1
|
Fan L, Song Q, Jin Y, He R, Diao H, Luo P, Wang D. Prolonged exposure to NaAsO 2 induces thyroid dysfunction and inflammatory injury in Sprague‒Dawley rats, involvement of NLRP3 inflammasome‒mediated pyroptosis. Arch Toxicol 2024; 98:3673-3687. [PMID: 39120795 DOI: 10.1007/s00204-024-03837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Arsenic, a well-known hazardous toxicant, has been found in recent years to act as an environmental endocrine disruptor that accumulates in various endocrine organs, impeding the normal physiological functions of these organs and altering hormone secretion levels. Moreover, some research has demonstrated a correlation between arsenic exposure and thyroid functions, suggesting that arsenic has a toxicological effect on the thyroid gland. However, the specific type of thyroid gland damage caused by arsenic exposure and its potential molecular mechanism remain poorly understood. In this study, the toxic effects of sodium arsenite (NaAsO2) exposure at different doses (0, 2.5, 5.0 and 10.0 mg/kg bw) and over different durations (12, 24 and 36 weeks) on thyroid tissue and thyroid hormone levels in Sprague‒Dawley (SD) rats were investigated, and the specific mechanisms underlying the effects were also explored. Our results showed that NaAsO2 exposure can cause accumulation of this element in the thyroid tissue of rats. More importantly, chronic exposure to NaAsO2 significantly upregulated the expression of NLRP3 inflammasome-related proteins in thyroid tissue, leading to pyroptosis of thyroid cells and subsequent development of thyroid dysfunction, inflammatory injury, epithelial-mesenchymal transition (EMT), and even fibrotic changes in the thyroid glands of SD rats. These findings increase our understanding of the toxic effects of arsenic exposure on the thyroid gland and its functions.
Collapse
Affiliation(s)
- Lili Fan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qian Song
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Ying Jin
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Rui He
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Heng Diao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Dapeng Wang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
2
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
3
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M, Potkonjak N. Metals on the Menu-Analyzing the Presence, Importance, and Consequences. Foods 2024; 13:1890. [PMID: 38928831 PMCID: PMC11203375 DOI: 10.3390/foods13121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Andreja Leskovac
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Sandra Petrović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Miloš Mitić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Mirjana Novković
- Group for Muscle Cellular and Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| |
Collapse
|
4
|
Shokat S, Iqbal R, Riaz S, Yaqub A. Association Between Arsenic Toxicity, AS3MT Gene Polymorphism and Onset of Type 2 Diabetes. Biol Trace Elem Res 2024; 202:1550-1558. [PMID: 37889428 DOI: 10.1007/s12011-023-03919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Arsenic (As) exposure in drinking water has become a serious public health issue. AS3MT gene is involved in the metabolism of arsenic, so a single nucleotide polymorphism in this gene may lead to the development of type 2 diabetes in arsenic-exposed areas. This study aimed to evaluate the association of the AS3MT gene with the development of type 2 diabetes in highly arsenic-exposed areas of Punjab, Pakistan. Total 200 samples equal in number from high arsenic exposed-areas of Lahore (Nishtar) and Kasur (Mustafa Abad) were collected. rs11191439 was utilized as an influential variable to evaluate the association between arsenic metabolism and diabetes status to find a single nucleotide polymorphism in the AS3MT gene. We observed the arsenic level in drinking water of the arsenic-exposed selected areas 115.54 ± 1.23 µg/L and 96.88 ± 0.48 µg/L, respectively. The As level in the urine of diabetics (98.54 ± 2.63 µg/L and 56.38 ± 12.66 µg/L) was higher as compared to non-diabetics (77.58 ± 1.8 µg/L and 46.9 ± 8.95 µg/L) of both affected areas, respectively. Correspondingly, the As level in the blood of diabetics (6.48 ± 0.08 µg/L and 5.49 ± 1.43 µg/L) and non-diabetics (6.22 ± 0.12 µg/L and 5.26 ± 0.24 µg/L) in the affected areas. Genotyping showed significant differences in the frequencies of alleles among cases and controls. Nevertheless, notable disparities in genotype distribution were observed in SNPs rs11191439 (T/C) (P < 0.05) and when comparing T2D patients and non-diabetic control subjects. The AS3MT gene and clinical parameters show a significant association with the affected people with diabetes living in arsenic-exposed areas.
