1
|
Davletgildeeva AT, Kuznetsov NA. Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes. Microorganisms 2024; 12:1814. [PMID: 39338488 PMCID: PMC11434427 DOI: 10.3390/microorganisms12091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent, and toxic environmental pollutants. Many anthropogenic and some natural factors contribute to the spread and accumulation of PAHs in aquatic and soil systems. The effective and environmentally friendly remediation of these chemical compounds is an important and challenging problem that has kept scientists busy over the last few decades. This review briefly summarizes data on the main sources of PAHs, their toxicity to living organisms, and physical and chemical approaches to the remediation of PAHs. The basic idea behind existing approaches to the bioremediation of PAHs is outlined with an emphasis on a detailed description of the use of bacterial strains as individual isolates, consortia, or cell-free enzymatic agents.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
3
|
Huizenga JM, Schindler J, Simonich MT, Truong L, Garcia-Jaramillo M, Tanguay RL, Semprini L. PAH bioremediation with Rhodococcus rhodochrous ATCC 21198: Impact of cell immobilization and surfactant use on PAH treatment and post-remediation toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134109. [PMID: 38547751 PMCID: PMC11042972 DOI: 10.1016/j.jhazmat.2024.134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.
Collapse
Affiliation(s)
- Juliana M Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR 97331, USA.
| | - Jason Schindler
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Michael T Simonich
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Lisa Truong
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Manuel Garcia-Jaramillo
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Robyn L Tanguay
- Oregon State University, Department of Environmental and Molecular Toxicology, 28645 East Hwy 34, Corvallis, OR 97333, USA.
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR 97331, USA.
| |
Collapse
|
4
|
Kharey GS, Palace V, Whyte L, Greer CW. Native freshwater lake microbial community response to an in situ experimental dilbit spill. FEMS Microbiol Ecol 2024; 100:fiae055. [PMID: 38650064 PMCID: PMC11068069 DOI: 10.1093/femsec/fiae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation.
Collapse
Affiliation(s)
- Gurpreet S Kharey
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Vince Palace
- International Institute for Sustainable Development – Experimental Lakes Area, Pine Rd, Kenora, Unorganized Ontario, P0V 2V0, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
- National Research Council Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave., Montreal, Quebec, H4P 2R2, Canada
| |
Collapse
|
5
|
Tarigholizadeh S, Sushkova S, Rajput VD, Ranjan A, Arora J, Dudnikova T, Barbashev A, Mandzhieva S, Minkina T, Wong MH. Transfer and Degradation of PAHs in the Soil-Plant System: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:46-64. [PMID: 38108272 DOI: 10.1021/acs.jafc.3c05589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, persistent organic pollutants that threaten ecosystems and human health. Consistent monitoring is essential to minimize the entry of PAHs into plants and reduce food chain contamination. PAHs infiltrate plants through multiple pathways, causing detrimental effects and triggering diverse plant responses, ultimately increasing either toxicity or tolerance. Primary plant detoxification processes include enzymatic transformation, conjugation, and accumulation of contaminants in cell walls/vacuoles. Plants also play a crucial role in stimulating microbial PAHs degradation by producing root exudates, enhancing bioavailability, supplying nutrients, and promoting soil microbial diversity and activity. Thus, synergistic plant-microbe interactions efficiently decrease PAHs uptake by plants and, thereby, their accumulation along the food chain. This review highlights PAHs uptake pathways and their overall fate as contaminants of emerging concern (CEC). Understanding plant uptake mechanisms, responses to contaminants, and interactions with rhizosphere microbiota is vital for addressing PAH pollution in soil and ensuring food safety and quality.
Collapse
Affiliation(s)
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Anuj Ranjan
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida 201301, India
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Andrey Barbashev
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Hong Kong, China; Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
6
|
Umar HA, Khanan MFA, Shiru MS, Ahmad A, Rahman MZA, Din AHM. An integrated investigation of hydrocarbon pollution in Ahoada area, Niger Delta Region, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116848-116859. [PMID: 36633746 DOI: 10.1007/s11356-023-25144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
This study investigates hydrocarbon pollution in the Ahoada community of the Niger Delta region of Nigeria. The study uses a geographic information system (GIS) for mapping oil spill hotspots in the region. The resistivity method was used to delineate the extent of hydrocarbon pollution to a depth of 19.7 m in the Ahoada area of the region. Three categories of soil samples, impacted soil (IMS), remediated soil (RS), and control soil (CS), were collected and analyzed for the presence of BTEX, PAH, TPH, TOC, and TOG. The concentrations of the samples from the IMS and RS were compared to that of the CS to determine the extent of pollution. The GIS mapping shows that the most polluted areas in the Niger Delta Region are Rivers, Bayelsa, and Delta states. Results of the geophysical images revealed contaminants' presence to depths beyond 20 m at some locations in the study area. The highest depth of contaminant travel was at Ukperede. Soil samples' analysis showed that the range of concentrations of TPH in IMS at Oshie was 17.27-58.36 mg/kg; RS was 11.73-50.78 mg/kg which were higher than the concentrations of 0.68 mg/kg in the CS. PAHs are more prevalent in Ukperede, ranging from 54.56 to 77.54 mg/kg. BTEX concentrations ranged from 0.02 to 0.38 mg/kg for IMP and 0.01-2.7 mg/kg for RS against a CS value of 0.01 mg/kg. The study revealed that there are characteristically high resistivity values in the samples which were corroborated by the findings from the resistivity survey. TOC was found to be higher in the IMS and RS than in the CS, demonstrating that a significant quantity of the hydrocarbon has undergone appreciable decomposition.
Collapse
Affiliation(s)
- Hafiz Aminu Umar
- Department of Environmental Sciences, Faculty of Science, Federal University Dutse, P.M.B 7156, Dutse, Nigeria.
