1
|
Zhang H, Ma X, Wang Z, Han B, Yang Z, He D. Highly selective removal of thallous ions from wastewater using Prussian Blue biochar composite. Sci Rep 2024; 14:21479. [PMID: 39277637 PMCID: PMC11401947 DOI: 10.1038/s41598-024-72245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Thallium, a highly toxic pollutant, shows greater toxicity to human than other common heavy metals such as mercury, lead, cadmium and its effective removal from wastewater gains great attention. The main restriction for the Tl+ removal is the interference of a high concentration of co-existing ions in wastewater. Therefore, the goal of the current work was to synthesis adsorbent with high selectivity for the Tl+ removal. Herein, the pore size sieving strategy was proposed and Prussian blue-impregnated biochar (BC@PB) particles was synthesized. More than 95% Tl+ can be removed even the concentrations of the coexistence ions (Na+, Cd2+, and Zn2+) 1,000 higher than the initial concentration of Tl+ (500 μg/L). BC@PB also showed large adsorption capacity (9365 μg/g) and more than 99% Tl+ (initial concentration, 500 μg/L) were removed in just 1 min. The BC@PB had excellent and stable Tl+ removal ability (> 99%) over a range of pH from 3 to 9, which covered the pH range of common thallium-containing wastewater. The density functional theory (DFT) calculation confirmed that not only hydrated volume but also the hydration free energy of ions, which governed the energy barrier for ions entering into narrow channels of BC@PB, played essential roles on the selectivity removal of Tl+. Overall, due to its high selectivity, high adsorption capacity and easy preparation process, the synthesized BC@PB particles based on the pore sizing sieving strategy, can be a promising candidate for the removal of thallium from wastewater.
Collapse
Affiliation(s)
- Hailong Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Xiaoming Ma
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, China
| | - Zhangxin Wang
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Bin Han
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Zhengheng Yang
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China
| | - Di He
- Key Laboratory of City Cluster Environmental Safety and Green Development (Guangdong University of Technology), Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Jabłońska-Czapla M, Grygoyć K, Yandem G. Assessment of contamination, mobility and application of selected technology-critical elements as indicators of anthropogenic pollution of bottom sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49694-49714. [PMID: 39078551 PMCID: PMC11324682 DOI: 10.1007/s11356-024-34377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
The study investigates the potential of technology-critical elements (TCEs) in the bottom sediments of the Biała Przemsza River as indicators of anthropogenic activities. The mass fractions of TCEs: Ge, Ga, In, Tl, Sb and Te (and other elements) in the sediment were analysed by inductively coupled plasma mass spectrometry with the maximum mass fractions: 2.46, 25.6, 0.528, 27.7, 12.5 and 0.293 mg/kg, respectively. Distribution and identification of TCE sources were supported by statistical analysis (principal component analysis coupled with varimax rotation and hierarchical cluster analysis). Assessments of TCE contamination using the geoaccumulation index, pollution index, contamination factor, enrichment factor and the antimony-to-arsenic ratio highlighted the high contamination of bottom sediments by Sb, Ga, Tl, Cd, As, Zn, Pb and moderate contamination by Co, In and V. Distinct behaviour patterns were observed among TCEs, revealing Sb and Tl as potential indicators of Zn-Pb ore mining activities. Co, V, Ge and, to a lesser extent, Te emerged as promising indicators of coal and coal fly ash effluents. Sequential chemical extraction of TCEs showed that Sb, In and Tl had the highest mobility from sediments. The Risk Assessment Code calculations suggest, that in the Biała Przemsza River bottom sediments, there is an average risk of contamination by As, Tl and Mn. Soluble forms of Tl, Ge, Sb, Te and In were identified in descending order, indicating their bioavailability.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland.
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland
| | - George Yandem
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland
| |
Collapse
|
3
|
Kawałko D, Karczewska A, Lewińska K. Environmental risk associated with accumulation of toxic metalloids in soils of the Odra River floodplain-case study of the assessment based on total concentrations, fractionation and geochemical indices. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4461-4476. [PMID: 36820947 PMCID: PMC10310573 DOI: 10.1007/s10653-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The floodplain soils are often heavily enriched in metal(loid)s released from the industrial areas. A related environmental risk depends on their total concentrations and the forms and conditions conducive to mobilization. This study was aimed to examine the concentrations of metal(loid)s in the Odra floodplain soils and to assess the risk associated with their possible contamination. In this study, topsoil and deeper soil layer samples were collected from the inter- and out-of-embankment zones. Total concentrations of Pb, Zn, Cu, As, Mn and Fe, and their extractable fractions were determined in 1 M NH4NO3 (actual solubility) and by BCR sequential extraction. The environmental risk was assessed based on total concentrations, according to legal regulations, geochemical enrichment indices and extractability of elements, with considering soil morphological features. Some topsoil samples from the inter-embankment zone turned out considerably enriched in Pb, Zn, Cu, and As, as confirmed by geochemical indices. Zn and As concentrations in some samples exceeded the permissible values defined by Polish law. Zn and Mn showed a high actual solubility, but a simple experiment proved that it can be efficiently reduced by liming. BCR fractionation showed that all the elements occurred mainly in reducible forms. Therefore, the risk of their release from the layers that do not indicate redoximorphic features was assessed as negligible. The study showed that such a complementary approach is needed to assess the real environmental risk in the case of soils considerably enriched in potentially toxic elements.