Collapse
Affiliation(s)
- Saima Shokat
- Department of Zoology, Government College University, Lahore, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Samreen Riaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
5
|
Nawaz M, Hussain I, Mahmood-ur-Rehman, Ashraf MA, Rasheed R. Salicylic Acid and Gemma-Aminobutyric Acid Mediated Regulation of Growth, Metabolites, Antioxidant Defense System and Nutrient Uptake in Sunflower ( Helianthus annuus L.) Under Arsenic Stress. Dose Response 2024; 22:15593258241258407. [PMID: 38803513 PMCID: PMC11129579 DOI: 10.1177/15593258241258407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Background Arsenic (As) is a highly toxic and carcinogenic pollutant commonly found in soil and water, posing significant risks to human health and plant growth. Objective The objectives of this study to evaluate morphological, biochemical, and physiological markers, as well as ion homeostasis, to alleviate the toxic effects of As in sunflowers through the exogenous application of salicylic acid (SA), γ-aminobutyric acid (GABA), and their combination. Methods A pot experiment was conducted using two sunflower genotypes, FH-779 and FH-773, subjected to As stress (60 mg kg-1) to evaluate the effects of SA at 100 mg L-1, GABA at 200 mg L-1, and their combination on growth and related physiological and biochemical attributes under As stress. Results The study revealed that As toxicity had a detrimental effect on various growth parameters, chlorophyll pigments, relative water content, total proteins, and nutrient uptake in sunflower plants. It also led to increased oxidative stress, as indicated by higher levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), along with As accumulation in the roots and leaves. However, the application of SA and GABA protected against As-induced damage by enhancing the enzymatic antioxidant defense system. This was achieved through the activation of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as an increase in osmolytes. They also improved nutrient acquisition and plant growth under As toxicity. Conclusions We investigated the regulatory roles of SA and GABA in mitigating arsenic-induced phytotoxic effects on sunflower. Our results revealed a significant interaction between SA and GABA in regulating growth, photosynthesis, metabolites, antioxidant defense systems, and nutrient uptake in sunflower under As stress. These findings provide valuable insights into plant defense mechanisms and strategies to enhance stress tolerance in contaminated environments. In the future, SA and GABA could be valuable tools for managing stress in other important crops facing abiotic stress conditions.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Mahmood-ur-Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad A. Ashraf
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Rosendo GBO, Ferreira RLU, Aquino SLS, Barbosa F, Pedrosa LFC. Glycemic Changes Related to Arsenic Exposure: An Overview of Animal and Human Studies. Nutrients 2024; 16:665. [PMID: 38474793 DOI: 10.3390/nu16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Arsenic (As) is a risk factor associated with glycemic alterations. However, the mechanisms of action and metabolic aspects associated with changes in glycemic profiles have not yet been completely elucidated. Therefore, in this review, we aimed to investigate the metabolic aspects of As and its mechanism of action associated with glycemic changes. METHODS We searched the PubMed (MEDLINE) and Google Scholar databases for relevant articles published in English. A combination of free text and medical subject heading keywords and search terms was used to construct search equations. The search yielded 466 articles; however, only 50 were included in the review. RESULTS We observed that the relationship between As exposure and glycemic alterations in humans may be associated with sex, smoking status, body mass index, age, occupation, and genetic factors. The main mechanisms of action associated with changes induced by exposure to As in the glycemic profile identified in animals are increased oxidative stress, reduced expression of glucose transporter type 4, induction of inflammatory factor expression and dysfunction of pancreatic β cells. CONCLUSIONS Therefore, As exposure may be associated with glycemic alterations according to inter-individual differences.