- Department of Surveying and Geoinformatics, Baze University Abuja, Abuja, Nigeria.
| | - Mohd Faisal Abdul Khanan
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| | - Mohammed Sanusi Shiru
- Department of Environmental Sciences, Faculty of Science, Federal University Dutse, P.M.B 7156, Dutse, Nigeria
| | - Anuar Ahmad
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Zulkarnain Abdul Rahman
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| | - Ami Hassan Md Din
- Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
7
|
Barathi S, J G, Rathinasamy G, Sabapathi N, Aruljothi KN, Lee J, Kandasamy S. Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. CHEMOSPHERE 2023; 337:139396. [PMID: 37406936 DOI: 10.1016/j.chemosphere.2023.139396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are distributed worldwide due to long-term anthropogenic pollution sources. PAHs are recalcitrant and highly persistent in the environment due to their inherent properties, such as heterocyclic aromatic ring structures, thermostability, and hydrophobicity. They are highly toxic, carcinogenic, immunotoxic, teratogenic, and mutagenic to various life systems. This review focuses on the unique data of PAH sources, exposure routes, detection techniques, and harmful effects on the environment and human health. This review provides a comprehensive and systematic compilation of eco-friendly biological treatment solutions for PAH remediation, such as microbial remediation approaches utilizing microbial cultures. In situ and Ex situ bioremediation of PAH methods, including composting land farming, biopiles, bioreactors bioaugmentation, and phytoremediation processes, are discussed in detail, as is a summary of the factors affecting and limiting PAH bioremediation. This review provides an overview of emerging technologies that use multi-process combinatorial treatment approaches and answers to generating value-added by-products during PAH remediation.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Gitanjali J
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, 63014, Tamil Nadu, India
| | - Gandhimathi Rathinasamy
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, Tamilnadu, India
| | - Nadana Sabapathi
- Centre of Translational Research, Shenzhen Bay Laboratory, Guangming District, Shenzhen, 518107, China
| | - K N Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore, 641004, India.
| |
Collapse
|
8
|
Chen R, Zhao Z, Xu T, Jia X. Microbial Consortium HJ-SH with Very High Degradation Efficiency of Phenanthrene. Microorganisms 2023; 11:2383. [PMID: 37894041 PMCID: PMC10609217 DOI: 10.3390/microorganisms11102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Phenanthrene (PHE) is one of the model compounds of polycyclic aromatic hydrocarbons (PAHs). In this study, a natural PHE-degrading microbial consortium, named HJ-SH, with very high degradation efficiency was isolated from soil exposed to long-term PHE contamination. The results of GC analysis showed that the consortium HJ-SH degraded 98% of 100 mg/L PHE in 3 days and 93% of 1000 mg/L PHE in 5 days, an efficiency higher than that of any other natural consortia, and even most of the engineered strains and consortia reported so far. Seven dominating strains were isolated from the microbial consortium HJ-SH, named SH-1 to SH-7, which were identified according to morphological observation and 16S rDNA sequencing as Pseudomonas sp., Stenotrophomonas sp., Delftia sp., Pseudomonas sp., Brevundimonas sp., Curtobacterium sp., and Microbacterium sp., respectively. Among all the seven single strains, SH-4 showed the strongest PHE degradation ability, and had the biggest degradation contribution. However, it is very interesting that the microbial consortium can hold its high degradation ability only with the co-existence of all these seven single strains. Moreover, HJ-SH exhibited a very high tolerance for PHE, up to 4.5 g/L, and it can degrade some other typical organic pollutants such as biphenyl, anthracene, and n-hexadecane with the degradation ratios of 93%, 92% and 70%, respectively, under 100 mg/L initial concentration in 5 days. Then, we constructed an artificial consortium HJ-7 consisting of the seven single strains, SH-1 to SH-7. After comparing the degradation ratios, cell growth, and relative degradation rates, it was concluded that the artificial consortium HJ-7 with easier reproducibility, better application stability, and larger room for modification can largely replace the natural consortium HJ-SH. In conclusion, this research provided novel tools and new insights for the bioremediation of PHE and other typical organic pollutants using microbial consortia.
Collapse
Affiliation(s)
- Rui Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
| | - Zhenhua Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Kumari A, Upadhyay V, Kumar S. A critical insight into occurrence and fate of polycyclic aromatic hydrocarbons and their green remediation approaches. CHEMOSPHERE 2023; 329:138579. [PMID: 37031842 DOI: 10.1016/j.chemosphere.2023.138579] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Over the last century, the tremendous growth in industrial activities particularly in the sectors of pharmaceuticals, petrochemicals and the reckless application of fertilizers and insecticides has raised the contamination of polyaromatic hydrocarbons (PAHs) tremendously. For more than a decade, the main focus of environmental experts is to come up with management approaches for the clean-up of sites polluted with PAHs. These are ubiquitous in nature i.e., widely distributed in ecosystem ranging from soil, air and marine water. Most of the PAHs possess immunotoxicity, carcinogenicity and genotoxicity. Being highly soluble in lipids, they are readily absorbed into the mammalian gastro intestinal tract. They are widely distributed with marked tendency of getting localized into body fat in varied tissues. Several remediation technologies have been tested for the removal of these environmental contaminants, particularly bioremediation has turned out to be a hope as the safest and cost-effective option. Therefore, this review first discusses various sources of PAHs, their effect on human health and interactions of PAHs with soils and sediments. In this review, a holistic insight of current scenario of existing remediation technologies and how they can be improvised along with the hindrances in the path of these technologies are properly addressed.
Collapse
Affiliation(s)
- Archana Kumari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Vidisha Upadhyay
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
10
|
Bonatti E, Dos Santos A, Birolli WG, Rodrigues-Filho E. Endophytic, extremophilic and entomophilic fungi strains biodegrade anthracene showing potential for bioremediation. World J Microbiol Biotechnol 2023; 39:152. [PMID: 37029326 DOI: 10.1007/s11274-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Anthropogenic activities have been increasing Polycyclic Aromatic Hydrocarbons (PAHs) release, promoting an urgent need for decontamination methods. Therefore, anthracene biodegradation by endophytic, extremophilic, and entomophilic fungi was studied. Moreover, a salting-out extraction methodology with the renewable solvent ethanol and the innocuous salt K2HPO4 was employed. Nine of the ten employed strains biodegraded anthracene in liquid medium (19-56% biodegradation) after 14 days at 30 °C, 130 rpm, and 100 mg L-1. The most efficient strain Didymellaceae sp. LaBioMMi 155, an entomophilic strain, was employed for optimized biodegradation, aiming at a better understanding of how factors like pollutant initial concentration, pH, and temperature affected this process. Biodegradation reached 90 ± 11% at 22 °C, pH 9.0, and 50 mg L-1. Futhermore, 8 different PAHs were biodegraded and metabolites were identified. Then, experiments with anthracene in soil ex situ were performed and bioaugmentation with Didymellaceae sp. LaBioMMi 155 presented better results than natural attenuation by the native microbiome and biostimulation by the addition of liquid nutrient medium into soil. Therefore, an expanded knowledge about PAHs biodegradation processes was achieved with emphasis to the action of Didymellaceae sp. LaBioMMi 155, which can be further employed for in situ biodegradation (after strain security test), or for enzyme identification and isolation aiming at oxygenases with optimal activity under alkaline conditions.