Collapse
Affiliation(s)
- Dorota Kawałko
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Anna Karczewska
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Karolina Lewińska
- Department of Soil Science and Remote Sensing of Soils, Adam Mickiewicz University in Poznań, Ul. Krygowskiego 10, 61-680, Poznań, Poland
| |
Collapse
|
4
|
Kawałko D, Karczewska A. Profile Distributions of Potentially Toxic Metal(loid)s in Soils of the Middle Odra Floodplain (SW Poland). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4196. [PMID: 36901208 PMCID: PMC10001738 DOI: 10.3390/ijerph20054196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Floodplain soils are often contaminated with potentially toxic elements of geogenic and anthropogenic origin. This also applies to a valley of the Odra river, which in its upper reach flows through areas of historical and contemporary mining and heavy industry. This study examined the distribution of typically anthropogenic metal(loid)s, i.e., Pb, Zn, Cu, As and Cd, and geogenic metals, i.e., Mn and Fe, in soil profiles of the middle Odra valley, and analyzed factors that determine their concentrations. Thirteen soil profiles, located inter the embankment area and outside the embankments, were examined. Most of profiles indicated stratification typical for alluvial soils. Topsoil layers in the inter-embankment zone showed considerable enrichment in Pb, Zn and Cd, and to a lesser extent in Cu and As. Low soil pH is an important factor of environmental risk; therefore, acidic soils definitely require liming. The soils located out of embankments did not show any considerable enrichment in the elements examined. Based on significant correlations between the concentrations of metal(loid)s in deep soil layers and soil texture, the values of local geochemical background were derived. Outliers, particularly in the case of As, were explained by possible redistribution under reducing conditions.
Collapse
|
5
|
Jabłońska-Czapla M, Grygoyć K. Selected technology-critical elements as indicators of anthropogenic contamination of surface water and suspended solids on the example of the Biała Przemsza River (Poland). CHEMOSPHERE 2022; 307:135801. [PMID: 35932918 DOI: 10.1016/j.chemosphere.2022.135801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Pollution of surface waters from anthropogenic activities is a global problem, affecting natural ecosystems, having a large impact on the life and health of living organisms. The development of mining and metallurgic industries of Pb and Zn ores in the Biała Przemsza cachment area has had a strong influence on the surface waters and suspended solids. This paper proposes the use of selected critical elements such as Tl, Te, Ga, Ge and In as indicators of anthropogenic pollution of surface waters and suspended solids on the example of the Biała Przemsza River. The impact of strongly anthropogenic urban-industrial catchment on the temporal and spatial distribution of the selected TCEs content in the water and suspension of the Biała Przemsza River depending on the oxygen, pH and Eh conditions is presented. Research has shown that selected critical elements such as Te, Ge, and In can be indicators of anthropogenic pollution of surface waters. In the case of the Biała Przemsza River, elements such as Ga and Tl cannot be indicators of anthropogenic pollution due to their presence in the zinc and lead ore deposits occurring in the river basin. Correlation matrices showed significant relationships between the selected TCEs and other water parameters. The calculated water pollution indices confirmed that the Biała Przemsza River is the most polluted in the last three sampling points.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland.