Collapse
Affiliation(s)
| | | | - Séphora Louyse Silva Aquino
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
7
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
8
|
Khaleda L, Begum SK, Apu MAR, Chowdhury RH, Alam MJ, Datta A, Rahman MZ, Hosain N, Al-Forkan M. Arsenic-Induced Cardiovascular Diseases and their Correlation with Mitochondrial DNA Copy Number, Deletion, and Telomere Length in Bangladeshi Population. Cardiovasc Toxicol 2024; 24:27-40. [PMID: 37971645 DOI: 10.1007/s12012-023-09812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Arsenic contamination is a global health concern, primarily through contaminated groundwater and its entry into the food chain. The association between arsenic exposure and cardiovascular diseases (CVDs) is particularly alarming due to CVDs being the leading cause of death worldwide. Arsenic exposure has also been linked to changes in telomere length, mitochondrial DNA copy number (mtDNAcn), and deletion, further increasing the risk of CVDs. We aimed to determine whether arsenic exposure alters telomere length and mtDNAcn and deletion in a total of 50 CVD patients who underwent open heart surgery hailed from known arsenic-affected and unaffected areas in Bangladesh. Amount of arsenic was determined from the collected nails and cardiac tissues. Relative telomere length and mtDNAcn and deletion were quantified by qRT-PCR. The patients from arsenic-contaminated areas had higher average arsenic deposits in their fingers and toenails (P < 0.05) and higher cardiac tissue injury scores (P < 0.05). Moreover, approximately 1.5-fold shorter telomere length (P < 0.05, r = - 0.775), 1.2-fold decreased mtDNAcn (P < 0.05, r = - 0.797), and an 81-fold higher amount of mitochondrial DNA deletion (P < 0.05, r = 0.784) were observed in the patients who had higher arsenic deposition in their nails. Higher levels of arsenic exposure were found to be linked to shorter telomere length, decreased mtDNAcn, and increased mitochondrial DNA deletion in the patients from As-affected areas. It can also be anticipated that the correlation of arsenic exposure with telomere length, mtDNAcn, and deletion can be used as biomarkers for early diagnosis of arsenic-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Laila Khaleda
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh.
| | - Syeda Kishuara Begum
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Abdur Rahman Apu
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Rahee Hasan Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Jibran Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Amit Datta
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Zillur Rahman
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Nazmul Hosain
- Department of Cardiac Surgery, Chittagong Medical College Hospital, Chittagong-4203, Bangladesh
| | - Mohammad Al-Forkan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
| |
Collapse
|
9
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
10
|
Liu YF, Tang MM, Sun J, Li JF, Jiang YL, Zhao H, Fu L. Arsenic exposure and lung function decline in chronic obstructive pulmonary disease patients: The mediating influence of systematic inflammation and oxidative stress. Food Chem Toxicol 2023; 181:114044. [PMID: 37777081 DOI: 10.1016/j.fct.2023.114044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Lung tissue is one of the target sites of arsenic (As). The goal of this investigation was to assess the associations of blood As concentration with pulmonary function indicators in patients with chronic obstructive pulmonary disease (COPD), as well as the roles of systemic inflammation and oxidative stress in this relationship. All 791 COPD patients were selected. Blood As concentration, and tumour necrosis factor-α (TNF-α) and 8-iso-prostaglandin-F2α (8-iso-PGF2α) were detected in the serum of COPD cases. Blood As was robustly related to pulmonary function parameters in an inverse dose-dependent manner. Multivariate linear regression analyses verified that a 1-unit increase of blood As was linked to declines of 0.263 L in FVC, 0.288 L in FEV1, 3.454 in FEV1/FVC%, and 0.538 in predicted FEV1%, respectively. The potential for pulmonary function decline gradually increased across the elevated tertiles of blood As. Nonsmokers were susceptible to As-induced pulmonary function reduction. Blood As was positively linked to the levels of TNF-α and 8-iso-PGF2α. Increased TNF-α and 8-iso-PGF2α partially mediated As-induced the reductions in FEV1 and FVC among COPD patients. As exposure is intensely linked to pulmonary function reduction. Systematic inflammation and oxidative stress partially mediate such associations in COPD patients.
