri M, Dashti MM. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24790-24802. [PMID: 28913756 DOI: 10.1007/s11356-017-0102-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The heavy metals available in drinking water can be considered as a threat to human health. Oncogenic risk of such metals is proven in several studies. Present study aimed to investigate concentration of the heavy metals including As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn in 39 water supply wells and 5 water reservoirs within the cities Ardakan, Meibod, Abarkouh, Bafgh, and Bahabad. The spatial distribution of the concentration was carried out by the software ArcGIS. Such simulations as non-carcinogenic hazard and lifetime cancer risk were conducted for lead and nickel using Monte Carlo technique. The sensitivity analysis was carried out to find the most important and effective parameters on risk assessment. The results indicated that concentration of all metals in 39 wells (except iron in 3 cases) reached the levels mentioned in EPA, World Health Organization, and Pollution Control Department standards. Based on the spatial distribution results at all studied regions, the highest concentrations of metals were derived, respectively, for iron and zinc. Calculated HQ values for non-carcinogenic hazard indicated a reasonable risk. Average lifetime cancer risks for the lead in Ardakan and nickel in Meibod and Bahabad were shown to be 1.09 × 10-3, 1.67 × 10-1, and 2 × 10-1, respectively, demonstrating high carcinogenic risk compared to similar standards and studies. The sensitivity analysis suggests high impact of concentration and BW in carcinogenic risk.
Collapse
Affiliation(s)
- Reza Ali Fallahzadeh
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Ghaneian
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Miri
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mohamad Mehdi Dashti
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Lopes M, Cavaleiro C, Ramos F. Sodium Reduction in Bread: A Role for Glasswort (Salicornia ramosissimaJ. Woods). Compr Rev Food Sci Food Saf 2017; 16:1056-1071. [DOI: 10.1111/1541-4337.12277] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Lopes
- Pharmacy Faculty; Univ. of Coimbra; Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| | - Carlos Cavaleiro
- Pharmacy Faculty, CNC - Center for Neuroscience and Cell Biology; Univ. of Coimbra; Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| | - Fernando Ramos
- Pharmacy Faculty, CNC - Center for Neuroscience and Cell Biology; Univ. of Coimbra; Azinhaga de Santa Comba 3000-548 Coimbra Portugal
| |
Collapse
|
30
|
Patel S. Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 2016; 6:104. [PMID: 28330174 PMCID: PMC4835422 DOI: 10.1007/s13205-016-0418-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/21/2016] [Indexed: 12/24/2022] Open
Abstract
Food insecurity is a major issue in current scenario where a large section of mankind is at risk of insufficient diet. As food productivity has its limits, the prospecting of unutilized or underutilized flora as food candidates is collectively recognized as a sustainable option. In the past decade, a number of obscure plants have been identified to be rich in dietary components and deemed fit for integration into the food platter. This review discusses a candidate Salicornia, belonging to family Amaranthaceae. This halophyte has a broad geographical distribution, and phytochemical profiling has indicated its food relevance. An array of functional nutrients as fibers, polyphenols, and flavonoids have been detected in Salicornia. Though high salt, oxalate and saponin content in the plants are anti-nutrients, they can be removed to justify usage of Salicornia as a ‘sea vegetable’. Apart from culinary relevance, medicinal attributes like immunomodulatory, lipid-lowering, antiproliferative, osteoprotective, and hypoglycemic render this lesser-known marsh plant significant for phytochemical studies. This appraisal is expected to be useful towards further research and popularization of this extremophile halophyte.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.
| |
Collapse
|