Collapse
Affiliation(s)
- Erika Bonatti
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Alef Dos Santos
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| |
Collapse
|
11
|
Lu X, Luo T, Li X, Wang Y, Ma Y, Wang B. Effects of combined remediation of pre-ozonation and bioaugmentation on degradation of benzo[a]pyrene and microbial community structure in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55557-55568. [PMID: 36897443 DOI: 10.1007/s11356-023-25980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The combination technique of pre-ozonation and bioaugmentation is promising for remediating benzo[a]pyrene (BaP)-contaminated soil. However, little is known about the effect of coupling remediation on the soil biotoxicity, soil respiration, enzyme activity, microbial community structure, and microbial in the process of remediation. This study developed two coupling remediation strategies (pre-ozonation coupled with bioaugmentation by addition of polycyclic aromatic hydrocarbons (PAHs) specific degrading bacteria or activated sludge), compared with sole ozonation and sole bioaugmentation, to improve degradation of BaP and recovery of soil microbial activity and community structure. Results showed that the higher removal efficiency of BaP (92.69-93.19%) was found in coupling remediation, compared with sole bioaugmentation (17.71-23.28%). Meanwhile, coupling remediation significantly reduced the soil biological toxicity, promoted the rebound of microbial counts and activity, and recovered the species numbers and microbial community diversity, compared with sole ozonation and sole bioaugmentation. Besides, it was feasible to replace microbial screening with activated sludge, and coupling remediation by addition of activated sludge was more conducive to the recovery of soil microbial communities and diversity. This work provides a strategy of pre-ozonation coupled with bioaugmentation to further degrade BaP in soil by promoting the rebound of microbial counts and activity, as well as the recovery of species numbers and microbial community diversity.
Collapse
Affiliation(s)
- Xueqin Lu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ting Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
- Sichuan Jinmei Environmental Protection Co., Ltd, Chengdu, Sichuan, 610096, People's Republic of China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China.
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Yaxuan Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yongsong Ma
- School of Resource and Environmental Sciences, Hubei International Scientific and Technologies Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610500, People's Republic of China
| |
Collapse
|
12
|
Bokade P, Bajaj A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: Exploring fungal bacterial interactions. J Basic Microbiol 2023; 63:239-256. [PMID: 36670077 DOI: 10.1002/jobm.202200499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous high global concern environmental pollutants and tend to bioaccumulate due to hydrophobic properties. These xenobiotics, having variable concentrations along different matrices, gradually undergo various physical, chemical, and biological transformation processes. Myco-remediation aids accelerated degradation by effectively transforming complex ring structures to oxidized/hydroxylated intermediates, which can further funnel to bacterial degradation pathways. Exploitation of such complementing fungal-bacterial enzymatic activity can overcome certain limitations of incomplete bioremediation process. Furthermore, high-throughput molecular methods can be employed to unveil community structure, taxon abundance, coexisting community interactions, and metabolic pathways under stressed conditions. The present review critically discusses the role of different fungal phyla in PAHs biotransformation and application of fungal-bacterial cocultures for enhanced mineralization. Moreover, recent advances in bioassays for PAH residue detection, monitoring, developing xenobiotics stress-tolerant strains, and application of fungal catabolic enzymes are highlighted. Application of next-generation sequencing methods to reveal complex ecological networks based on microbial community interactions and data analysis bias in performing such studies is further discussed in detail. Conclusively, the review underscores the application of mixed-culture approach by critically highlighting in situ fungal-bacterial community nexus and its role in complete mineralization of PAHs for the management of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Huizenga JM, Semprini L. Fluorescent spectroscopy paired with parallel factor analysis for quantitative monitoring of phenanthrene biodegradation and metabolite formation. CHEMOSPHERE 2023; 316:137771. [PMID: 36621684 PMCID: PMC9892308 DOI: 10.1016/j.chemosphere.2023.137771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants released into the environment from both natural and anthropogenic sources that are associated with carcinogenic, mutagenic, and teratogenic health effects. Many remediation strategies for the treatment of PAH contaminated material, including bioremediation, can lead to the formation of toxic transformation products. Analytical techniques for PAHs and PAH transformation products often require extensive sample preparation including solvent extraction and concentration, chromatographic separation, and mass spectrometry to identify and quantify compounds of interest. Excitation-emission matrix (EEM) fluorescent spectroscopy paired with parallel factor analysis (PARAFAC) is an approach for analyzing PAHs that eliminates the need for extensive sample preparation and separation techniques before analysis. However, this technique has rarely been applied to monitoring PAH biotransformation and formation of PAH metabolites. The objectives of this research were to compare an established targeted analytical method to two-dimensional fluorescent spectroscopy and combined EEM-PARAFAC methods to monitor phenanthrene degradation by a bacterial pure culture, Mycobacterium Strain ELW1, identify and quantify phenanthrene transformation products, and derive kinetic constants for phenanthrene degradation and metabolite formation. Both phenanthrene and its primary transformation product, trans-9,10-dihydroxy-9,10-dihydrophenanthrene, were identified and quantified with the EEM-PARAFAC method. The value of the EEM-PARAFAC method was demonstrated in the superiority of sensitivity and accuracy of quantification to two-dimensional fluorescent spectroscopy. Quantification of targets and derivation of kinetic constants using the EEM-PARAFAC method were validated with an established gas chromatography-mass spectrometry (GC-MS) method. To the authors' knowledge, this is the first study to use an EEM-PARAFAC method to monitor, identify, and quantify both PAH biodegradation and PAH metabolite formation by a bacterial pure culture.
Collapse
Affiliation(s)
- Juliana M Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR, 97331, USA.
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St, Corvallis, OR, 97331, USA.
| |
Collapse
|
14
|
Góralczyk-Bińkowska A, Długoński A, Bernat P, Długoński J, Jasińska A. Accelerated PAH Transformation in the Presence of Dye Industry Landfill Leachate Combined with Fungal Membrane Lipid Changes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13997. [PMID: 36360875 PMCID: PMC9654376 DOI: 10.3390/ijerph192113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The ascomycete fungus Nectriella pironii, previously isolated from soil continuously contaminated by dye industry waste, was used for the biodegradation of phenanthrene (PHE), benz[a]anthracene (B[a]A), and benz[a]pyrene (B[a]P). The degradation of polycyclic aromatic hydrocarbons (PAHs) by N. pironii was accelerated in the presence of landfill leachate (LL) collected from the area of fungus isolation. The rate of cometabolic elimination of PHE and B[a]P in the presence of LL was, respectively, 75% and 94% higher than in its absence. LC-MS/MS analysis revealed that PAHs were converted to less-toxic derivatives. The parallel lipidomic study showed changes in membrane lipids, including a significant increase in the content of phosphatidylcholine (PC) (almost double) and saturated phospholipid fatty acids (PLFAs) and a simultaneous reduction (twofold) in the content of phosphatidylethanolamine (PE) and unsaturated PLFAs, which may have promoted the fungus to PHE + LL adaptation. In the presence of PHE, an intense lipid peroxidation (fivefold) was observed, confirming the stabilization of the cell membrane and its extended integrity. Determining the course of elimination and adaptation to harmful pollutants is essential for the design of efficient bioremediation systems in the future.