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of Polish Academy of Sciences, M. Sklodowskiej-Curie 34 St., 41-819, Zabrze, Poland.
| |
Collapse
|
6
|
Multifunctional Silica-Based Amphiphilic Block Copolymer Hybrid for Cu(II) and Sodium Oleate Adsorption in Beneficiation Wastewater. Polymers (Basel) 2022; 14:polym14194187. [PMID: 36236136 PMCID: PMC9571196 DOI: 10.3390/polym14194187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
Beneficiation wastewater contains various types of pollutants, such as heavy metal ions and organic pollutants. In this work, a silica-based amphiphilic block copolymer, SiO2-g-PBMA-b-PDMAEMA, was obtained by surface-initiated atom transfer radical polymerization (SI-ATRP) for Cu(II) and sodium oleate adsorption in beneficiation wastewater, using butyl methacrylate (BMA) as a hydrophobic monomer and 2-(dimethylamino)ethylmethacrylate (DMAEMA) as a hydrophilic monomer. FTIR, TGA, NMR, GPC, XRD, N2 adsorption-desorption isotherms and TEM were used to characterize the structure and morphology of the hybrid adsorbent. The introduction of PBMA greatly increased the adsorption of sodium oleate on SiO2-g-PBMA-b-PDMAEMA. Adsorption kinetics showed that the adsorption of Cu(II) or sodium oleate on SiO2-g-PBMA-b-PDMAEMA fitted the pseudo-second-order model well. Adsorption isotherms of Cu(II) on SiO2-g-PBMA-b-PDMAEMA were better described by the Langmuir adsorption isotherm model, and sodium oleate on SiO2-g-PBMA-b-PDMAEMA was better described by the Freundlich adsorption isotherm model. The maximum adsorption capacity of Cu(II) and sodium oleate calculated from Langmuir adsorption isotherm equation reached 448.43 mg·g-1 and 129.03 mg·g-1, respectively. Chelation and complexation were considered as the main driving forces of Cu(II) adsorption, and the van der Waals force as well as weak hydrogen bonds were considered the main driving forces of sodium oleate adsorption. The adsorbent was recyclable and showed excellent multicomponent adsorption for Cu(II) and sodium oleate in the mixed solution. SiO2-g-PBMA-b-PDMAEMA represents a satisfying adsorption material for the removal of heavy metal ions and organic pollutants in beneficiation wastewater.
Collapse
|
7
|
Jabłońska-Czapla M, Zerzucha P, Grygoyć K. Impact of River Water and Bottom Sediment Pollution on Accumulation of Metal(loid)s and Arsenic Species in the Coastal Plants Stuckenia pectinata L., Galium aparine L., and Urtica dioica L.: A Chemometric and Environmental Study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:60-79. [PMID: 32285162 PMCID: PMC7297822 DOI: 10.1007/s00244-020-00727-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The role of water and bottom sediment pollution of a river subjected to a strong industrial anthropo-pressure in coastal plants was investigated. The work presented the influence of polluted environment on accumulation of metal(loid)s (including arsenic and its species) in Stuckenia pectinata L., Galium aparine L., and Urtica dioica L. The study provided important information on the contents of organic and inorganic arsenic species in selected plants and their response to heavy metal and arsenic contamination. The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid), and DMA (dimethylarsinic acid) ions were successfully separated on the Hamilton PRP-X100 column with high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The Pollution Load Index and geo-accumulation Index (Igeo) values clearly indicate significant pollution of the examined ecosystem with heavy metals. The chemometric analysis with the concepts of (Dis)similarity Analysis, Cluster Analysis, and Principal Component Analysis helped to visualize the variability of the As species concentrations and to analyse correlations between sampling point locations and analyte contents.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland.
| | - Piotr Zerzucha
- Faculty of Philosophy, The Pontifical University of John Paul II, 9 Kanonicza Street, 31-002, Kraków, Poland
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland
| |
Collapse
|
8
|
Al Naggar Y, Dabour K, Masry S, Sadek A, Naiem E, Giesy JP. Sublethal effects of chronic exposure to CdO or PbO nanoparticles or their binary mixture on the honey bee (Apis millefera L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19004-19015. [PMID: 30280346 DOI: 10.1007/s11356-018-3314-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Cadmium and lead-based nanotechnologies are increasingly used in agricultural, industrial, and biological processes; however, potential adverse effects of nanomaterials on honey bees had not been assessed. In this study, effects of exposures to sublethal concentrations of PbO and CdO nanoparticles (NPs), either separately or in combination on honey bee (Apis mellifera) workers, were assessed. Honey bee workers were orally exposed for 9 days under laboratory conditions to sublethal concentrations (20% of LC50) of CdO (0.01 mg/ml-) and PbO (0.65 mg/ml-) NPs either separately or combined. Effects on survival, feeding rate, activity of acetylcholinesterase (AChE), and expression of selected stress-related detoxifying enzymes were quantified. Survival and feeding rates decreased particularly in bees fed sugar syrup containing CdO NPs or binary mixtures of NPs of both metal oxides. Expressions of genes involved in detoxification of xenobiotics were affected by various combinations. Expression of catalase was 13.6-fold greater in bees consumed sugar syrup diet containing binary mixture of sublethal concentrations of both CdO and PbO NPs than it was in unexposed, control bees. AChE activity in heads of honey bees was inhibited by 3.8-, 3.0-, and 2.8-fold relative to control, respectively, in response to exposure to Cd or/and Pb oxide NPs. This result indicates potential neurotoxic effects of these NPs to honey bees. CdO NPs exhibited greater potency to honey bees. Overall, sublethal concentrations of CdO or/and PbO NPs resulted in detrimental effects on honeybee workers.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Centre of Integrative Bee Research (CIBER), Entomology Department, University of California at Riverside, Riverside, CA, 92507, USA.