Collapse
Affiliation(s)
- Yun-Feng Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jia-Fei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239001, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui, 236800, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
11
|
Qader A, Rehman K, Akash MSH. Biochemical profiling of lead-intoxicated impaired lipid metabolism and its amelioration using plant-based bioactive compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60414-60425. [PMID: 35420345 DOI: 10.1007/s11356-022-20069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to investigate the lead (Pb)-induced lipid metabolism impairment and its amelioration using plant-based therapeutic interventions. Pb-induced hepatotoxicity can disturb the normal levels of natural antioxidant enzymes including glutathione (GSH) and superoxide dismutase (SOD) exerting a crucial impact on membrane unsaturated fatty acids (FA), hence leading to lipid peroxidation. Furthermore, Pb toxicity can also alter the regulation of various hormones involved in the synthesis of 3-hydroxy-methyl glutaryl CoA (HMG-CoA reductase), leading to an impairment in normal levels of serum cholesterol and other associated conjugated lipid molecules such HDL-cholesterol, LDL-cholesterol and VLDL-cholesterol. In this study, the lipoprotein fractions, cholesterol, triglyceride (TGs) and biomarkers of liver functions were estimated by employing respective assay kits. The levels of antioxidant enzymes, FFAs and HMG-CoA reductase were determined by employing sandwich ELISA method. The administration of PbAc in experimental rats induced a significant disturbance in lipid profile (P < 0.05) accompanying a significant reduction in natural antioxidant defence system (P < 0.05). The significant alteration in the levels of serum antioxidant enzymes can lead to membrane lipid peroxidation that is reflected by a significantly (P < 0.05) high level of serum MDA in PbAc-induced experimental rats. However, the administration of resveratrol proved therapeutically effective in the treatment of Pb toxicity. Overall, the results of this study accompanying histopathological examination had proved the ameliorating effect of resveratrol in Pb-induced lipid metabolism impairment by adopting vitamin C as a standard therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Qader
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
12
|
Zhou M, Zhao E, Huang R. Association of urinary arsenic with insulin resistance: Cross-sectional analysis of the National Health and Nutrition Examination Survey, 2015-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113218. [PMID: 35065504 DOI: 10.1016/j.ecoenv.2022.113218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Long-term arsenic exposure is associated with diabetes in adults, the mechanism of which involves insulin resistance. The relationship between arsenic and insulin resistance in adults is unclear. We analyzed the relationship between urinary arsenic and insulin resistance in US adults. RESULTS We identified 815 adults aged 20-79 years who participated in the 2015-2016 National Health and Nutrition Examination Survey (NHANES). Urinary arsenic, fasting glucose, serum insulin, and other key covariates were obtained from the NHANES data. The association between urinary arsenic and insulin resistance was evaluated by analyzing the urinary arsenic level and homeostasis model assessment-insulin resistance. The median total urinary arsenic level was 6.82 µg/L. After adjusting for possible confounding factors (gender, age, and body mass index), the 80th and 20th percentile odds ratio (OR) was 1.41 (95% confidence interval [CI] 1.07, 1.87); the OR of the 70th and 30th percentiles was 1.41 (95% CI 1.08, 1.84). CONCLUSIONS In most subgroups, after similar adjustment, the relationship between urine total arsenic and insulin resistance remained. Total arsenic exposure in urine may be associated with insulin resistance. Evidence from larger and more adequately powered cohort studies is needed to confirm our results.