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Andrzej Długoński
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
- Institute of Ecology and Environmental Protection, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 Street, 90-237 Lodz, Poland
| |
Collapse
|
15
|
Zhi J, Tang Q, Wu S, Kong B, Jiang J, Li Z, Wang Y, Xue C. Degradation of curcumin‐mediated photodynamic technology (PDT) on polycyclic aromatic hydrocarbons in oysters and toxicity evaluation of PDT‐treated oysters. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jinjin Zhi
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Qingjuan Tang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Shuangjie Wu
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Jiali Jiang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhaojie Li
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Yuming Wang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|
16
|
Agrawal N, Kumar V, Shahi SK. Biodegradation and detoxification of phenanthrene in in vitro and in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61767-61782. [PMID: 34231140 DOI: 10.1007/s11356-021-15271-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant organic pollutants generated from agricultural, industrial, and municipal sources, and their strong carcinogenic and teratogenic properties pose a harmful threat to human beings. The present study deals with the bioremediation of phenanthrene by a ligninolytic fungus, Coriolopsis byrsina (Mont.) Ryvarden strain APC5 (GenBank; KY418163.1), isolated from the fruiting body of decayed wood surface. During the experiment, Coriolopsis byrsina strain APC5 was found as a promising organism for the degradation and detoxification of phenanthrene (PHE) in in vitro and in vivo conditions. Further, HPLC analysis showed that the C. byrsina strain degraded 99.90% of 20 mg/L PHE in in vitro condition, whereas 77.48% degradation of 50 mg/L PHE was reported in in vivo condition. The maximum degradation of PHE was noted 25 °C temperature under shaking flask conditions at pH 6.0. Further, GC-MS analysis of fungal treated samples showed detection of 9,10-Dihydroxy phenanthrene, 2,2-Diphenic acid, phthalic acid, 4-heptyloxy phenol, benzene octyl, and acetic acid anhydride as the metabolic products of degraded PHE. Furthermore, the phytotoxicity evaluation of degraded PHE was observed through the seed germination method using Vigna radiata and Cicer arietinum seeds. The phytotoxicity results showed that the seed germination index and vegetative growth parameters of tested plants were increased in the degraded PHE soil. As results, C. byrsina strain APC5 was found to be a potential and promising organism to degrade and detoxify PHE without showing any adverse effect of their metabolites.
Collapse
Affiliation(s)
- Nikki Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
17
|
Eldos HI, Zouari N, Saeed S, Al-Ghouti MA. Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Saravanakumar K, Sivasantosh S, Sathiyaseelan A, Sankaranarayanan A, Naveen KV, Zhang X, Jamla M, Vijayasarathy S, Vishnu Priya V, MubarakAli D, Wang MH. Impact of benzo[a]pyrene with other pollutants induce the molecular alternation in the biological system: Existence, detection, and remediation methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119207. [PMID: 35351595 DOI: 10.1016/j.envpol.2022.119207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The exposure of benzo [a]pyrene (BaP) in recent times is rather unavoidable than ever before. BaP emissions are sourced majorly from anthropogenic rather than natural provenance from wildfires and volcanic eruptions. A major under-looked source is via the consumption of foods that are deep-fried, grilled, and charcoal smoked foods (meats in particular). BaP being a component of poly aromatic hydrocarbons has been classified as a Group I carcinogenic agent, which has been shown to cause both systemic and localized effects in animal models as well as in humans; has been known to cause various forms of cancer, accelerate neurological disorders, invoke DNA and cellular damage due to the generation of reactive oxygen species and involve in multi-generational phenotypic and genotypic defects. BaP's short and accumulated exposure has been shown in disrupting the fertility of gamete cells. In this review, we have discussed an in-depth and capacious run-through of the various origins of BaP, its economic distribution and its impact as well as toxicological effects on the environment and human health. It also deals with a mechanism as a single compound and its ability to synergize with other chemicals/materials, novel sensitive detection methods, and remediation approaches held in the environment.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Alwarappan Sankaranarayanan
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Karnataka, 585 313, India.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, 411007, India.
| | - Sampathkumar Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
19
|
An insight on microbial degradation of benzo[a]pyrene: current status and advances in research. World J Microbiol Biotechnol 2022; 38:61. [PMID: 35199223 DOI: 10.1007/s11274-022-03250-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Benzo[a]pyrene (BaP) is a high molecular weight polycyclic aromatic hydrocarbon produced as a result of incomplete combustion of organic substances. Over the years, the release of BaP in the atmosphere has increased rapidly, risking human lives. BaP can form bonds with DNA leading to the formation of DNA adducts thereby causing cancer. Therefore addressing the problem of its removal from the environment is quite pertinent though it calls for a very cumbersome and tedious process owing to its recalcitrant nature. To resolve such issues many efforts have been made to develop physical and chemical technologies of BaP degradation which have neither been cost-effective nor eco-friendly. Microbial degradation of BaP, on the other hand, has gained much attention due to added advantage of the high level of microbial diversity enabling great potential to degrade the substance without impairing environmental sustainability. Microorganisms produce enzymes like oxygenases, hydrolases and cytochrome P450 that enable BaP degradation. However, microbial degradation of BaP is restricted due to several factors related to its bio-availability and soil properties. Technologies like bio-augmentation and bio-stimulation have served to enhance the degradation rate of BaP. Besides, advanced technologies such as omics and nano-technology have opened new doors for a better future of microbial degradation of BaP and related compounds.