| | - Khaled Dabour
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Saad Masry
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ahmed Sadek
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, 12613, Egypt
| | - Elsaied Naiem
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Jabłońska-Czapla M, Zerzucha P. Metal(loid) speciation in a river subjected to industrial anthropopressure: chemometric and environmental studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:810-825. [PMID: 30929561 DOI: 10.1080/10934529.2019.1596700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
High-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was applied to the speciation of arsenic [As(III), As(V), and AsB (arsenobetaine)], MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), antimony [Sb(III) and Sb(V)], and chromium [Cr(III) and Cr(VI)] in water and bottom sediment samples collected from the urban Bytomka River (Poland). The main objective of the study was the research of As, Cr and Sb species in the Bytomka River, as well as the simplified three-stage sequential chemical extraction of bottom sediments according to the Institute for Reference Materials and Measurements (BCR). The contents of V, Mn, Co, Ni, Cu, Zn, Rb, Sr, Ag, Cd, Te, Ba, Tl, Pb, Fe, Ga, and U in the water and bottom sediments were tested using the ICP-MS technique. The risk assessment code (RAC) indicated a medium risk for As and a high risk for Sb to the environment. Sequential chemical extraction of bottom sediments showed that As and Cr were strongly demobilized. Sb was mainly bound with the ion-exchange fraction and posed a serious threat to the environment. Chemometric analysis with the (dis)similarity analysis and principal component analysis (PCA) allowed for visualization of the variability and correlations of the analyzed elements.
Collapse
Affiliation(s)
| | - Piotr Zerzucha
- b Faculty of Philosophy , The Pontifical University of John Paul II , Kraków , Poland
| |
Collapse
|
10
|
Comparison of Element Concentrations (Ba, Mn, Pb, Sr, Zn) in the Bones and Teeth of Wild Ruminants from the West Carpathians and the Tian-Shan Mountains as Indicators of Air Pollution. ATMOSPHERE 2019. [DOI: 10.3390/atmos10020064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Through analyzing the concentrations of selected heavy metals (Ba, Mn, Pb, Sr, Zn) in the bones and teeth of wild living and ecologically equivalent ruminants from the Tian-Shan (Capra sibirica and Ovis ammon polii) and the West Carpathians (Rupicapra rupicapra tatrica) we compared the environmental pollution levels of these two mountain ranges. The samples were analyzed by X-ray fluorescence. Significantly higher contents of Zn and Mn as well as a higher frequency of measurable occurrences of Mn, Ba, and Pb in samples from the West Carpathians confirmed the results of our previous study, that the West Carpathians are relatively more polluted by heavy metals than the Tian-Shan Mountains. The most probably contamination sources are mining and smelting as well as traffic emissions, which can reach remote mountain ranges through long distance atmospheric transport.
Collapse
|
11
|
Tejeda-Benítez L, Noguera-Oviedo K, Aga DS, Olivero-Verbel J. Toxicity profile of organic extracts from Magdalena River sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1519-1532. [PMID: 29098576 DOI: 10.1007/s11356-017-0364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The Magdalena River, the main river of Colombia, receives contaminated effluents from different anthropogenic activities along its path. However, the Magdalena River is used as drinking water source for approximately 30 million inhabitants, as well as a major source of fish for human consumption. Only a few studies have been conducted to evaluate the environmental and toxicological quality of the Magdalena River. To evaluate sediment toxicity, wild-type and GFP transgenic Caenorhabditis elegans were exposed to methanolic extracts, and effects on lethality, locomotion, growth, and gene expression were determined based on fluorescence spectroscopy. These biological and biochemical parameters were correlated with measured pollutant concentrations (PAHs and trace elements), identifying patterns of toxicity along the course of the river. Effects on lethality, growth, and locomotion were observed in areas influenced by industrial, gold mining, and petrochemical activities. Changes in gene expression were evident for cyp-34A9, especially in the sampling site located near an oil refinery, and at the seaport, in Barranquilla City. Body bend movements were moderately correlated with Cr and As concentrations. The expression of mtl-1, mtl-2, hsp-6, and hsp-70 were significantly associated with Pb/U, Pb, Sr, and As/Sr/Pb/U, respectively. Interestingly, toxicity of methanolic as well as aqueous extracts were more prone to be dependent on Cd, Zn, and Th. In general, ecological risk assessment showed sediments display low environmental impact in terms of evaluated metals and PAHs. Different types of waste disposal on the Magdalena River, as a result of mining, domestic, agricultural, and industrial activities, incorporate toxic pollutants in sediments, which are capable of generating a toxic response in C. elegans.