Collapse
Affiliation(s)
- Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, PR China.
| | - E Zhao
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention, Jingyi Road 58, Urumqi 830026, PR China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, PR China.
| |
Collapse
|
13
|
Irshad K, Rehman K, Akash MSH, Hussain I. Biochemical Investigation of Therapeutic Potential of Resveratrol Against Arsenic Intoxication. Dose Response 2021; 19:15593258211060941. [PMID: 34887717 PMCID: PMC8649462 DOI: 10.1177/15593258211060941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Arsenic has been reported to cause damaging effects on different body organs.
This study was designed to evaluate the protective effect of resveratrol (RSV)
against arsenic trioxide (ATO)–induced intoxication in experimental animals.
Twenty-four Wistar rats were allocated in 4 groups: group 1: control group,
received normal diet; group 2: received ATO (3 mg/kg); group 3: received RSV
(8 mg/kg) 30 minutes before administration of ATO; and group 4: received
ascorbic acid (25 mg/kg) 30 minutes before administration of ATO. Treatments
were given to experimental rats daily for consecutive 8 days. At the end of
experimental period, bioaccumulation of arsenic in liver and kidney was assessed
by hydride generation-atomic absorption spectrophotometer to investigate the
association of arsenic accumulation with histological aberrations. Following
parameters were also investigated: serum biochemical profile (alanine
aminotransferase, aspartate transaminase, alkaline phosphatase, blood urea
nitrogen, and creatinine) for evaluation of liver and kidney functions and lipid
peroxidation and oxidative stress (malondialdehyde, glutathione, superoxide
dismutase, catalase, and glutathione peroxidase) in tissue homogenates of liver
and kidney for estimation of oxidative status. The findings of this study
indicate that RSV remarkably ameliorated the hepatic and renal toxicity in
arsenic-exposed rat model due to its strong antioxidant potential.
Collapse
Affiliation(s)
- Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117940. [PMID: 34426183 DOI: 10.1016/j.envpol.2021.117940] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca2+) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
15
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
16
|
Jain RB. Contribution of diet and other factors for urinary concentrations of total arsenic and arsenic species: data for US children, adolescents, and adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50094-50116. [PMID: 33948846 DOI: 10.1007/s11356-021-14230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
A comprehensive analysis of the associations between the consumptions of 17 food products with urinary concentrations of arsenobetaine, total arsenic, arsenous acid, dimethylarsinic acid (UDMA), monomethylarsonic acid (UMMA), and total inorganic arsenic for US children aged 3-5 years (N = 439), children aged 6-11 years (N = 2139), adolescents aged 12-19 years (N = 2434), and adults aged >= 20 years (N = 10902) was conducted. Data from National Health and Nutrition Examination Survey for 2005-2016 were used for this study. Concentrations of arsenobetaine were as much as > 15 times higher among consumers of fish/shellfish than non-consumers for children aged 6-11 years, > 12 times higher for children aged 3-5 years, > 13 times higher for adolescents, and > 7 times higher for adults. Consumption of rice as opposed to non-consumption of rice was associated with as much as 36.5% higher concentrations of total arsenic, 12.7% higher concentrations of arsenous acid, 43.9% higher concentrations of UDMA, 18.2% higher concentrations of UMMA, and 14.1% higher concentrations of total inorganic arsenic. Thus, consumption of fish/shell fish and rice was associated with higher concentrations of organic/inorganic arsenic. In addition, consumption of alcohol was also found to be associated with higher concentrations of organic/inorganic arsenic. However, consumption of milk and milk products, vegetables, organ and other meats, and nutritional drinks was found to be associated with lower concentrations of organic/inorganic arsenic. Thus, while consumption of several foods is associated with higher concentrations of arsenic, there are also foods whose consumption is associated with decreased concentrations of arsenic. Further studies are needed to identify foods that may lead to decreased concentrations of arsenic and as such arsenic toxicity.