Collapse
|
20
|
Mazarji M, Minkina T, Sushkova S, Mandzhieva S, Fedorenko A, Bauer T, Soldatov A, Barakhov A, Dudnikova T. Biochar-assisted Fenton-like oxidation of benzo[a]pyrene-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:195-206. [PMID: 33411119 DOI: 10.1007/s10653-020-00801-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In the present study, the biochar derived from sunflower husks was used as a mediator in the heterogeneous Fenton process. The physical and chemical characteristics were studied in terms of specific surface area, elemental contents, surface morphology, surface functional groups, thermal stability, and X-ray crystallography. The main aim was to evaluate the effectiveness of biochar in a heterogeneous Fenton process catalyzed by hematite toward the degradation of benzo[a]pyrene (BaP) in Haplic Chernozem. The Fenton-like reaction was performed at a pH of 7.8 without pH adjustment in chernozem soil. The effects of operating parameters, such as hematite dosage and H2O2 concentrations, were investigated with respect to the removal efficiency of BaP. The overall degradation of 65% was observed at the optimized conditions where 2 mg g-1 hematite and 1.25 M H2O2 corresponded to the H2O2 to Fe ratio of 22:1. Moreover, the biochar amendment showed an increment in the removal efficiency and promotion in the growth of spring barley (Hordeum sativum distichum). The BaP removal was reached 75 and 95% after 2.5 and 5% w/w addition of biochar, respectively. The results suggested that the Fenton-like reaction's effectiveness would be greatly enhanced by the ability of biochar for activation of H2O2 and ejection of the electron to reduce Fe(III) to Fe(II). Finally, the presence of biochar could enhance the soil physicochemical properties, as evidenced by the better growth of Hordeum sativum distichum compared to the soil without biochar. These promising results open up new opportunities toward the application of a modified Fenton reaction with biochar for remediating BaP-polluted soils.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation
| | | | | | - Aleksei Fedorenko
- Southern Federal University, Rostov-on-Don, Russian Federation
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
| | - Tatiana Bauer
- Southern Federal University, Rostov-on-Don, Russian Federation
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
| | | | | | | |
Collapse
|
21
|
Liang Y, Zhai H, Wang R, Guo Y, Ji M. Effects of water flow on performance of soil microbial fuel cells: Electricity generation, benzo[a]pyrene removal, microbial community and molecular ecological networks. ENVIRONMENTAL RESEARCH 2021; 202:111658. [PMID: 34252434 DOI: 10.1016/j.envres.2021.111658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Soil microbial fuel cells with water flow (W-SMFCs) as a driven force of substrate transport were constructed. Electricity generation, benzo[a]pyrene (BaP) removal, microbial communities and microbial molecular ecological networks were compared between W-SMFCs and their control reactors (without water flow, C-SMFCs) in 240 days of operation. The W-SMFCs started up faster than C-SMFCs (37 days vs. 50 days) and output higher startup voltage (148.45 mV vs. 111.90 mV). The water flow caused higher removal efficiency of BaP at sites >1 cm from the anode (S > 1 cm) than at sites <1 cm from the anode (S < 1 cm) in W-SMFCs, whereas in C-SMFCs, the removal efficiency of BaP at S< 1 cm was higher than that at S> 1 cm. The removal efficiency of BaP at S> 1 cm in W-SMFCs was up to 1.7 times higher than that at S> 1 cm in C-SMFCs on the 91st day. After 240 days of operation, the biodegradation efficiency of absolute BaP amount was 45.95% in W-SMFCs, being 20% higher than that in C-SMFCs (38.17%). Moreover, the water flow caused highly tight interaction among the microbial species, which could be beneficial to BaP biodegradation. Conclusively, the water flow in soil was very beneficial for startup and biodegradation of BaP in SMFCs.
Collapse
Affiliation(s)
- Yinxiu Liang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Rumeng Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yujing Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
22
|
Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M, Li Y, Zhang M, Kirkham MB, Vinu A, Rinklebe J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126534. [PMID: 34280720 DOI: 10.1016/j.jhazmat.2021.126534] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated due to incomplete burning of organic substances. Use of fossil fuels is the primary anthropogenic cause of PAHs emission in natural settings. Although several PAH compounds exist in the natural environmental setting, only 16 of these compounds are considered priority pollutants. PAHs imposes several health impacts on humans and other living organisms due to their carcinogenic, mutagenic, or teratogenic properties. The specific characteristics of PAHs, such as their high hydrophobicity and low water solubility, influence their active adsorption onto soils and sediments, affecting their bioavailability and subsequent degradation. Therefore, this review first discusses various sources of PAHs, including source identification techniques, bioavailability, and interactions of PAHs with soils and sediments. Then this review addresses the remediation technologies adopted so far of PAHs in soils and sediments using immobilization techniques (capping, stabilization, dredging, and excavation), mobilization techniques (thermal desorption, washing, electrokinetics, and surfactant assisted), and biological degradation techniques. The pros and cons of each technology are discussed. A detailed systematic compilation of eco-friendly approaches used to degrade PAHs, such as phytoremediation, microbial remediation, and emerging hybrid or integrated technologies are reviewed along with case studies and provided prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Son A Hoang
- College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440 010, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yang Li
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
23
|
Zhou H, Li X, Hu B, Wu M, Zhang Y, Yi X, Liu Y. Assembly of fungal mycelium-carbon nanotube composites and their application in pyrene removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125743. [PMID: 34088202 DOI: 10.1016/j.jhazmat.2021.125743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been known for decades to threaten human health. Various physical, chemical and biological methods have been developed to remove PAHs from different matrices. Microbial biodegradation processes are thought to be effective and environmentally friendly, but the low bioavailability of PAHs and their slow removal rate often limit the application of biodegradation. In this study, novel self-assembled PAH-degrading fungal mycelium (Penicillium oxalicum SYJ-1)-carbon nanotube (CNT) composites were applied for pyrene removal. The addition of CNTs did not affect the growth of strain SYJ-1 and promoted the total PAH removal efficiency. The composite could completely remove pyrene at 20 mg L-1 within 48 h, while the sole fungus and CNTs alone could only remove 72% and 80% of pyrene at 72 h, respectively. A cytochrome P450 inhibition experiment, together with degradation product identification and transcriptomic analysis, suggested that an intracellular PAH transformation pathway was employed by strain SYJ-1. The versatility of this assembly approach was also confirmed by adding different nanomaterials and using them to remove different pollutants. This study provides a strategy of coupling the chemical adsorption and biodegradation capacity of inorganic nanomaterials and microorganisms as composites to treat hydrophobic substrates in restricted bioreactor.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.
| | - Xueling Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Bingxin Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Minghuo Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| |
Collapse
|
24
|
Pandya DK, Kumar MA. Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125154. [PMID: 33858107 DOI: 10.1016/j.jhazmat.2021.125154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are non-polar organic compounds that are omnipresent in the environment and released due to anthropogenic activities through emissions and discharges. PAHs, being xenobiotic and exerts health impacts, thus they attract serious concern by the environmentalists. The stringent regulations and the need of sustainable development urges the hunt for a technically feasible and cost-effective wastewater treatment. Although the conventional physico-chemical treatment are widely preferred, they cause secondary pollution problems and demand subsequent treatment options. This comprehensive review intends to address the (a) different PAHs and their associated toxicity, (b) the remedial strategies, particularly biodegradation. The biological wastewater treatment techniques that involve microbial systems are highly influenced by the different physio-chemical and environmental parameters. Therefore, suitable optimization techniques are prerequisite for effective functioning of the biological treatment that sustains judiciously and interpreted in a lesser time. Here we have aimed to discuss (a) different chemo-metric tools involved in the design of experiments (DoE), (b) design equations and models, (c) tools for evaluating the model's adequacy and (d) plots for graphically interpreting the chemo-metric designs. However, to best of our knowledge, this is a first review to discuss the PAHs biodegradation that are tailored by chemo-metric designs. The associated challenges, available opportunities and techno-economic aspects of PAHs degradation using chemo-metric engineering designs are explained. Additionally, the review highlights how well these DoE tools can be suited for the sustainable socio-industrial sectors. Concomitantly, the futuristic scope and prospects to undertake new areas of research exploration were emphasized to unravel the least explored chemo-metric designs.