Collapse
Affiliation(s)
- Lesly Tejeda-Benítez
- Development and Use of Biomass Research Group, School of Engineering, University of Cartagena, Cartagena, Colombia
| | - Katia Noguera-Oviedo
- Department of Chemistry, Office: 611 Natural Sciences Complex, University at Buffalo, Buffalo, New York, USA
| | - Diana S Aga
- Department of Chemistry, Office: 611 Natural Sciences Complex, University at Buffalo, Buffalo, New York, USA
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW More than a century of hard rock mining has left a legacy of >160,000 abandoned mines in the Western USA that are home to the majority of Native American lands. This article describes how abrogation of treaty rights, ineffective policies, lack of infrastructure, and a lack of research in Native communities converge to create chronic exposure, ill-defined risks, and tribal health concerns. RECENT FINDINGS Recent results show that Native Americans living near abandoned uranium mines have an increased likelihood for kidney disease and hypertension, and an increased likelihood of developing multiple chronic diseases linked to their proximity to the mine waste and activities bringing them in contact with the waste. Biomonitoring confirms higher than expected exposure to uranium and associated metals in the waste in adults, neonates, and children in these communities. These sites will not be cleaned up for many generations making it critical to understand and prioritize exposure-toxicity relationships in Native populations to appropriately allocate limited resources to protect health. Recent initiatives, in partnership with Native communities, recognize these needs and support development of tribal research capacity to ensure that research respectful of tribal culture and policies can address concerns in the future. In addition, recognition of the risks posed by these abandoned sites should inform policy change to protect community health in the future.
Collapse
Affiliation(s)
- Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, 1000 Stanford Drive NE, MSC095360, Albuquerque, NM, 87131-0001, USA.
| | - Joseph Hoover
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, 1000 Stanford Drive NE, MSC095360, Albuquerque, NM, 87131-0001, USA
| | - Debra MacKenzie
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, 1000 Stanford Drive NE, MSC095360, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
13
|
Strzebońska M, Jarosz-Krzemińska E, Adamiec E. Assessing Historical Mining and Smelting Effects on Heavy Metal Pollution of River Systems over Span of Two Decades. WATER, AIR, AND SOIL POLLUTION 2017; 228:141. [PMID: 28356605 PMCID: PMC5348558 DOI: 10.1007/s11270-017-3327-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/02/2017] [Indexed: 06/01/2023]
Abstract
Research was conducted on the most polluted river system in Poland, impacted by active and historical mining. Bottom sediment, suspended particulate matter and river water were collected in 2014 from Przemsza river and its tributaries. Sampling points remained the same as those chosen in a 1995 study. This allowed the comparison of heavy metal accumulation in bottom sediment over a span of almost two decades. It was concluded that Przemsza river water and its tributaries are heavily contaminated with the following (in μg/dm3): Pb (0.99-145.7), Zn (48-5020), and Cd 0.12-12.72). Concentrations of metals in bottom sediment exceeded the background values by a factor of several hundred (100 times for Zn, 150 times for Pb, and 240 times for Cd). The arithmetic mean for metal concentration in fractions <63 μm sampled in 2014 has remained comparable to the level found in 1995 (in mg/kg): Zn 16,918 and 13,505, Pb 4177 and 4758, and Cd 92 and 134. It was determined that 20-50% more metals have accumulated in suspended matter, rather than in bottom sediment (in mg/kg): 20,498 Zn, Pb 5170, and 164 Cd. This exceeds the limits of the most polluted LAWA Class IV classification. Since the concentrations of Zn, Pb, and Cd increase drastically after the outlet of the Przemsza into the Vistula, it was concluded that river Przemsza is the cause of significant degradation of Vistula's bottom sediment and suspended matter. A two-decade legacy of extremely high contamination of the Przemsza river sediments has persisted despite decreasing mining and smelting activity in the vicinity.
Collapse
Affiliation(s)
- Magdalena Strzebońska
- AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
| | | | - Ewa Adamiec
- AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
| |
Collapse
|