Collapse
|
17
|
Arab YarMohammadi A, Arbabi Bidgoli S, Ziarati P. Increased urinary arsenic concentration in newly diagnosed type 2 diabetes mellitus: a gender-independent, smoking-dependent exposure biomarker in older adults in Tehran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27769-27777. [PMID: 33517531 DOI: 10.1007/s11356-020-10261-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is ranked in the top ten environmental toxicants but its impact on type 2 diabetes mellitus (T2DM) and its association with other human health effects is contradictory. We aimed in this study to compare the urinary arsenic concentration (u As) in older age adults (> 40 years) and their T2DM subgroup in an age and gender-matched case control study to find the association of u As with, diet, oxidative stress, smoking, anthropometric factors, and lifestyle in our study participants. Face-to-face interviews based on structured questionnaires were conducted on 200 female and male volunteers (100 cases and 100 control). Considering the exclusion criteria, u As concentration and serum biomarkers of oxidative stress (malondialdehyde, superoxide dismutase, catalase) of 30 newly diagnosed T2DM and 30 control were determined by ICP-mass analysis and ELISA reader respectively. Despite the similarities in sociodemographic, diet, and lifestyle factors in males and females and their T2DM subgroups, a 4 times difference in u As levels between T2DM (93.7 ng/L (32)) and their healthy counterparts (23.7 ng/L (2.3)) without meaningful associations with gender, age, BMI, diet, and lifestyle was observed. Mean u As concentration in total population of smokers was significantly higher than non-smokers ((119 ng/L vs. 22.5 ng/L (p = 0.03)) and oxidative stress markers were not significantly higher in T2DM smokers than non-smokers. Chronic arsenic exposure through smoking could be contributed to the incidence of T2DM in older age adults. Oxidative stress markers were not significantly increased in smoker subgroup compared with non-smokers but except smoking pattern, other variables did not affect u As concentration. Precautionary measure to reduce the exposure of people with this element is recommended to prevent the arsenic-induced T2DM in human populations.
Collapse
Affiliation(s)
- Atena Arab YarMohammadi
- Pharmaceutical Sciences Research Center, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Dr. Shariati St., Gholhak, Yakhchal, Pharmaceutical Science Branch, Tehran, Iran.
| | - Parisa Ziarati
- Nutrition and Food Sciences Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
| |
Collapse
|
18
|
Jain RB. Concentrations of selected arsenic species in urine across various stages of renal function including hyperfiltration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8594-8605. [PMID: 33067786 DOI: 10.1007/s11356-020-11189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Data (N = 10,590) from National Health and Nutrition Examination Survey for 2005-2016 for US adults aged ≥ 20 years were analyzed to study how concentrations of arsenobetaine (UAB), monomethylarsonic acid (UMMA), dimethylarsenic acid (UDMA), and total arsenic (UAS) in urine vary across the stages of renal function (RF). Data were analyzed over RF-1A (eGFR > 110 mL/min/1.73 m2), RF-1B (eGFR between 90 and 110 mL/min/1.73 m2), RF-2 (eGFR between 60 and 90 mL/min/1.73 m2), RF-3A (eGFR between 45 and 60 mL/min/1.73 m2), and RF-3B/4 (eGFR between 15 and 45 mL/min/1.73 m2). Adjusted geometric mean (AGM) concentrations of the total population, males, and females for UAS, UAB, and UDMA were observed to follow inverted U-shaped distributions with points of inflection located at RF-3A. For example, adjusted concentrations for the total population for UAS were 8.8, 8.8, 9.5, 11.7, and 9.6 μg/L for those in RF-1A, RF-1B, RF-2, RF-3A, and RF-3B/4 respectively. While statistically significant differences were only occasionally observed, males, in general, had lower AGMs than females for UAS and UDMA, but females had lower AGMs than males for UAB. Among the various racial/ethnic groups, non-Hispanic whites had the lowest adjusted concentrations of all four arsenic variables. Adjusted levels of all four arsenic variables were observed to decrease over survey years of 2005-2006 through 2015-2016. However, statistical significance was not necessarily reached for all RF stages. Smoking was associated with reduced levels of four arsenic variables over RF-1A through RF-2. Diabetes was associated with increased levels of UMMA and UDMA at RF-2.