Collapse
Affiliation(s)
- Darshita Ketan Pandya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
25
|
Yu H, Li J, Huang G, Yan L, Ma J. Binding Characteristics of Dibenzo[a,h]Anthracene with DNA In Vitro: Investigated by Spectroscopic and Magnetic Bead Methods. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1855218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hui Yu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Ji Ma
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
26
|
Removal of benzo[a]pyrene from soil in a novel permeable electroactive well system: Optimal integration of filtration, adsorption and bioelectrochemical degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 2020; 11:562813. [PMID: 33224110 PMCID: PMC7674206 DOI: 10.3389/fmicb.2020.562813] [Citation(s) in RCA: 414] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe mainly due to long-term anthropogenic sources of pollution. The inherent properties of PAHs such as heterocyclic aromatic ring structures, hydrophobicity, and thermostability have made them recalcitrant and highly persistent in the environment. PAH pollutants have been determined to be highly toxic, mutagenic, carcinogenic, teratogenic, and immunotoxicogenic to various life forms. Therefore, this review discusses the primary sources of PAH emissions, exposure routes, and toxic effects on humans, in particular. This review briefly summarizes the physical and chemical PAH remediation approaches such as membrane filtration, soil washing, adsorption, electrokinetic, thermal, oxidation, and photocatalytic treatments. This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures. In situ and ex situ biological treatments such as land farming, biostimulation, bioaugmentation, phytoremediation, bioreactor, and vermiremediation approaches are discussed in detail, and a summary of the factors affecting and limiting PAH bioremediation is also discussed. An overview of emerging technologies employing multi-process combinatorial treatment approaches is given, and newer concepts on generation of value-added by-products during PAH remediation are highlighted in this review.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Shabnam Shaikh
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Kunal R. Jain
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Datta Madamwar
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
28
|
Mazarji M, Minkina T, Sushkova S, Antonenko E, Mandzhieva S, Dudnikova T. Impact of humic acid on degradation of benzo(a)pyrene polluted Haplic Chernozem triggered by modified Fenton-like process. ENVIRONMENTAL RESEARCH 2020; 190:109948. [PMID: 32750554 DOI: 10.1016/j.envres.2020.109948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
In this study, the applicability of a modified Fenton reaction for remediation of polycyclic aromatic hydrocarbons (PAHs) was demonstrated in chernozem soil. The main aim was to investigate the impact of variation of humic acid (HA) on the modified Fenton capabilities to degrade of benzo(a)pyrene (BaP). Experimental was designed with two independent variables, including hydrogen peroxide (H2O2) and hematite (α-Fe2O3), to determine the most effective BaP treatment conditions with exploring natural and an extra added amount of HA. For modified Fenton reaction at Haplic Chernozem, the best BaP degradation conditions resulted in an overall degradation of 68% with the following conditions: 0.95 M H2O2; 17.54 mg/g hematite; pH 7.8 without adjustment; 24 h; unsaturated (soil: water ratio 1:0.5). In the soil supplemented with 1% HA, Fenton-like reaction was found to perform better and resulted in 76% BaP degradation with less amount of hematite dosage (16.71 mg). The fact that HA, a significant class of naturally occurring compounds in soil, supports the Fenton reaction has strong relevance in the field of enhancing PAHs degradation field to obtain a more economical route.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | | | - Elena Antonenko
- Southern Federal University, Rostov-on-Don, Russian Federation
| | | | | |
Collapse
|
29
|
Huang K, Liu H, He J, Li Y, Wang R, Tang T, Tao X, Yin H, Dang Z, Lu G. Photoassisted degradation of 2,2',4,4'-tetrabrominated diphenyl ether in simulated soil washing system containing Triton X series surfactants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115005. [PMID: 32554085 DOI: 10.1016/j.envpol.2020.115005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
This study aims to use ultraviolet (UV) irradiation to decompose polybrominated diphenyl ethers (PBDEs) in the elutes and then reuse the surfactants. The results indicate that UV can remove 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) from surfactant eluents and Triton X series surfactants also can remove BDE-47 from the soil. Triton X-100 (TX-100) is the most promising surfactant during the washing and photodegradation processes. Quench experiments suggest that both 1O2 and OH• were involved in the TX-100 decomposition but only 1O2 is responsible for the degradation of BDE-47. In analysis of the photoproducts of BDE-47 by Gas Chromatography Mass Spectrum (GC-MS) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), BDE-47 was mainly debrominated to the lower-brominated BDEs and then oxidized to ring-opening products. The little loss of TX-100 can mainly be attributed to the breakage of polyethylene oxide (PEO) chain. Nevertheless, the washing wastes treated by UV light can exhibit higher solubility for BDE-47 than before, indicating they can be reused for BDE-47 removal from soil. The toxicity assessment experiments were performed using Escherichia coli (E.coli) as an indicator. The results indicate that the removal of BDE-47 by UV irradiation can reduce the toxicity of eluent.
Collapse
Affiliation(s)
- Kaibo Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - He Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinglei He
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yan Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Huang K, Liang J, Wang J, Ouyang Y, Wang R, Tang T, Luo Y, Tao X, Yin H, Dang Z, Lu G. Effect of nitrate on the phototreatment of Triton X-100 simulated washing waste containing 4,4'-dibromodiphenyl ether: Kinetics, products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139247. [PMID: 32438183 DOI: 10.1016/j.scitotenv.2020.139247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the effects of nitrate on the ultraviolet (UV) treatment of simulated washing wastes containing Trion X-100 (TX-100) surfactant and 4,4'-dibromodiphenyl ether (BDE-15) pollutant. The presence of nitrate accelerated the photodegradation of BDE-15 and TX-100, because they reacted with reactive oxygen species (ROS) produced from conversion between nitrate and nitrite. Due to nitrite having a stronger radical quenching property than nitrate, nitrite hindered TX-100 decay while the photodegradation rate of BDE-15 was similar to that in the presence of nitrate. This indicated that nitrate/nitrite affected BDE-15 photodegradation by photosensitization and TX-100 loss by ROS attack. An increased TX-100 concentration increased the loss of total inorganic nitrogen possibly owing to an increase in organic nitrogen formation through TX-100 nitration reactions. At pH < 7 HOONO rapidly isomerized to NO3-, and at pH = 7-9 it homolyzed to ONOO-, which increased OH production to decay the BDE-15 and TX-100 and also increased NO2- formation. BDE-15 mainly underwent debromination, and some rearrangement, ring formation, nitration and hydroxylation products were detected, indicating that the produced OH and NO2 attacked the BDE-15 and products. Furthermore, broken-chain, carboxylation, hydroxylation and nitro products were detected by Liquid chromatography high resolution mass spectrometry (LC-HRMS). Escherichia coli was used to assess the toxicity of washing waste containing nitrate: the presence of nitrate will increase the wastes' toxicity during UV treatment. Therefore, the presence of nitrate is deleterious to the UV treatment of washing wastes, and it is important to remove nitrates and nitrites from washing waste before UV irradiation.
Collapse
Affiliation(s)
- Kaibo Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanxi Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yusen Luo
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xueqin Tao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
32
|
Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. CHEMOSPHERE 2020; 247:125932. [PMID: 32069719 DOI: 10.1016/j.chemosphere.2020.125932] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.
Collapse
Affiliation(s)
- Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Israa Abdulwahab Al-Baldawi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Asia Fadhile Almansoory
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Biology, Science College, University of Basrah, Basrah, Iraq
| | - Ipung Fitri Purwanti
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Institut Teknologi Sepuluh Nopember Surabaya, Surabaya, 60111, Indonesia
| | - Nadya Hussin Al-Sbani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Chemical Engineering, Faculty of Petroleum Engineering, AL-Zawia University, AL-Zawia, Libya
| | - Siti Shilatul Najwa Sharuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
33
|
Tamadoni A, Qaderi F. Environmental-economical assessment of the use of ultrasonication for pre-treatment of the soils contaminated by phenanthrene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109991. [PMID: 31929028 DOI: 10.1016/j.jenvman.2019.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Removing aromatic contaminants from the soil using ultrasonic waves is a new technology with the potential for practical use in industrial scale. In this study, the ultrasonication technology was presumed as a pre-treatment for soils contaminated with phenanthrene. Since the removal of this contaminant from the soil by ultrasonication reduces the cost of treatments such as soil washing, the optimization of independent variables has been investigated in the present study. Effect of variables such as phenanthrene primary concentration (7.5-517.5 mg/kg), ultrasonic power (0-395 W), the volume of water (0-400 mL) and the overall retention time (0-1 h) on the cost-saving of treatment for 100 g soil samples has been presented. The Response Surface Methodology has been used for modeling the results of this research. Based on the results of this research, the optimal conditions have been proposed for maximization of the cost-savings by ultrasonication and minimization of the ultrasonication operating costs. The best proposed conditions to achieve the maximum pollutant removal occurred in soil pretreatments using ultrasonication in water volume of 300 mL, the ultrasonic power of 139W, and 0.5 h process duration, which led to saving of 1.42 ¢/100 g soil for the replacement of the soil washing by the ultrasonication process.
Collapse
Affiliation(s)
- Amin Tamadoni
- Civil and Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Farhad Qaderi
- Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| |
Collapse
|
34
|
Zhang M, Feng Y, Zhang K, Wang Y, Pan X. Impact of salinity on colloidal ozone aphrons in removing phenanthrene from sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121436. [PMID: 31629591 DOI: 10.1016/j.jhazmat.2019.121436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) tend to adsorb and accumulate on sediments owing to their hydrophobicity and persistence. Salinity is the predominant factor determining the PAH partition between aqueous and solid phases in freshwater, estuaries and seawater. This study focuses on the impact of salinity on the phenanthrene (PHE) removal from sediments using an in situ and targeted remediation technology - colloidal ozone aphrons (COAs). The ozone-encapsulated colloidal aphrons exhibited increasing air holdup but decreasing stability with the salinity increasing from 0.5‰ to 35‰. The hydrophobic attraction between Tween-20-coated bubbles and the hydrophobic solid surface weakened at high salinities. The presence of inorganic ions in the aqueous phase could lead to the salting-out of nonionic compounds (PHE, Tween-20 and even ozone), hindering detaching and degrading PHE from the solid phase. Anyhow, COAs achieved high efficiencies of washing (88.0-90.2%) and oxidative degradation (74.0-76.5%) particularly for the hydrophobic sediments with highly concentrated PHE (200.4 μg/kg) over the investigated salinities. The flushing effect imposed by the bubble flow played an important role, which was not greatly influenced by salinity. Although the dissolved natural organic matter competed with PHE for COAs and led to low PHE removal, the efficiency was improved by successive COA addition.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudong Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kaihua Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yafeng Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
35
|
Frescura LM, de Menezes BB, Duarte R, da Rosa MB. Application of multivariate analysis on naphthalene adsorption in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3329-3337. [PMID: 31838706 DOI: 10.1007/s11356-019-07278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Naphthalene (NAP) is found as a pollutant in water, soil, and air, and adsorption is the most prominent removal process of this compound, among the methods studied. A study concerning the types of adsorbents and the parameters with the greatest influence on the adsorption process is interesting to direct future works on new adsorbents. The use of multivariate data analysis tools becomes an appealing way to compile data obtained from bibliographic reviews and to establish a behavior in NAP adsorption. This work aims to evaluate the parameters with greater influence on NAP adsorption process regarding adsorption capacity (qeexp) with the principal component analysis (PCA), and to group common NAP adsorbents by chemical characteristics through hierarchical cluster analysis (HCA). The variables qeexp, S, [NAP]0, T, CT, and [Ads] were used to perform PCA with correlation matrix. For the HCA, the variables S, [NAP]0, T, CT, and [Ads] with average linkage method (UPGMA) and Euclidean distance were used. Through PCA, it is possible to infer that S and [NAP]0 are the factors with greater influence in qeexp of NAP, while T, CT, and [Ads] have little correlation. PCA also shows that activated charcoal is the adsorbent with higher qeexp. HCA grouped the adsorbents into four groups by their chemical classes, except group A. Both PCA and HCA methods show themselves as potential tools to evaluate a data set of NAP adsorption processes.