Collapse
|
19
|
Saba S, Akash MSH, Rehman K, Saleem U, Fiayyaz F, Ahmad T. Assessment of heavy metals by ICP-OES and their impact on insulin stimulating hormone and carbohydrate metabolizing enzymes. Clin Exp Pharmacol Physiol 2020; 47:1682-1691. [PMID: 32434266 DOI: 10.1111/1440-1681.13353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Arsenic (As) and cadmium (Cd) have recently emerged as major health concerns owing to their strong association with diabetes mellitus (DM). We aimed to investigate the heavy metals exposure towards incidence of DM at various enzymatic and hormonal levels. Additionally, association of As and Cd with Zinc (Zn, essential metal) was also evaluated. Spot urine samples were collected to assess As, Cd and Zn through ICP-OES. Serum was analyzed by assay method for fasting blood glucose, liver and renal function biomarkers. ELISA was performed to investigate the impact of heavy metals on HbA1c, α-amylase, DPP-IV, IGF-1, leptin, GSH, MDA, SOD, HDL, FFA, TG and interleukin (IL)-6. Association of heavy metals with DM was measured by odds ratio (OR) and level of significance was assessed by Chi-squared test. Unpaired student's t-test was used to compare DM-associated risk factors in heavy metals-exposed and unexposed participants. As and Cd were detectable in 75.4% and 83% participants with mean concentration of 75.5 ppb and 54.5 ppb, respectively. For As exposure, OR in the third quartile was maximum ie 1.34 (95% CI, 0.80 to 2.23), however the result was not statistically significant (P > .05). For Cd exposure, OR in the fourth quartile was considerably high, 1.62 (95% CI, 1.00 to 2.61), with a significant probability value (P < .05). Urinary Cd was negatively associated with Zn. As and Cd exposure increases the incidence of DM in the general population. Impaired hormonal and enzymatic levels in diabetic and non-diabetic exposed participants reflect the multiple organ damage by heavy metal exposure.
Collapse
Affiliation(s)
- Shakil Saba
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Fareeha Fiayyaz
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Tanvir Ahmad
- Department of Statistics, Government College University, Faisalabad, Pakistan
| |
Collapse
|
20
|
Ma L, Liang B, Yang Y, Chen L, Liu Q, Zhang A. hOGG1 promoter methylation, hOGG1 genetic variants and their interactions for risk of coal-borne arsenicosis: A case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103330. [PMID: 32004920 DOI: 10.1016/j.etap.2020.103330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
To identify the effect of hOGG1 methylation, Ser326Cys polymorphism and their interactions on the risk of coal-borne arsenicosis, 113 coal-borne arsenicosis subjects and 55 reference subjects were recruited. Urinary arsenic contents were analyzed with ICP-MS. hOGG1 methylation and Ser326Cys polymorphism was measured by mehtylation-specific PCR and restriction fragment length polymorphism PCR in PBLCs, respectively. The results showed that the prevalence of methylated hOGG1 and variation genotype (326 Ser/Cys & 326 Cys/Cys) were increased with raised levels of urinary arsenic in arsenicosis subjects. Increased prevalence of methylated hOGG1 and variation genotype were associated with raised risk of arsenicosis. Moreover, the results revealed that variant genotype might increase the susceptibility to hOGG1 methylation. The interactions of methylated hOGG1 and variation genotype were also found to contribute to increased risk of arsenicosis. Taken together, hOGG1 hypermethylation, hOGG1 variants and their interactions might be potential biomarkers for evaluating risk of coal-borne arsenicosis.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Yuan Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liyuan Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|