Collapse
Affiliation(s)
- Lucas Mironuk Frescura
- Chemistry Department, Universidade Federal de Santa Maria - UFSM, Av Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Bryan Brummelhaus de Menezes
- Chemistry Department, Universidade Federal de Santa Maria - UFSM, Av Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Rafael Duarte
- Chemistry Department, Universidade Federal de Santa Maria - UFSM, Av Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcelo Barcellos da Rosa
- Chemistry Department, Universidade Federal de Santa Maria - UFSM, Av Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
36
|
Zhang M, Feng Y, Zhang D, Dong L, Pan X. Ozone-encapsulated colloidal gas aphrons for in situ and targeting remediation of phenanthrene-contaminated sediment-aquifer. WATER RESEARCH 2019; 160:29-38. [PMID: 31129379 DOI: 10.1016/j.watres.2019.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The hydrophobic polycyclic aromatic hydrocarbons (PAHs) are apt to adhere tightly to the sediments in aquifer and thus pose great threats to the aquatic environment of groundwater and surface water as well as human health. The present study constructed functionalized microbubbles, named colloidal ozone aphrons (COAs), by dissolving ozone-contained air into the nonionic surfactant (Tween-20) solution at the pressure of 300 kPa for the in situ remediation of phenanthrene (PHE)-contaminated sediments. The COA system aimed at improving the PHE elimination in terms of (i) enhancing the migration and transportation ability of the bubble system in the contaminated aquifer matrix, (ii) accurately desorbing the target hydrophobic contaminants from sediments, and (iii) reinforcing the in situ oxidation degradation immediately after or simultaneously when the PAHs are desorbed into the aqueous phase. Experimental results demonstrated that the COAs exhibited similar characteristics as the classical colloidal gas aphrons (CGAs), including the high stability (half-life time > 200 s), typical morphology and average bubble size (114-162 μm); higher air hold-up of COAs was achieved (i. e. > 20%) compared with the air-microbubbles (1-2%) obtained under the same generation conditions. Although the encapsulated ozone could oxidize the surfactant-layers, the properties and behaviors of COAs were not greatly affected. The surfactant multi-layers endowed the COAs with strong hydrophobic attraction with PHE, great migration capacity and enlarged oxidation area in the sediment matrix. Approximately 96.9% of PHE was removed from the sediments and 84.9% of the overall PHE was oxidized at the high ozone concentration of 0.6 mg/L when the initial PHE concentration was 240.0 μg/kg. The COA-involved remediation technology provided the insight of combining the processes of washing and oxidizing through adopting the particularly conceived microbubbles. The in situ and selective removal of hydrophobic organic contaminants from sediments in aquifer was well achieved in this study.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudong Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
37
|
Zhao S, Miao D, Zhu K, Tao K, Wang C, Sharma VK, Jia H. Interaction of benzo[a]pyrene with Cu(II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. ENVIRONMENT INTERNATIONAL 2019; 129:154-163. [PMID: 31128436 DOI: 10.1016/j.envint.2019.05.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
This paper presents the interaction of benzo[a]pyrene (B[a]P) with Cu(II)-montmorillonite to investigate the formation, evolution and potential toxicity of environmentally persistent free radicals (EPFRs) under dark and visible light irradiation conditions. Degradation of B[a]P and the generated transformative products on clay mineral are monitored by gas chromatography-mass spectrometry (GC-MS) technique. Hydroxyl-B[a]P and B[a]P-diones are observed during the transformation of B[a]P under dark condition. B[a]P-3,6-dione and B[a]P-6,12-dione are the main products under visible light irradiation. B[a]P transformation is accompanied by the formation of EPFRs, which are quantified by electron paramagnetic resonance (EPR) spectroscopy. With increasing reaction time, the concentrations of the produced EPFRs are initially increased and then gradually decrease to an undetectable level. The deconvolution results of EPR spectra reveal formation of three types of organic radicals (carbon-centered radicals, oxygen-centered radicals, and carbon-centered radicals with a conjugated oxygen), which also co-exist. Correspondingly, visible-light irradiation promotes the formation and the decay of these EPFRs. The produced B[a]P-type EPFRs induce the generation of reactive oxygen species (ROS), such as superoxide (O2-) and hydroxide radicals (OH), which may cause oxidative stress to cells and tissues of organisms. The toxicity of degradation products is evaluated by the livability of human gastric epithelial GES-1cells. The toxicity is initially increased and then decreases with the elapsed reaction time, which correlates with the evolution of EPFRs concentrations. The present work provides direct evidence that the formation of EPFRs in interaction of PAHs with metal-contaminated clays may result in negative effects to human health.
Collapse
Affiliation(s)
- Song Zhao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Duo Miao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kelin Tao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chuanyi Wang
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
38
|
Abstract
The availability of bound residues of polycyclic aromatic hydrocarbons (PAHs), in reference to their parent compounds, can be enhanced by microbial activity and chemical reactions, which pose severe risks for the ecosystems encompassing contaminated soils. Considerable attention has been raised on how to remove these bound residues from PAH-contaminated soils. This paper provides a novel application of Fenton oxidation in the removal of bound residues of model PAHs, such as naphthalene (NAP), acenaphthene (ACP), fluorene (FLU) and anthracene (ANT), from naturally contaminated soils. The citric acid-enhanced Fenton treatment resulted in the degradation of bound PAH residues that followed pseudo-first-order kinetics, with rate constants within 4.22 × 10−2, 1.25 × 10−1 and 2.72 × 10−1 h−1 for NAP, FLU, and ANT, respectively. The reactivity of bound PAH residues showed a correlation with their ionization potential (IP) values. Moreover, the degradation rate of bound PAH residues was significantly correlated with H2O2-Fe2+ ratio (m/m) and H2O2 concentrations. The highest removal efficiencies of bound PAH residues was up to 89.5% with the treatment of chelating agent oxalic acid, which was demonstrated to be superior to other acids, such as citric acid and hydrochloric acid. This study provides valuable insight into the feasibility of citric acid-Fenton and oxalic acid-Fenton treatments in rehabilitating bound PAH residues in contaminated soils.
Collapse
|
39
|
Zhao L, Prendergast M, Kaiser RI, Xu B, Ablikim U, Lu W, Ahmed M, Oleinikov AD, Azyazov VN, Howlader AH, Wnuk SF, Mebel AM. How to add a five-membered ring to polycyclic aromatic hydrocarbons (PAHs) – molecular mass growth of the 2-naphthyl radical (C10H7) to benzindenes (C13H10) as a case study. Phys Chem Chem Phys 2019; 21:16737-16750. [DOI: 10.1039/c9cp02930c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of aryl radicals with allene/methylacetylene leads to five-membered ring addition in PAH growth processes.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | | | - Ralf I. Kaiser
- Department of Chemistry
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Bo Xu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Utuq Ablikim
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Wenchao Lu
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | | | - A. Hasan Howlader
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Samara National Research University
| |
Collapse
|